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ABSTRACT In clinics, the reduction of femoral intertrochanteric fractures shouldmeet themedical demands
of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position
alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least
square optimization problem with the inequality constraints. The main challenges include how to solve this
constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces.
To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic
parameters are computed, at the beginning of when the 3D input pieces’ anatomical areas are labeled by
using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data
so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The
final reduction position of the pieces is obtained through iterative axis alignment and position alignment.
Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two
typical bone assembling methods. The presented method solves an optimization problem for assembling
intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the
developed algorithm which is proved to be capable of reaching the clinical demand.

INDEX TERMS 3D model, intertrochanteric fracture, fracture reduction, data-driven, axis-position
alignment.

I. INTRODUCTION
When a fracture occurs in the human body, the treatment
usually requires the assembling and fixation of the bone
fragments. The assembling of the bone fragments is called
fracture reduction in clinical practice [1]. During the oper-
ation, fracture reduction usually depends on the doctor’s
experience, which sometimes leads to lower efficiency and
more redundant radiation exposure, resulting in delayed

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

fracture healing, fracture nonunion, infection, and other sur-
gical complications. With the development and maturation of
computer-aided design and computer graphics research, the
preoperative use of computers for three-dimensional fracture
reduction [2], [3] can improve the accuracy of intraoperative
surgical reduction and shorten the operation time.

The state-of-the-art of fracture reduction methods [3] only
consider aligning the fracture boundaries, which we call
position alignment. These methods will probably fail in the
scenarios that the boundaries can be impossibly matched due
to missing of pieces and the cluttered/blurred boundaries.
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Pieces missing and boundaries blurring are common situa-
tions for most of the intertrochanteric fractures [4]. To han-
dle these problems, the orthopaedic specialists will usually
enforce the angles between the bone axes of the lower at
least to be in a reasonable range, and the fracture bound-
aries as close as possible, assuring the lower limbs to be
basically functional (see Fig.1). The alignment demands of
maintaining the proper angles between bone axes are called
axis-alignment. As a matter of fact, this kind of axis-position
alignment is extensively demanded for assembling the major
types of the fractures of the human limbs, which can be
formulated as a constrained assembly optimization problem.
To solve the axis-position alignment problem, the main tech-
nical challenge is how to effectively extract the axes of ran-
domly fractured bones.

FIGURE 1. Fracture reduction of intertrochanteric fractures. a) Fracture
bones. b) Reduction result.

In this study, we put up with a data-driven approach to
extract the bone axes and iteratively solve the constrained
assembly problem for intertrochanteric fractures. Techni-
cally, our study opens the door of the research for the new
problems of constrained assembling of bone pieces in order
to meet the practical demands in clinics. And, our study also
paves the way for the axis-position alignment of the other
kinds of bone fractures.

II. RELATED WORK
Fracture reduction involves the extraction of medical seman-
tics of bones. Therefore, the research progress of fracture
reduction and the extraction of medical semantics are sepa-
rately introduced.

A. FRACTURE REDUCTION
Fracture reduction falls into the field of digital assembly for
fractured pieces, as was originated from the jigsaw puzzle
games [5] and was later used in archaeological restoration [6]
and fracture reduction for bones [7]–[11]. Next, we will intro-
duce the fragments reassembly methods in detail according to
different classification criteria.

The objects to be reassembled can be divided into three
categories, i.e., image fragments [12]–[14], archaeological
fragments [15], and fractured bones [9], [16]. They differ
mainly in the ways of how they are generated as the digital
input. The images are known as the Euclidean data [14], com-
prised of regular 2D pixels. The archaeological fragments

are scanned by laser-scanners to reconstruct their 3D shapes.
Different from the former, the 3D shapes of bones are mostly
reconstructed from the CT images. The boundaries of the 3D
bones are usually blurred due to the limitation of the precision
of CT scanners.

The similar shape of pieces, if available, can be used as
a prior knowledge or template to guide the assembly. For
example, the healthy side of the bones (we call contralateral
bone) can be utilized to aid the assembly of the fractured
side [7], [9]. However, [16] suggests that there exists possible
shape difference between the symmetric sides of the bones.
And usually, the healthy side is not available because only the
fractured side will be scanned in clinics. When the templates
are not available, the approaches will assemble the bone
pieces by aligning the boundaries of the pieces [11]. Thus, the
errors of assembly depend on the resolution and the quality
of 3D reconstruction of the boundaries in great extent. As for
the intertrochanteric fractures, the pieces’ boundaries will
always blur because of the low bone mineral density of this
area. As a result, this kind of work will probably fail, not to
mention maintaining the proper angle of the axes.

