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ABSTRACT Social networks have become a powerful information spreading platform. How to limit rumor
spread on social networks is a challenging problem. In this article, we combine information spreading
mechanisms to simulate real-world social network user behavior. Based on this, we estimate the risk degree
of each node during the hazard period and analyze the hazard level that other nodes are potentially affected
by when a node is infected by a rumor. We use the Rumor Path Tree (RPT ) to analyze the rumor spreading
path. By comparing the rumors and truths propagation to a certain node, the steps taken by the rumor node to
propagation are estimated. In order to identify the truth node, we construct a fractional function to calculate
the effective influence nodes, and select the node with the highest score from the generated RPT pool. Based
on the truth node we effectively block the spread of rumors. Finally, experimental results and comparisons
on the real datasets prove that our method is effective and efficient.

INDEX TERMS Social network, rumor spread, risk level, rumor path tree.

I. INTRODUCTION
Social networks provide users with a new way to spread mes-
sages. Users can share recent updates, recommended music
and videos via social networks. Due to the high openness
and spread of message transmission, the network is full of
false and even harmful rumors. Therefore, limiting the spread
of rumors and minimizing their influence have become the
challenging problem.

As shown in Fig. 1, nodeU1 is the rumor initiator. Through
rumor propagation, nodes U2,U3,U4 are becoming recipi-
ents. In the rumor propagation, after accepting the rumor by
U1, node U2 is not only the receiver, but also the initiator.
Consequently that, U2 passes the rumor to U3 and U4 again.
Through the above propagation, node U3,U4 receive rumor
twice.

In response to this problem, how to estimate the risk degree
of each node at any time during the hazard period and choose
the influencing node (truth node) to effectively block the
rumor propagation is a challenging problem.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

FIGURE 1. During social network with rumor propagation, node U3 and
U4 receive rumor twice by U1 and U2.

There are two typical methods can be implemented to
address this problem. The first one is to define some
nodes/edges that make rumors unreachable, that is, immune
nodes [1]–[4]. For example, in the above example, setting the
U2 node as a immune node can block on the< U1,U2 > path.
But if you want to completely block the spread of rumors,
U2,U3,U4 should also be set as immune nodes. The second
strategy is to define some key nodes as the truth initiators in
the social network. When rumors spread in social networks,
the truth initiators also propagate the truth [5]–[7]. This strat-
egy assumes that when the user is aware of the existence of
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FIGURE 2. An Example of Social Network with Entropy.

the truth, then the user will be immune to the rumor and will
not be attacked by rumors. For example, if U5 is set as the
truth initiator, in the same step,U5 andU1 can simultaneously
propagate the truth/rumor toU2,U3,U4. ThenU2,U3,U4 are
protected by the truth nodeU5. Obviously the second strategy
is more efficient.

However, entropy values have an impact on rumor propa-
gation and affect truth node selection. As shown in Fig.2.

(1) U1 is the rumor initiator, and the weight on each
path represents the entropy value consumed by the rumor
propagation.

(2) Suppose that without considering the entropy value,
if we only set one truth node in the network, it is obvious
that node U2 will be the best choice. Node U6 always arrives
at node U3,U4,U5 before U1, and can successfully protect
node U3,U4,U5 and U7 from rumors.
(3) Assuming that the initial entropy value of the rumor is

100, the entropy value will vary according to the path during
propagation. In this case, according to the rumor propagation
minimization theory, compared to the node U2, selecting and
setting the node U8 as truth node is the best choice.

Therefore, considering the entropy as the driving force for
rumor diffusion, the process of identifying immune nodes and
truth initiators is totally different from the existing works.
In light of this, we have designed a solution for a rumor prop-
agation network that the diffusion of rumors are driven by
entropy values. First we estimate the risk degree of each node
during the hazard period. It is to confirm the number of nodes
that are potentially affected when a neighbor node is infected
by a rumor, that is, the potential hazard level of any node.
Subsequently, we use the Rumor Path Tree (RPT ) to deter-
mine the infect probability between two nodes. By construct-
ing a RPT , we can analyze the propagation path of rumors to
determine the order in which rumors and truths propagate to a
certain node. Finally, we construct a fractional function to
calculate the effective influence nodes of each node in the
rumor hazard period, and select the node with the highest
score from the generated RPT pool as the truth node, which
effectively block the rumor propagation. Besides, in order to
validate the effectiveness of the proposed method, we have
conducted a number of experimental comparisons on real data
sets.

