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ABSTRACT Autonomous Vehicles (AVs) promise to disrupt the traditional systems of transportation.
An autonomous driving environment requires an uninterrupted, continuous stream of data and information
based on complex traffic data sets and predictive measurements to make critical and real-time decisions
in uncertain situations. Such an environment fosters a self-organizing system where vehicles must be
seamlessly connected and various other services and intelligent decisions to manage traffic flow must be
executed in an emergent manner. To proceed towards this vision, in this paper, we develop a traffic flow
management model which is based on a novel two-phase approach for AVs to optimize traffic during
congestion periods. In the first phase of our approach, we build an adaptive traffic signal control, using
Deep Reinforcement Learning (DRL) to optimize traffic flow on road intersections during the periods
when traffic is congested. In the second phase, we implement a Smart Re-routing (SR) technique for the
traffic approaching intersections. Re-routing is used to carry out load-balancing of traffic to alternate paths
to avoid congested road intersections. The experimental evaluation of the proposed approach is validated
using simulations that demonstrate up to 31% improved performance efficiency compared to the traditional
settings using pre-timed signals and without re-routing. The two-phase approach improves the overall traffic
flow while reducing delays and minimizing long traffic queues’ lengths. This approach is useful for making
infrastructure intelligent enough to handle traffic congestion and balance traffic flow efficiently.

INDEX TERMS Traffic management, reinforcement learning based traffic control, autonomous vehicles,
routing of vehicles, traffic control.

I. INTRODUCTION
Autonomous vehicles have opened new avenues in the area of
Intelligent Transportation System (ITS) [1]. By incorporating
intelligent control techniques, ITS has an immense potential
to revolutionize the coordination between vehicles and road
infrastructure [2]. This gives rise to a novel system of mobil-
ity called Automated Highway Systems (AHS) [3], which
incorporates intelligence at various levels of a transportation
network.

Autonomous Traffic Management (ATM) is one of the
most vigorously pursued areas of research in the ITS now
a days [4], [5] which promise to reduce traffic problems
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through a well connected and coordinated infrastructure.
There are many challenging issues in the present traffic sys-
tems, one of which is traffic congestion [6] that requires
seamless management while maintaining traffic safety [7].
Considerable progress is required to make autonomous vehi-
cles behave smoothly and reliably in heavy traffic during
loaded hours. This needs a mechanism to learn traffic pat-
terns in real-time and perform predictable measures to opti-
mize traffic flows and minimize congestion. For this, AVs
and their connected environment need to manage through
dynamically changing traffic situations intelligently, and road
conditions [8], [9].

Numerous vehicles nowadays depend on intelligent
systems for many decisions such as Lane-Keeping
Assistance (LKA) and Collision Warning
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Systems (CWS) [10] etc. These systems are now mature
enough to guide autonomous vehicles in critical decision-
making to avoid accidents. To alleviate congestion issues,
traffic management systems may utilize infrastructures such
as traffic signs, traffic lights, roadside units, and other similar
controls [11]. However, when there is an increasing number
of vehicles approaching a specific area, traffic congestion also
proliferates. The challenges are to (1) coordinate autonomous
vehicles in-advance, (2) properly manage different traffic sit-
uations, and (3) improve traffic flow rather than only avoiding
congestion. To address these challenge, Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) coordination is
essential [8], [9]. Another critical challenge in managing
traffic flow, especially in autonomous vehicles, is the man-
agement and scheduling of intersection networks. Traditional
deterministic models for the management of traffic do not
scale well for large networks in urban settings [12]. When
traffic is heavy at intersections during peak hours, congestion
affects not only upstream traffic but at all intersections. Thus,
there is a need for an efficient method that should schedule
complex and dynamic traffic situations. Autonomous vehi-
cles needmore intelligent strategies and intelligent infrastruc-
ture to cope well in complex and unstructured environments.

Reinforcement Learning (RL) is a technique used in an
artificial intelligence’s paradigm to teach autonomous vehi-
cles how to learn from their environment by some reward
and punishment mechanism [13], [14]. The relevance of
RL becomes significant for autonomous driving because of
its ability to intense interactions with other vehicles, road
networks, pedestrians, and the environment, which is dif-
ficult to pose as a supervised learning problem [15]. Neu-
ral networks and RL provides a sophisticated framework
for managing and maintaining traffic conditions [16], [17].
RL can make autonomous vehicles or infrastructure intelli-
gent through learning by mistakes and interaction with the
environment. Sensors technology combined with RL can
make autonomous vehicles informed about the upcoming
obstacles and help make proactive decisions to avoid these
obstacles.