Fragments matching can be divided into pair-wise local
matching [8], [15], [18] and multi-piece global matching
[6], [9], [16], [17]. The pair-wise approaches take two pieces
as one unit for assembly, conducting the assembling by
matching their fractured boundaries. The assembly work for
multi-pieces always takes the pair-wise assembly as the first
step to create the candidates matches between the pieces.
The main challenge for the multi-piece assembly is to keep
the global consistancy for all the pieces, which is known as
notorious NP-hard problem. The Greedy algorithm [6] and
the branch-and-bound method [17] are usually utilized as the
approximate numerical solutions for the optimization.

In practical operations, the assembly for intertrochanteric
fractures considers only two primary bone pieces, i.e., the
femoral piece and the femoral shaft piece. Thus, our goal is
to assemble these two pieces to assure the axes angles to be in
the normal range, meanwhile, the fracture boundaries should
be as close as possible.

B. EXTRACTION OF MEDICAL SEMANTICS FROM BONES
Labeling the regions of the 3D shapes has been extensively
studied in the area of computer graphics, where there are
too many related work to be enumerated. In the following,
we are about to introduce the work which is closely related.
The approaches can be divided into the non-data-driven ones
and data-driven ones, which will be discussed as follows.

In the early studies, [19]–[24] use the spatial relationships
among the landmarks of the bones. Some work [25], [26]
labels the landmarks by matching the target to the templates
and propagating the landmarks from the template to the tar-
get. The challenge is how to match the target to the templates,
which is an open problem in the field of computer graphics.
Matching the pieces to the complete bone template can be
formulated as the NP-hard problem of partial matching.
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The convolutional neural networks (CNNs) in many fields
such as computer vision, the geometrical deep learning has
become the off-the-shelf approaches to handle the 3D shape
analysis. Specially, to label the region of the 3D objects,
numerous CNN-like networks are proposed for different
tasks and have outstanding performance over the traditional
non-data-driven methods. For example, Pointnet++ [27],
taking the point cloud as input, is capable of handling the
tasks from object classification to segmentation. The recent
MeshCNN [28] is a convolutional neural network designed
specifically for triangular meshes. MeshCNN utilizes the
unique properties of the mesh for a direct analysis of 3D
shapes. 3D ShapeNets [29] represents a geometric 3D shape
as a probability distribution of binary variables on a 3D voxel
grid, using a Convolutional Deep Belief Network. In this
paper, we choose PointNet++ to learn the semantic regions of
the bones. To lower the cost of the labeling, we use a statistical
shape model [30] so as to generate the synthetic training data.
The training shapes of the femurs are generated by randomly
deforming the statistical shape model. The regions on the
training models can be propagated from the semantic regions
pre-labeled on the mean template.

III. METHOD
A. PROBLEM FORMULATION
In this paper, taking 3D bone pieces as input, we propose
a data-driven method to meet both the two requirements of
the axis-position alignment. The output of our method is a
collection of assembled bone pieces. The by-product of our
method includes the bone semantics, e.g., semantic regions,
landmarks, axes, angles, which can be used as the critical
references for orthopedic surgeons treating the fractures.

Before elaborating the problem formulation, some issues
need to be addressed as follows.

First, the input bone pieces are comprised of three surfaces,
i.e., outer surface, inner surface, and the fracture surface
(see Fig.2). The outer surface is a thin, dense membrane of
bones. The inner surface is composed of the soft-tissues. The
ring-like fracture surface is where the bone is fractured and is
used as the fracture boundary of the piece. All the semantic
regions are labeled on the outer surface.

FIGURE 2. Surfaces of bone pieces.

Second, three datum planes of anthropometry are needed to
be extracted, as illustrated in Fig.3. They are the axial plane,
coronal plane and sagittal plane. Among them, the axial plane
is parallel to the ground. The coronal and sagittal plane are
perpendicular to the ground and are perpendicular to each
other. The coronal plane divides the body into anterior and
posterior portions, and the sagittal plane divides the body into
right and left sections.