A. PROBLEM DEFINITION
1) SOCIAL NETWORK
A social network can be formally defined as G = {V ,E},
where V is the set of users, and E represents the relationship
among users. (u, v) ∈ E indicates that there is a direct
relationship (u, v ∈ E) between user u and user v. αuv ∈ {0, 1}
represents the correlation coefficient, and if αuv = 1, it means
that there is an association relationship (u, v), otherwise it
does not exist. We use p(u, v) to indicate the probability that
user u will delivery information to user v and user v will
accept it.

2) INFORMATION DIFFUSION MODEL
In social networks, the transmission mechanism of rumors
is similar to the spread of infectious diseases [8]. Accord-
ing to the Susceptible-Infected-Recovered model (SIRmodel)
[9]–[12], each user will always be in the following status:
Susceptible, Infected, and Recovered. An susceptible status
indicates that the user has not been infected by a rumor, but
is rumored to be infected at any time. The infected status
indicates that the user has been infected by the rumor and
spread the rumor. The recovered status indicates that the user
is aware of the existence of rumors and is immune to rumors.

In social networks, there are two typical diffusion models,
the Linear Threshold (LT ) model [5], [13], [14] and the
Independ Cascade (IC) model [15]–[18].

In the LT model, all nodes are divided into active status and
inactive status. For each node, there is a threshold γv ∈ [0, 1].
When the threshold γv >

∑
γu∈C of the node v (C is the set

of active nodes in the pioneer node of v) indicates that the
node v transitions from the inactive status to the active node.

The IC model simulates two simultaneous activities,
denoted as C (Campaign) and L (Limiting Campaign). The
model represents AC as the initial set of active nodes in C ,
and AL represents the set of initial active nodes in L. These
two events can also be considered as a kind of ‘‘good’’ (truth)
and a kind of ‘‘bad’’ (rumor). Both events are simultaneously
propagated in the social network. When the nodes in the two
propagate to the same node at the same time, the node chooses
to believe the ‘‘good’’ event. In this article, we choose the
IC model as the message propagation model, and our goal is
to maximize the spread of ‘‘good’’ activities throughout the
network and minimize the spread of ‘‘bad’’ activities.

3) WEIGHT MODEL
In a social network, each user’s social status is different.
We assign each user a fixed weight based on certain attributes
of the user in the social network. A user with a strong weight
indicates that he/she has a higher status, which means he/she
has more follows. Users with significant weights pass infor-
mation to users with small weights, and users who accept
information are more willing to choose users who believe in
weight. By assigning each user a weight value, we can more
clearly define the information transfer probability p(u, v)
between users.
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4) ENTROPY MODEL
The uncertainty of the rumor can be measured by entropy.
In this article, we assume that the amount of the entropy of
a rumor at the beginning stage is H . Note that the beginning
stage means that the rumor is known to no user in the social
network. H+ and H−are used to represent the entropy of the
truth and the rumor, respectively. H = H++H−. Due to the
immobility of the entropy value, the larger H+, the smaller
H−, and vice versa. When the rumor is initiated, H+ < H−

with the spread of rumors, H− is decreasing. We assume a
constant ε that is much smaller than the initial entropy value
H as the critical value of the enthalpy entropy H−. When
H− 6 ε, the rumor no longer propagates. In the process
of rumor entropy H− → ε, the relationship between the
decrease 1H− of each propagation entropy and the number
of propagation ζ is presented as:

1H− = H−e(−λζ ) (1)

where λ is a constant. After each rumor spread is complete,
we update the entropy of the rumor:

H− = H− −1H− (2)

According to the entropy model, we can consider the pro-
cess of reducing H− to ε as a process in which a rumor
tends to be stable and no longer propagates. It is worth noting
we choose the IC model as the message propagation model,
so one propagation is performed in one time step, that is, the ζ
propagation of the hierarchy can be regarded as a ζ times step.