FIGURE 3. Datum planes of human body.

Third, in intertrochanteric fractures, the input fracture
shapes include two primary bone pieces, namely, the piece
including the femoral head (we call femoral head piece here-
inafter) and the piece including the femoral shaft (we call
femoral shaft piece hereinafter), as shown in Fig.4a)). During
the assembly, the piece of femoral shaft is fixed, and the rigid
transformation is figured for the piece of the femoral head to
move from its initial position towards the femoral shaft piece
(see Fig.4b)).

FIGURE 4. Bone pieces and assembling process.

Forth, three axes of femur are extracted including head-
neck axis, shaft axis and condyle axis, as shown in Fig.5. The
head-neck axis is the line connecting the center point of the
femoral head and that of the femoral neck. The shaft axis is
the center line of femoral shaft. And the condyle axis is the
line connecting two centers of condyles of the distal femur.

Fifth, as for the intertrochanteric fracture, both two angles,
i.e., the neck-shaft angle and the anteversion angle [19],
need to fall into the normal ranges. The neck-shaft angle is
calculated by projecting the angle between the head-neck axis
and the shaft axis to the coronal plane (see Fig.6). The antev-
ersion angle is calculated by projecting the angle between
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FIGURE 5. Axes of femur.

FIGURE 6. Representation of neck-shaft angle.

the head-neck axis and the condyle axis to the axial plane
(see Fig.7).

FIGURE 7. Representation of anteversion angle.

With these premises, the problem of axis-position align-
ment of assembling can be formulated the following
least-square optimization problem with two inequality con-
straints.

(R, t) = argmin
R,t

∑
P1i ∈ B1
P2j ∈ B2

∥∥RP1i + t − P2j∥∥22 (1.a)

1 ≤ i ≤ n
1 ≤ j ≤ m

s.t. 6 c(Rlhn + t, ls) ∈ (αmin, αmax) (1.b)
6 a(Rlhn + t, lc) ∈ (βmin, βmax) (1.c)

(1)

where (1.a) aims to minimize the average distance between
the points on the two fracture surfaces (position-alignment)
and (1.b) & (1.c) are the inequality constraints for axis-
alignment. Specifically, R denotes the rotation matrix,
t denotes the translation vector, B1 and B2 denote the fracture
surfaces of the pieces of femoral head and femoral shaft,
respectively, lhn represents the head-neck axis, ls represents
the femur shaft axis, lc represents the condyle axis, 6 c is
the angle projected to the coronal plane, 6 a is the angle
projected to the axial plane. Clinically, the normal ranges
of the neck-shaft and anteversion angle are [αmin, αmax] and
[βmin, βmax], respectively.

B. METHOD OVERVIEW
To address the optimization problem of Equation (1),
we adopt an approach to conduct axis and position alignment
iteratively. The overall workflow is shown in Fig. 8, which
includes the following two main steps.

Step1: Extraction of the bone semantics
We use a data-driven approach to compute the bone seman-

tics according to their hierarchical dependencies (see Fig. 9).
Step2: Axis-position alignment
The angles of the axes and the distance between the fracture

pieces are alternatively adjusted until convergences.

C. DETAILS OF SEMANTICS EXTRACTION
The hierarchical dependences of the bone semantics are
shown in Fig.9. Therefore, we compute the bone semantics in
the order of semantic regions, landmarks, axes, datum planes,
angles and distance. The details are introduced as follows.

1) EXTRACTION OF SEMANTIC REGIONS
We classify the semantic regions into two categories, i.e.,
the anatomical regions and the fracture surfaces. The anatom-
ical regions include 4 regions. The anatomical regions are
labeled by a data-driven method through the neural network
of PointNet++ [27]. The fracture surfaces are extracted by the
method proposed by [9]. The details are as follows.

a: EXTRACTION OF ANATOMICAL REGIONS
Firstly, the neural network is trained according to labeled
point cloud data. Then, the triangle mesh models are changed
into point cloud models as input data of the network. After
that, the label of each point, denoting which semantic region
this point belongs to, is predicted through training the net-
work. Finally, the label of each point is mapped back to
the corresponding point on the triangle mesh model. The
extraction process is illustrated in Fig.10, where the head,
neck, shaft and condyles are highlighted in red, blue, green,
and yellow, respectively. The technical details are referred to
Appendix.