5) RUMOR PROPAGATION MODEL
After clarifying the model, we formalize the rumor propaga-
tion model. R is the set of rumor initiators in the social net-
work, Z is the set of truth initiators, and |Z | is the number of
truth initiators that exist in the network.We define φ(R,Z ,H )
as the rumor initiator, the truth initiator, and the set of nodes
affected by the initial entropy value H . Our goal is to select
the appropriate node in the network as the truth initiator, We
denote the choice of the truth node as:

D∗ = argmaxz(|φ(R,8,H )| − |φ(R,Z ,H )|) (3)

where D∗ represents the difference of nodes. φ(R,8,H )
means that there is no truth and only affected by rumor R.

B. OUR SOLUTION
We propose a solution to determine the top − k node as the
truth initiator and effectively block the rumor propagation.
The solution consists of two phases:

(1) In phase one, we define the social network G and
the nodes that the rumor node can harm when the entrench
entropy value H− > ε is specified. We estimate the potential
hazard of an infected node by calculating the risk level of each
node.

(2) In phase two, we generate a RPT to determine the
rumor propagation path and the time step of estimating the
propagation of a rumor node to other nodes. Finally, we select

the appropriate top− k nodes from the RPT pool as the truth
initiator, which effectively block the rumor spreading.

C. OUR CONTRIBUTIONS
Our main contributions in this article:

(1) We combine information spreading mechanisms to
simulate real-world social network user behavior. Based on
this, we estimate the risk degree of each node during the
hazard period and analyze the hazard level that other nodes
are potentially affected bywhen a node is infected by a rumor.

(2) We use the Rumor Path Tree (RPT ) to analyze the
rumor spreading path. By comparing the rumors and truths
propagation to a certain node, the steps taken by the rumor
node to propagation are estimated.

(3) We construct a fractional function to calculate the
effective influence nodes, and select the node with the highest
score from the generated RPT pool.

(4) Experimental results and comparisons on the real
datasets prove that our method is effective and efficient.

We organize the paper as follows:
Section 1 is introduction. We introduce the research status

of rumor communication and typical communication model.
Section 2 is related work. In section 3, we propose a rumor
path tree structure that creates a beta equation by analyzing
the nodes in the structure. We choose the truth node by the
level of the node score in section 4.We demonstrate the effec-
tiveness and efficiency of our method by comparing the
experimental results with the existing methods in section 5.
Finally, section 6 gives conclusions and future work.

II. RELATED WORKS
As early in 1940s and 1990s, a group of outstanding schol-
ars emerged to deeply analyze the reasons for the spread
of personal and group rumors [15], [16], [19], [20]. [15]
demonstrated that rumors will mutate during the process of
communication and construct corresponding rumor formulas.
[16] studied the causes and results of rumors, and proved
that rumors caused not only negative consequences. The
theoretical analysis is used to extract the propagation path of
rumors, and the initiators and communicators of rumors are
distinguished [19].

In recent years, research on preventing the spread of false
news has emerged in social networks. References [1]–[4]
takes the node/edge setting level to filter the false informa-
tion. References [5]–[7] controlled the spread of malicious
information through the definition of anti-rumbling activ-
ities in the network. References [1]–[3] selected nodes to
immunize the attacks of the rumor nodes, and sets nodes
that can maximize propagation into the immune nodes in the
tree structure. Reference [3] considered the user experience
when blocking occurs in a social network, while using a time
window to simulate the social experience when the user is
blocked.

A growing body of research has shown that it is more
effective to initiate a campaign to counter the spread of
rumors than to set up a rumor immune checkpoint node.
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Reference [7] defined a multi-objective activity independent
cascade model to describe the EIL problem, and selects the
nodes with the greatest impact through a large number of
simulations. General greedy similarity algorithm to estimate
the local structure of each node against the attack of false
information [5], [13]. Reference [21] drawed on SinaWeibo’s
social network platform to analyze the relationship between
its users. Reference [6] proposed the Local Shortest-Paths
For Multiple Influencers(LSMI) algorithm to measure the
performance of selected nodes. Reference [22] proposed a
distributed expression model of users combined with emo-
tional factors to solve the problem of serious imbalances in
positive and negative cases. References [15], [19], [20] con-
structed the Independent Cascade Model with Login Event
(IC-L) model to simulate the delay propagation process.
Reference [19] proposed a regression equation to explain the
relationship between the distance between nodes in a social
network and the probability of being infected.

III. SINGLE NODE ATTRIBUTE CALCULATION
A. NODE WEIGHT AND PROPAGATION PROBABILITY
We calculate the weight weight(v) of each node v ∈ V , which
denoted as:

weight(v) =
2ϑ
π

arctan followers(v) (4)

where ϑ is the scale factor and followers(v) represents the
number of node v. Since the transfer probability p(u, v) of u,
v is based on the weight of the two nodes, we use the inverse
tangent function to limit the value range weight(v) ∈ [0, 1].
Whenweight(u)>weight(v), the probability/transplication

probability p(u, v) of the truth/proverb from u→ v is denoted
as:

p(u, v) =
|weight(v)− weight(u)|

θ
(5)

When weight(u) < weight(v), p(u, v) is represented as:

p(u, v) = θ |weight(v)− weight(u)| (6)

where θ is to ensure that the probability of a user who is
moving from a powerful user to a user with a small weight.
Which is a constant and θ ∈ [0, 1].

B. NODE INFLUENCE
We define the influence of a node u on the successor nodes,
denoted as Luv. It represents the probability that v node is only
affected by the pioneer node u and not by other pioneer nodes.
Assuming thatQ is the set of pioneer nodes of node u, then

the influence of u on successor node v is:

Luv = p(u, v)
∏

w∈Q\{u}(1− p(w, v)) (7)

The influence of a node can indicate the hazard level of a
node to its successor node when the entropy is greater than
the particular value. It is needed to be clear that nodes with
larger entrench entropy have higher risk levels. When the
entropy of the u is greater than ε, u poses a threat to the
successor node. When H− is larger, the number of times

FIGURE 3. DAG Representation of Social Networks.

u is propagated will also increase. And after being propa-
gated to the successor nodes, the successor nodes will have
more rumor entropy values and carry out the next round of
propagation.

We perform a Depth-First Search (DFS) algorithm by ζ
steps based on the period of rumor propagation, and form
the nodes involved in the algorithm into a set S. Based
on S, we perform an Acyclic algorithm [23] on it to find the
Directed Acyclic Graph (DAG). It is also for us to build the
RPT structure in the next step.
As shown in Fig.3(a), a social network graph R =

{U1,U2}, the number on the relationship represents the prop-
agation probability p(u, v). Fig.3(b) is the DAG processed by
the Acyclic algorithm, where {U3,U6,U4,U5,U7,U8} is a
topological sorting structure in the DAG.

C. NODE RISK LEVEL
We define risk(u, t) of node u at time t , which represents the
expected number of influences. If t = 0 and risk(u, 0) = 1,
then it indicates that the number of nodes affected by the u
node is 1. risk(u, t) denoted as:

risk(u, t) =
∑

v∈C (Luv
∑t

s=1(weight(v)risk(v, t − s))) (8)

where C is the set of successor nodes of u. The higher the
degree of risk, the greater the hazard of the node at this time.
Similarly, the risk degree is also an important parameter in
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our final score function. We present algorithm 1 as node risk
degree computation.

Algorithm 1 Risk Degree Computation
Input:

1. Graph G = (V ,E).
2. Initialized Rumor’s Entropy H− and Critical Value ε.
3. Rumor starter R.

Output:
Nodes in Set S reachable by R and Their Risk Degree.

1: Compute propagate times ζ with H−, ε;
2: Initialize S = ∅;
3: for each u ∈ R do
4: Perform DFS from u and insert visited nodes with ζ

hops into S;
5: end for
6: Apply Acyclic on S to generate a DAG and a topological

ordering;
7: for each node u in the topological ordering do
8: for each successor v of u do
9: compute Luv with Eq.(7);
10: end for
11: risk(u, 0) = 1;
12: end for
13: for t = 1, . . . , ζ do
14: compute risk(u, t) with Eq.(8);
15: end for
16: Return S and risk(u, t) for all u ∈ S, t = 0, 1, . . . , ζ ;

Algorithm 1 gives the process of calculating the risk level
of any node. Line 1 indicates the critical value ε and the
number of propagation times ζ based on the initial value
H− of the rumor that it no longer propagates. Lines 2 to
4 represent a ζ − step DFS algorithm for the rumor initiator
R to derive the range of nodes that the rumor can affect. Line
5 represents the use of the Acyclic algorithm to obtain the
DAG map and topological ordering of S. Lines 7-8 indicate
that for each node u, the influence Luv on its successor node
v is calculated using Eq.(7). Lines 10-11 indicate that the
risk degree risk(u, t) of the u node at time t = 1, . . . , ζ is
calculated using Eq.(8). Finally, in the 16th line, we return S
and the risk degree for all u ∈ S, t = 0, 1, . . . , ζ .