b: EXTRACTION OF FRACTURE SURFACES
inspired by [9], we extract the fracture surfaces in two steps.
First, we extract the initial fracture surfaces according to the
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FIGURE 8. Overall workflow of our method. The method consists of two main steps, i.e., extraction of bone semantics and axis-position
alignment. For extraction of bone semantics, the neural network is used to extract the semantic regions, and the axes and datum planes are
identified based on the regions. The fracture surfaces are obtained based on vertex normal. For axis-position alignment, the angles of the axes
and the distance between the fracture pieces are alternatively adjusted until it converges. The transform matrix (R, t) is finally calculated to
assemble the fracture bones.

surface normals. Second, we refine the fracture surfaces by a
post-processing. The details are as follows.

The principle of determining whether a point lying on
the fracture surface by [9] are addressed in the following.
Observing that the fracture surfaces of bone pieces are often
narrow, [9] made two plausible assumptions. One is that the
two neighboring surfaces (outer surface and inner surface) of
a fracture surface are almost parallel. Another is that fracture
surface is nearly perpendicular with these two neighboring
surfaces. Then the normal of a point on the fracture surface
is approximately perpendicular to those of the neighboring
points on the outer and inner surfaces and is approximately
parallel to those of the neighboring points on the same frac-
ture surface (see Fig.11). Thus, a point can be taken as the
one lying on the fracture surface if the point satisfies the
above-mentioned conditions. The technical details can be
referred to [9]. The thresholds of normal in our method are
between 8/π and 4/π .
The outliers of the fracture surface are refined by a post-

processing step through region merging and trimming out
the points on the anatomical regions, labeled in the previous
step. The details of post-processing are as follows. Firstly,
all connected regions are extracted by using a method of
region growing. Secondly, the largest connected region of
each fracture piece is assumed to be part of the fracture
surface. Other regions of the piece, lying within a distance
threshold of 0.4 mm (need to manually fine-tune according
to different cases), are merged with largest region. Finally,
the connected regions are updated and the process is repeated

until no more regions can be added. The fracture surface of
each pieces is finally identified after the fracture surface on
the semantic regions are removed. One example of extracting
the fracture surface of the bone pieces is illustrated in Fig. 12.

2) EXTRACTION OF AXES
The details of extracting the head-neck axis, shaft axis and
condyle axis are addressed as follows.

a: HEAD-NECK AXIS
The head-neck axis is the line connecting the center point of
the femoral head and that of the femoral neck. The center
point of the femoral head is the sphere center, which can be
fitted to the semantic region of femoral head by using the
least-square method (see O1 in Fig.13a)) [31]. The center
point of the femoral neck is the centroid of the semantic
region of the femoral neck (see O2 in Fig.13a)). The details
of sphere fitting are as follows.

The general equation of a sphere in x, y, and z coordinates
can be seen Equation (2), the center point of the sphere with
radius r is found at the point (x0, y0, z0).

(x − x0)2 + (y− y0)2 + (z− z0)2 = r2 (2)

x2 + y2 + z2 = 2xx0 + 2yy0 + 2zz0 + r2 − x20 − y
2
0 − z

2
0

(3)

After expanding and rearranging the terms of Equation (2),
the new equation of a sphere is expressed as Equation (3).
This equation can now be expressed in matrix notation as
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FIGURE 9. Dependence and computation of the hierarchical bone semantics. The bone semantics include five categories, which are computed in
the order of semantic regions, landmarks, axes, datum planes, angles and distance. The semantic regions include anatomical regions and the
fracture surfaces, the anatomical regions are labeled by using neural network. The landmarks are determined by the anatomical regions. And the
axes are extracted based on the regions and landmarks. The planes can be identified through axes. Finally, angles and distance are calculated
based on the above parameters.

FIGURE 10. Semantic regions extraction. a) A triangle mesh model of
fracture bone. b) The point cloud data obtained from the triangle mesh
model. c) Predict the label of each point by deep learning. d) The label of
each point is mapped to the triangle mesh model.

follow,


x21 + y

2
1 + z

2
1

x22 + y
2
2 + z

2
3

· · ·

x2n + y
2
n + z

2
n

=

2x1 2y1 2z1 1
2x2 2y2 2z2 1
...

...
...

...