IV. TRUTH NODE SELECTION
A. RPT GENERATION
We operate on a network graph G containing the rumor
initiator R. According to the RIS algorithm [24], we calculate
the propagation probability p(u, v) by weight, and remove the
edges in the network with the probability of 1 − p(u, v) to
obtain the simple graph g. In the simple graph g, we perform a
reverse Breadth First Search (BFS) algorithm on the node r ∈
S to generate anRPT structure rooted at r . Whenever a node u
is reached, we create the corresponding node and add the node
and the edge it is connected to into the RPT structure. If the
node v has already been accessed, then copy the v node again.

FIGURE 4. Generate a RPT structure.

If the created RPT structure does not contain the rumor initia-
tor R, then it is not considered and removed until the iteration
is terminated. By generating an RPT structure, we can clarify
all the rumor propagation paths in the network. We analyze
the degree of danger based on the distance between the node
and the rumor initiator in the tree structure path, and also
the cost of evaluating the rumor and the truth to a particular
node in the tree. It is of significance for us to choose the truth
node.

Fig.4(a) is a sample graph g generated after the processing
of Fig.3(a). Fig.4(b) is a RPT structure diagram Tu8 of node
U8. Since there are two paths from the rumor node U2 to the
node U8, we create two U2 nodes in the RPT tree and the
U5 nodes passing by. In order to distinguish the two paths,
the rumors are respectively denoted as U1

2 and U2
2 .

We use Tr to represent the RPT structure of a (ζ +1) layer
of noder. Each path p ∈ Tr from v to its descendant noder also
corresponds to the path from v to r in the simple network g.
Each node v in Tr is combined into one (ζ+1) layer vectorBv,
and the probability that the node v of the j− th layer reaches
the root node in step j is denoted as Bv[j]. The vector of the
root node r is represented as Br = [1, 0, . . . , 0].
We assume that v is the d − th layer in the RPT structure,

then it needs at least d steps to reach the root node r . In other
words, there are at least d nodes on the path from v to r . When
i < d , the probability that v can reach r is zero. When i > d ,
let w be the v node to reach the current successor node on the
path of the root node r . Then the probability that v can reach
r in step imultiplied by the probability thatw reaches i in step
i− j, is denoted as

Bv[i] =

{
0, i < d∑i

j=1 weight(w)Bw[i− j], Otherwise
(9)

After modeling the rumor path into a vector structure,
we determine the probability that the node u reaches the root
node r at time t and before the rumor in the RPT tree struc-
ture, and such a probability is denoted as β(u,Tr , t). It helps
us to determine the order in which rumors and truths arrive
at a particular node as they propagate, thereby prioritizing
rumors and truth.

Let R′ ⊂ R denote the rumor initiator in Tr . We have the
following definitions:
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(1) If u is the pioneer node of a rumor initiator w ∈ R′,
β(u,Tr , t) = 0, sincew always arrives at r before u.
(2) If all the nodes in R′ are the pioneer nodes of u, then u

will always arrive at r before any rumors. β(u,Tr , t) = Bu[t].
That is, the probability of β(u,Tr , t) is the probability that u
reaches the root node at time t .

(3) If ∃Ru ⊆ R′ and node in Ru is neither the pioneer node
of u nor the successor node of u, and Ru 6= ∅. Obviously,
there is a rumor that there is a rumor that w ∈ Ru reaches r
from 0 to time t − 1 as

∏t−1
s=0(1− Bw[s]). However, there is

no rumor from 0 to time t − 1. The probability that w ∈ Ru
reaches r is

∏
w∈Ru

∏t−1
s=0(1− Bw[s]) .