2xn 2yn 2zn 1

∗


x0
y0
z0

r2 − x20 − y
2
0 − z

2
0


(4)

FIGURE 11. The normal of surfaces.

where xn, yn, zn represent the points of head region. The
sphere can be obtained by solving the Equation (4). The
technical details can be referred to [31].

b: SHAFT AXIS
the femoral shaft axis is computed by fitting a line to the
semantic region of femoral shaft, as illustrated in Fig.13b)).

c: CONDYLE AXIS
As shown in Fig.13c), the condyle axis is the line connecting
the center points (see O3 and O4 in Fig.13c)) of condyle
regions (yellow dots).
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FIGURE 12. The result of fracture surface extraction. a) The sampling
points of the fracture surfaces. b) The fracture surfaces of the femoral
head and the femoral shaft are shown in brown. c) The fracture surface
after post-processing.

3) IDENTIFICATION OF THE DATUM PLANES
The datum planes consist of the coronal, axial, and sagittal
planes, which are perpendicular to each other. The three
planes can be calculated based on the extracted axes. The
plane perpendicular to the shaft axis is the axial plane. The
coronal plane can be determined by shaft axis and condyle
axis. The coronal plane is parallel to the condyle axis and
passes through the shaft axis. The sagittal plane can be
obtained by shaft axis and coronal plane. The sagittal plane
is perpendicular to the coronal plane and passes through the
shaft axis (see in Fig.14).

D. AXIS-POSITION ALIGNMENT-BASED ITERATIVE
REASSEMBLY
In this paper, we adopt the idea of iteratively conducting
axis-position alignment to solve the assembling problem of
fracture pieces. The pseudo code of the overall algorithm
is given in Table 1. During the entire process of alignment,
the femur shaft pieces is fixed and we only adjust the femur
head pieces. In each iteration, the alignment is carried out in
a coarse-to-fine strategy, the details are as follows.

1) COARSE ALIGNMENT
a: AXIS ALIGNEMNT
The neck-shaft angle and femoral anteversion angle are
measured and adjusted to fall into the normal ranges.

TABLE 1. Pseudo code of our algorithm.

The neck-shaft angle is adjusted by rotating around y-axis and
the femoral anteversion angle is adjusted by revolving around
z-axis.

FIGURE 13. The details of axes’ extraction. a) The head neck axis. b) The shaft axis. c) The
condyle axis.
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FIGURE 14. The datum planes. a) Axial plane, b) Coronal plane, and c)
Sagittal plane.

b: POSITION ALIGNEMNT
To reduce the influence of noisy data, based on the axis
alignment, 10% of the point pairs with the largest Euclidean
distance between the fracture surfaces of two main bone
pieces are removed. After that, the distance between the
corresponding points of the fracture surfaces is calculated
(See Equation (1)). And then the position of the femoral head
piece is gradually adjusted by respectively translating along
the x-axis, y-axis and z-axis until the minimum Euclidean
distance value is found, and the corresponding transformation
matrix is simultaneously recorded.

2) REFINE ALIGNMENT
a: REDUCTION CORRECTION
The Iterative Closest Point (ICP) method is used to refine the
reduction results.

IV. RESULT
A. DATASETS
We collect clinical human bone data from the department of
orthopaedics at Liyang People’s Hospital, Changzhou, China.
The data comprise 8 fracture femur models and 40 healthy
femur models, represented as the 3D triangular mesh models,
manually reconstructed from the clinical Computed Tomog-
raphy (CT) images by using the software Mimics. All the
trabecular bones are manually removed from the fracture
bones. Parameters of the CT scanner are as follows: tube
voltage 120 kV, tube current 200 mA, slice thickness 1 mm,
layer pitch 0.5 mm, matrix 512× 512.

The authors have received approval from Chinese Clinical
Trial Registry (ID: ChiCTR1900023259), and to the best of
their knowledge, certify that the patients undergoing treat-
ment have given their informed consent to the collection and
use of data for research purposes. This project is conducted
with full respect to the privacy rights of all human subjects
involved.

B. DATA PRE-PROCESSING
All the 3D bone models’ trabecular bones are manually
removed in the pre-processing procedure. Specifically, only
the femoral head piece and the femoral shaft piece are
preserved for each fracture model. The healthy models are
leveraged to generate the training data for the deep neural
network (see the details in Appendix).