In summary, we can get:

β(u,Tr , t) = Bu[t]×
∏

w∈Ru (
∏t−1

j=0 (1− Bw[j])) (10)

If u reaches the root node r in the RPT tree at time t than
any of the rumors of R′, then all nodes potentially affected
by r in the entire network G can be prevented. If the u
node is used as the origin initiation point, it can propagate
to the root node r before other nodes in the existing RPT
tree structure, then the r node will not be affected by any
rumors. Correspondingly, the nodes whose r nodes are poten-
tially affected in the entire network will not be attacked by
rumors.

Reviewing the previously calculated risk level risk(r, t)
can give the expected number of influences at time t . Then,
from t to ζ , the sum of nodes r can affect other nodes is
denoted as

∑ζ−t
s=0 risk(r, s).

We construct the fractional function of node u based on
the work done before. The score obtained by this fractional
function indicates the sum of the number of nodes that can
be effectively affected by node u in the order ζ propagation,
which is denoted as:

score(u,Tr , ζ ) =
∑ζ

t=1(β(u,Tr , t) ·
∑ζ−t

j=0 risk(u, j)) (11)

The fractional function consists of two important parame-
ters. The risk level indicates the sum of the nodes that the node
can affect over a period of time. The β function represents
the probability that the node will reach the root node before
the rumor in the rumor path tree structure. Through these two
parameters, we can summarize its influence at themacro level
(the whole social network) and the micro (each RPT ) level,
so such a score can best prepare for the influence of a node as
a truth node. We generates the RPT structure and computes
the node scorein Algorithm 2.

We first randomly extract a node r as the root node of the
RPT in S, and implement a BFS algorithm in reverse along
the path of the node r pioneer pointing to itself. For each node
v ∈ F , calculate their Bv vector in line 6. We determine if
the v-node is a rumor initiator. If not, add a copy of node
v to queue F . If v is a rumor initiator, then we end the
traversal of the current branch and move horizontally, while
removing node v from Ru. After building the RPT structure
Tr , we check in line 15 whether there are rumors in the tree.
Ru = ∅ indicates that node u is a successor of all rumors,
define β(u,Tr , t) = Bu[t]. Otherwise calculate β(u,Tr , t)

Algorithm 2 Generate a Rumor Paths Tree
Input:

1. GraphG = (V ,E), Hops ζ , Rumor starters R.
2. Set S of nodes reachable from R.
3. Risk Degree risk(u, t) for each u ∈ S.

Output:
A RPT .

1: Initialize processing queue F = ∅;
2: Randomly choose a node r ∈ S;
3: F .enqueue(r);
4: while F 6= ∅ do
5: v = F .dequeue();
6: Compute Bv with Eq.(9);
7: if v /∈ R then
8: if BFS is within ζ levels from r then
9: Create a copy of u;
10: F .enquenue(u);
11: Initialize Ru = R;
12: end if
13: else
14: for each node u on the path from v to r do
15: Ru = Ru{v};
16: end for
17: end if
18: end while
19: if Tr contains any node in R then
20: for each node u in the tree do
21: if Ru = ∅ then
22: for i = 0, 1, . . . , ζ do
23: β(u,Tr , t) = Bu[t];
24: end for
25: else
26: for i = 0, 1, . . . , ζ do
27: compute β(u,Tr , t) with Eq.(10);
28: end for
29: end if
30: Compute score(u,Tr , ζ ) with Eq.(11);
31: end for
32: return the generated RPT ;
33: else
34: return void;
35: end if

according to Eq.(10). Finally, we calculate the score of node
u and return RPT through Eq.(11).

B. NODE UPDATE AND NODE SELECTION
After determining the score for each node, we need to select
nodes with high scores as the truth nodes among the huge
social networks. In order to simplify the problem and consider
some cases of node conflicts, we perform amodular operation
on all nodes in the network. We use the Dynamic: Stop-and-
Stare (D − SSA) algorithm [25] to generate a random RPT
pool, and all nodes in the social network form a number of
RPT structures by random sampling. The D− SSA algorithm
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FIGURE 5. Update Node Score.