C. EVALUATIONS & RESULTS
The evaluations are conducted in four aspects, i.e., evaluation
of semantic regions, comparison with the clinical medical
reduction standard, comparison with manual alignment and
comparison with baseline methods.

1) EVALUATION OF SEMANTIC REGIONS
Extracting semantic regions is the key step in our
approach. To evaluate the accuracy of extracting regions
(anatomical regions and fracture surfaces), we compared the
regions extracted by our method with the regions manu-
ally labeled by orthopaedic surgeons. The region manually
labeled by surgeons is taken as ground-truth. We visually
illustrate the difference between the manual extraction and
the one by our method, as shown in Fig.15. Besides, we use
the accuracy and recall of all semantic regions for evalua-
tion. Accuracy (A) is simply a ratio of correctly predicted
observation to the total observations (see in Equation (5)),
and recall (R) is the ratio of correctly predicted positive
observations to the all observations (see in Equation (6)).

A =
TP+ TN
P+ N

(5)

R =
TP

TP+ FN
(6)

where TP denotes the number of correct extracted points
in the semantic regions, TN denotes the number of correct
extracted points in non-semantic regions, P denotes the num-
ber of ground-truth points in semantic regions, N denotes the
number of ground-truth points in non-semantic regions, and
FN denotes the number of wrong points extracted in semantic
regions.

FIGURE 15. Visualized evaluation of semantic regions extraction.
Top row: the visualized evaluation of anatomical regions. Bottom row:
visualized evaluation of fracture surface. a) The result of surgeons’
manual marks. b) The extracted results by our method. c) The errors
between two results are highlighted in red.

The results of the extracted semantic regions of all the
clinical cases are shown in Fig.16. As can be seen in Table 2,
the accuracy of all regions is above 85% and the recall rate is
above 87%. The results are similar to those ofmanual labeling
by surgeons.
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FIGURE 16. Experimental results of axis and position alignment-based reduction. First column: the source data.
Second column: the semantic regions extracted by network. Third column: the fracture surface (blue). Forth column:
manual reduction results. Fifth column: pairwise reduction with our method. End column: comparison between the
distance errors with two methods. (Blue regions reflect low error, and red regions reflect high error).

2) COMPARISON WITH THE CLINICAL MEDICAL REDUCTION
STANDARD
In clinical evaluation, the quality of the intertrochanteric frac-
ture reduction will be usually evaluated according to the frac-
ture angulation and the distance between fracture pieces. The
clinical evaluation for bone reduction, w.r.t. axis alignment
and position alignment, can be divided into three categories:

good reduction, acceptable reduction, and poor reduction [1],
as shown in Table 3.

The experimental results are shown in Fig. 16 as well
as in Table 4, where the neck-shaft angle is between 125◦

and 145◦, the anteversion angle is less than 20◦, and the
distance between bone fragments is less than 4 mm. All of
the reduction results can be evaluated as good according to
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TABLE 2. Anatomical regions evaluations.

the clinical criteria (see Table 3). In conclusion, all of the
experimental results meet the axis and position alignment
criteria of clinical reduction, with clinical practical value.

3) COMPARISON WITH THE MANUAL ALIGNMENT
The results of our method are compared with the results of
manual reduction which are taken as the ground truth. The
manual reduction results were performed by five orthopaedic
surgeons, and the best one was taken as the final ground truth.

The reduction accuracy is evaluated by utilizing three
metrics, i.e., the distance between bone fragments, transla-
tional error, and rotational error. The comparison is shown
in Table 4, where MSE denotes the sum of the squared
Euclidean distances between the corresponding points of the
two fragments, α denotes the rotational error around the
x-axis, β denotes the rotational error around the y-axis, and
θ denotes the rotational error around the z-axis. Judging from
the averaged distance errors and rotational errors, we can see
that the results of our method exhibit low differences from the
ground truth.

The error of the average distance between bone fragments
is 1.0 ± 0.5 mm, the rotational error around the x-axis
is 5± 3◦, the rotational error around the y-axis is 5± 5◦, and
the rotational error around the z-axis is 5 ± 4◦. According
to Table 4, the results of our method exhibit, which are
acceptable by the orthopaedic surgeons.