can be seen as a process of generating an independent RR
set in two stages, where the first stage is to find the largest
subset, and the second stage is to evaluate the influence of the
subset. The above score(u,Tr , ζ ) represents the sum of the
potential protection nodes of the node u in the RPT structure
with r as the root node. As shown in Fig.5(a), if the U7 node
is a truth initiator, the risk level of U ′7s pioneer nodes U4,U5
will be reduced because they cannot affectU7 as a truth node.
If U4 or U5 is also the root node of an RPT , their risk level
will be updated to:

risk(r, t) = risk(r, t)−Lru · (
∑t

s=1 weight(u) · risk(u, t−s))

(12)

After updating the risk level of such a node, we recalculate
the scores of the nodes in its corresponding RP tree.
In addition, we cannot ignore the fact that the selected

truth node r also exists in another RPT structure. As shown
in Fig.5(b), the node scores in the RPT may change at this
time. It is because when node u6 is selected as the truth
node, the node in the RPT not only needs to reach the root
node before the rumor, but also needs to arrive before the
U6 node. Otherwise, the r node has been affected by the U6
truth node, and it is meaningless to select a node v as the truth
node. When this happens, we define:

1β(u,Tr , t) = β(Z ∪ {v}, Tr , t)− β(Z ,Tr , t) (13)

For each Tr where node u exists, we replace 1β(u,Tr , t)
with β(u,Tr , t) and then recalculate the fraction of the nodes.

Based on the last updated score for each node, we can
clearly see the number of potential protection nodes per node
as the truth initiator. We can choose the top-k node as the
truth point in the social network, thus minimizing the impact
of rumors on the network and blocking the spread of rumors.

Algorithm 3 gives the process of picking k nodes from the
RPT samples as the truth node. Line 1 first uses the D− SSA
algorithm to generate a series of RPT pools. Then we select
the node uwith the highest score among all RPTs. Since some
nodes are selected as the truth node, it may cause the pioneer
node’s risk degree to change, so we update its risk level and
recalculate the score of the node in the RPT with u′s pioneer
node as the root node. Lines 12-17 are the scores of other
nodes in the RPT that have the truth node present. After all
the scores have been updated, we select the node with the
highest score from all the nodes as our truth initiating node.
Repeat the previous steps until the node selection is complete.

Algorithm 3 Node Selection
Input:

1. Number of nodes to select k .
2. Hops S.
3. Nodes reachable from rumor starters S.
4. Risk Degree risk(u, t) for u ∈ S.

Output:
Set S of nodes reachable by R and their risk degree.

1: call D− SSA to generate a pool of RP tree ψ ;
2: Initialize Z = ∅;
3: repeat
4: Let u be the node with the highest score(u,Tr , ζ );
5: Z = Z ∪ u;
6: for each pioneer v of u do
7: for t = 0, . . . , ζ do
8: Update risk(u, t) with Eq.(12);
9: end for
10: for each RP tree Tv do
11: for each w in Tv do
12: Update score(u,Tr , ζ ) with Eq.(11);
13: end for
14: end for
15: end for
16: for each Tr ∈ ψ involving u do
17: set score(u,Tr , ζ )=0;
18: for each node w in Tr do
19: for t = 1 . . . , ζ do
20: Compute 1β(u,Tr , t) with Eq.(13);
21: end for
22: Update score(u,Tr , ζ ) with Eq.(11);
23: end for
24: end for
25: until |Z | = k;
26: return Z ;

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETTING
We acquired more than 500,000 user nodes and their asso-
ciations on the Zhihu website1 using the Scrapy framework-
based crawler2. We use the Neo4j3 graph database storing
all these nodes and relationships. We set up the experimental
configuration parameters and created different training sets
so that our comparison experiments can be performed in
different environments.

All experiments were run on 2.2 GHz Intel Core
i7 CPUs,16 GB 1600 MHz DDR3 RAM, and Mac
10.13.3 operating systems.

We extracted 100, 1000, 10,000, and 100,000 user training
sets in the database and tested them as T1,T2,T3, and T4.
The user and relationships in each training set are shown
in Table 1.

1https://www.zhihu.com
2https://scrapy.org
3https://neo4j.com

167626 VOLUME 8, 2020



S. Ye et al.: Minimize Social Network Rumors Based on RPT

TABLE 1. Statistics of User and Relationships among Training Sets.

TABLE 2. Statistics of Rumors and Truth Initiators among Training Sets.