4) COMPARISON WITH BASELINE METHODS
Our method is compared with ICP algorithm [32] as well as
themethod proposed by thework of Paulano et al [33]. For the
former baseline, the extracted fracture surfaces are aligned
by ICP algorithm. For the latter baseline, we extract the
fracture zone as shown in Fig.17. We decide to use distance
filter to extract the final fracture zone because of its good

FIGURE 17. The details of extracting fracture zone by [33] a) The point
clouds of models. b) The grid structure of each pieces. c) Extraction of the
candidate points. d) Extraction of the fracture zone using curvature filter.
e) Extraction of the fracture zone using distance filter.

performance on our data set. The reduction results of Paulano
et al are obtained based on the fracture zone.

We compare the two baselines with our method by three
metrics, namely, displacement, angles and overlapping. The
displacement denotes the distance between fracture zones of
two major bone pieces. The angles include the anteversion
angle and the neck-shaft angle. The overlapping error is
defined as the ratio between overlapping voxels and touching
voxels [33]. When bone fragments are moved or rotated with
respect to their original position, the Paulano et al’s method
requires a previous rough alignment to make bone pieces
have a good initial position. In order to compare the reduc-
tion results in more detail, for the Paulano et al’s method,
we calculated the reduction results with and without rough
alignment, respectively.

The comparison is visualized in Fig.18 and is shown
in Table 5 and Table 6. The details of results are analyzed
as follows.

a: DISPLACEMENT EVALUATION
The displacements of results are less than 4 mm for all
methods, which is in accordance with the standard of clinical
reduction (See Table 3).

b: ANGLES EVALUATION
The neck-shaft angle and anteversion angle calculated by
ICP and Paulano et al’s method (without rough alignment)

TABLE 3. Clinical criteria for reduction of intertrochanteric fractures.
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TABLE 4. Detailed experimental results.

FIGURE 18. Comparison between our method and other methods. (Top) ICP algorithm. (Second row) Paulano et.al without rough
alignment. (Third row) Paulano et.al with rough alignment. (Bottom) Our approach.

method are not up to the clinical medical reduction standard
of intertrochanteric fracture (See Table 3). On the contrary,
the two angles of Paulano et al (with rough alignment) and
ours stay in the normal range of the standard. Such results
justify the importance of axis alignment.

c: OVERLAPPING EVALUATION
The obtained mean overlapping error of our method and
Paulano et al’s method (rough alignment) is very small.
But the errors of ICP algorithm and Paulano et al’s method
without rough alignment are higher than those of our
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TABLE 5. Qualitative evaluations.

TABLE 6. Overlapping and touching evaluations.

method as well as Paulano et al’s method with rough
alignment.

Our method is implemented on the Microsoft Visual
Studio 2015 platform. The experiment took 32 to 61 minutes,
as shown in Table 3. The running time of the method was
related to the number of points in the bone piece model. Our
method is much more efficient than the manual method.

V. DISSCUSSION
This paper proposes a data-driven method to extract the bone
axes and iteratively solve the constrained assembly prob-
lem for the intertrochanteric fractures. In clinics, assembling
intertrochanteric fractures considers only two primary bone
pieces, i.e., the femoral piece and the femoral shaft piece.
Thus, our goal is to assemble these two pieces to assure
the axes angles to be in the normal range, and the fracture
boundaries should be as close as possible.

The main advantages of our method are as follows. First,
the proposed method is more suitable for clinical reduction
allowing for both axis-alignment and position alignment.
Second, the semantic regions of fracture pieces are automat-
ically extracted by using a neural network.

In the following, some issues will be discussed in detail.
The first issue is about the extraction of fracture sur-

faces. The reasons of why the method of [9] can be lever-
aged to extract the fracture surfaces are two-folds. On one
hand, the trabecular bones are removed from the input frac-
ture bone models in the pre-processing step. Then, the left
bones’ fracture surfaces will be extracted more precisely
without the disturbance of the inner soft tissues. On the other
hand, we further refine the fracture surface by merging the

fracture surfaces and trimming out the outliers on the
semantic regions.

The second issue relates to the extraction of semantic
regions. In most of the cases, the global morphology of the
fracture bone is still approximate to that of the healthy bone.
As a result, the semantic regions of the fracture bones can be
precisely extracted by deep learning, if the healthy bones are
used as training data for the deep neural network. The tests
conducted demonstrated that the semantic regions extraction
of each case performs good in our dataset. Note that in the
settings of the severe comminuted fractures, the semantic
regions will be probably damaged, causing inaccurate seman-
tic extraction and reduction failures. In practice, the com-
minuted fractures account for low percentage of the bone
fractures.

The third issue to be discussed lies in the user-input
parameters of our method. Our method relies on user-defined
values which hinders our method from the fully-automatic
approach. The user-defined thresholds, including the nor-
mal threshold of fracture surface extraction and the distance
threshold of fracture surface post-processing, have to be
adjusted in order to adapt our method to the available data.

One limitation is that our method is not resilient to the
lower resolution of triangle mesh models. Besides, our meth-
ods will also fail in the scenarios when the scanned fractured
femurs lack the distal segments.

VI. CONCLUSION
We present a data-driven method to meet the two
requirements of axis-position alignment assembling for
intertrochanteric fractures. The key idea of this method is to
pair-wisely assembling the bone pieces through iterative axis
alignment and position alignment. We utilize a neural net-
work to robustly compute the pieces’ semantic regions, since
extracting these regions is a non-trivial problem due to the
randomness of the fracture. Besides, our assembling method
ensures both the positional and axial alignment to meet the
clinical requirements of the intertrochanteric fractures. The
experimental results show that our method is capable of
meeting the criteria of good clinical reduction. In addition,
the assembly results by our method are proved to be closed
to those of manual alignment by surgeons and outperforming
the two typical assembling methods.

Our future effort can be focused on how to address more
challenging problems such as assembling complex bones
with bone dislocation and bone deformation.
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FIGURE 19. Architecture of the semantics extraction network, which is implemented based on PointNet++. The network takes a 3D point cloud of size
20000 as input, and outputs final segmentation result.

FIGURE 20. The synthetic models created by statistical shape model and semantic regions on template and
synthetic models.

APPENDIX
A. NETWORK ARCHITECTURE AND NETWORK TRAINING
1) NETWORK ARCHITECTURE
A neural network is trained to identify the medical semantics
of bone fractures. The network is implemented based on
PointNet++, as illustrated in Fig.19. The pipeline includes
three stages as follows. The first stage (four set abstraction
layers) down-samples the input point cloud extracts local
patterns. Specifically, the first stage includes four layers. The
second stage (four feature propagation layers) up-samples the
point cloud to its original size and propagate features by inter-
polating feature values. The third stage (two fully-connected
layers) further refines the features. Softmax function is
appended to the end of the fully-connected layers. Both input
and output of the network are normalized by the min-max
scalar to [0, 1]. To keep the number of the input point set
fixed, the network uniformly samples 20000 points among
the set of the vertices of the input mesh.

2) NETWORK TRAINING DATA
The training set contains 300 synthetic femur models, which
are created by randomly deforming the statistical shape
model [30]. As illustrated in Fig.20, we build the statisti-
cal shape model [30] of the healthy femur bone. The sta-
tistical shape model of the femur bone is constructed by
using 40 healthy femur mesh models. Based on these data,

we perform Principal Component Analysis (PCA) [34] to
obtain the statistical femoral model, which contains the mean
shape, top 30 principal vectors and corresponding principal
values. As stated in [30], a statistical shape model can be
formulated as follows.

S(x) = Smean +
L∑
l=1

αul (7)

where Smean denotes the mean shape of the 40 healthy femur
models, a = (a1, a2, · · · , al) denotes the coefficient vector,
ul denotes the principal vectors with the corresponding prin-
ciple values of top L values, L = 30. In this paper, the training
data, we call generated models thereinafter, are generated by
randomly sampling the coefficient a.

The generated model and the mean shape have the same
topology. Thus, the semantic regions can be obtained by
label propagation. Specifically, we can label the mean shape
Smean and map the label of the mean model’s vertex to the
generated model’s vertex with the same vertex ID. Surgeons
are invited to label the semantic regions of the mean shape
(see Fig.20).

3) NETWORK TRAINING
We use the Adam optimizer with a learning rate of 0.01,
and train the network for 200 epochs with a batch size
of 20. We randomly select 20% of the training data as the
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validation set, and perform dataset augmentation by random
scaling, rotation, translation, and perturbation. On a single
NVIDIA RTX 6000 graphics card, network training takes
around four hours.
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