We measure the effectiveness of each method by Salvation
Ratio (SR) [1], [20], [26]. It gives the protected nodes propor-
tion by setting truth node, which denoted as:

SR(Z ) =
φ(R,∅,H )− φ(R,Z ,H )

φ(R,∅,H )
(14)

where φ(R,Z ,H ) represents the user set under the influence
of the initial entropy value H , the spoof initiator R and the
truth initiator Z .

As shown in Table 2, in order to facilitate the experimental
argumentation, we first compare a set of cases that do not
consider the entropy value of the rumor, that is, H− = ∞.
The number of rumors spread on the network is not limited
until the entire propagation is completed. Then we set the
appropriate initial enthalpy value H− and the critical value
ε so that the number of rumors spread ζ = 10. At the
same time, we set the appropriate number of rumor initiators
and truth nodes in the four training sets, which makes the
experimental results more representative.

B. EXPERIMENTAL EVALUATION AND ANALYSIS
We evaluate the effectiveness and efficiency of our approach
by comparing it with other methods:
• PageRank [27]: This method selects nodes by page rank
(PageRank) score.

• LSMI [6]: This method evaluates the influence of each
node through the shortest path, and selects the node with
high influence as the truth node.

• LargeInf [7]: This method estimates the score of the
node on the reachable path of the rumor node through
the simulation method, and also selects the truth node
based on such a score.

We set the appropriate rumor entropy and the critical value.
We set the number of propagation is ζ = 10. In other
words, all we have to do is choose the appropriate truth node
within the ten spreads of the rumor. The performance of the
four methods under such settings is shown in Fig.6-Fig.9.
We observe that when k = 3, our method exceeds the rescue
rate by 55% over the second-ranked LargeInf method and by

FIGURE 6. SR on T1 training results when ζ = 10.

FIGURE 7. SR on T2 training results when ζ = 10.

FIGURE 8. Runtime on T3 training set when ζ = 10.

22% when k = 15. It is because our method is related to
the risk node level when looking for the truth node. In the
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FIGURE 9. Runtime on T4 training set when ζ = 10.

FIGURE 10. SR on T3 training results when k=20.

FIGURE 11. SR on T4 training results when k=20.

high-density social network, the threat caused by the node
with higher risk will be greater.

FIGURE 12. SR on T3 training results when ζ = 10.

FIGURE 13. SR on T4 training results when ζ = 10.

FIGURE 14. Runtime on T3 training set when k=20.

We compare the efficiency of the four methods in the two
largest training sets, T3 and T4. Fig.10 and Fig.13 are the
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FIGURE 15. Runtime on T4 training set when k=20.

runtime comparisons where we set the number of rumors
ζ to 10 and set different truth node k . We can see that
LargeInf takes the longest time among the four methods.
It is because in the LargeInf algorithm, in order to select
a truth node, it needs to run a large number of simulations
to see how many other nodes the selected node can affect
when it is infected by the rumor. In addition, selecting a
node can greatly affect the propagation of rumors: There-
fore, as k increases in the runtime of LargeInf increase
significantly.
LSMI runs slightly faster than ours because it only consid-

ers the local structure of the nodes in the network and focuses
on finding the shortest path among them. PageRank is the
fastest of the four methods because it is simply a topology
between nodes, ignoring the weight of nodes and the initiators
of rumors.

Fig.14 and Fig.15 show that we set k to 20 and compare
the four methods in the T3 and T4 training sets during dif-
ferent rumor propagation periods. As the propagation period
increases, we can see that the four methods have only slightly
increased their runtime.

VI. CONCLUSION
Aiming at the problem of rumor propagation in social net-
works, we construct a multi-level propagation model based
on entropy weight. By analyzing the propagation path of the
rumor, we use the specific node as the root of the rumor path
tree structure in the active period of the rumor. We construct
a fractional function to evaluate the number of nodes that can
potentially affect an arbitrary node as a truth node. By ranking
the node scores, we can select the top − k node with a high
score as the truth initiator node. The experimental results
show that our method is better than some existing methods
in terms of effectiveness and efficiency.

In future work, we will classify the types of rumors,
optimize the model parameters, and consider to apply our
framework on some large scale real datasets to verify the
efficiency.
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