AVs constitute multiple tasks and stochastic traffic sce-
narios. This research focuses on automating the traffic light
system by using DRL technique and dynamically rerouting
the trailing traffic. Existing infrastructure for traffic light
control is inefficient and cannot cope well with autonomous
vehicle systems, and has many associated problems, such as
energy waste and long delays [14]. Moreover, there may be
conventional transitions of traffic lights. For example, on one
side of an intersection, we have several cars stuck in a traffic
jam, and on the other side, there may not be any car, but the
signal is open for that side due to the pre-timed fixed signals.
Vehicles halted in a traffic jam have to wait for a predefined
time for the traffic light to turn green. The uncertainty and
continuously changing dynamics in the environment would
make stochastic cost function maximized and predict optimal
solutions at each instant and learn new configurations of the
driving environment.

To address these challenges, the contribution of this
research is to manage traffic by a two-phase approach:
• In the 1st phase, we have implemented a DRL based
mechanism to build an adaptive traffic signal control to
reduce traffic congestion on the intersection. We train
our learning agent to optimize traffic signals such that it
turns on the appropriate traffic light so that the overall
cumulative waiting time of all vehicles reduces.

• In the 2nd phase, we are monitoring the congestion
situation periodically for traffic before it approaches a
traffic signal intersection. When it exceeds a particular
limit, we implement a smart routing module to reroute
vehicles to alternate paths by doing computations on the
routes.

We have developed simulations in SUMO where we
used DRL to adjust traffic signals dynamically depending
upon each vehicle’s long queue lengths and waiting times.
We applied rerouting on preceding vehicles that have not yet
reached the intersection. Due to congestion on intersections,
we adjusted certain vehicles’ limits that help reroute vehicles
to alternate routes from route tables based on each vehicle’s
origin-destination matrix.

The rest of the paper’s organization is as follows: Section II
describes the field’s literature review. Section III overviews
the background in which essential concepts related to the RL
and DRL are discussed. Section IV describes the proposed
approach for traffic flowmanagement. Section V contains the
experimental setup for the proposed approach. In section VI,
there are results and discussions, and section VII concludes
the paper.

II. RELATED WORK
Machine learning and artificial intelligence techniques con-
tribute to almost every field nowadays [18], [19]. Several
techniques and strategies are available, ranging from tra-
ditional to futuristic to improve traffic flow and conges-
tion management [20]–[23]. Congestion occurs when traffic
exceeds road capacity, consequently travel times and queue
lengths are increased, and speeds lower, especially during
hours when traffic demand is high [20], [21]. We can divide
the congestion problem solutions into two main aspects that
primarily target traffic flow management. In the first aspect,
traffic infrastructure plays a role in congestion management
and coordination of traffic signals. There are many research
contributions available for the improvement of signal tim-
ings over a few decades. For example, in [23] the fuzzy
logic table measures the signal duration, in [24] authors
proposed a neuro-fuzzy controller, and in [25] dynamic pro-
gramming is used to solve this problem. The second aspect
deals with the road infrastructure, which plays a vital role
in congestion management. RL method has been used as
a traffic control problem since the mid-1990s, but with
the advancement in AVs, the interest in this technique has
immensely increased [26]. Traffic control by DRL has great
potential as compared to conventional approaches [27], [28].
There are many use-cases in this field showing promising
performance [22], [29]. SARL (Single-Agent RL) is used to
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control traffic where a single agent is responsible for control
a single junction. In [30] SARL is used to manage an isolated
junction, which is signalized as two-phase. Pre-timed signals
under constant flows and variable flows have been used for
Q-learning agents. Results were used to adapt to different
conditions of traffic. Another study based on single-junction
with three Q-learning agents is presented in [31]. They used
different state representations, such as vehicle arrival to the
green light and queue at the red light, cumulative delay,
and queue lengths. The study is performed in heavy traffic
and shows promising results. SARL approach is suitable for
single signalized junction and proved its potential for con-
ventional techniques. Q-learning in traffic scenarios suffers
from themassive volume of states and actions, which expands
the memory size. Secondly, pre-timed signals cannot tackle
real-time traffic scenarios during peak hours. We use deep
reinforcement learning to optimize the signals and to manage
large state and actions sets. Our approach’s signals are not
pre-timed or fixed; instead, we used dynamic signals based
on traffic situations.

Another type is the Multi-Agent Reinforcement Learn-
ing (MARL) based approach used for signal control con-
tains multiple signalized intersections. An independent RL
agent is used to control each intersection, just as in SARL.
MARL approaches could be used for large networks. In [32]
authors developed a reinforcement learning-based approach
for adaptive signal control and present three algorithms TC1,
TC2, and TC3. Results show that using fixed time controllers,
RL outperformed on a simple 3:2 grid. Authors also imple-
ment co-learning where driver agents and signal controllers
learn value functions. Optimal routes through the network
can also be found by learning compute polices. This was the
most basic work and had many limitations, such as increment
of the state space and fixed time controllers. This work is
extended by [33] by implementing necessary information
sharing between RL agents. The authors introduced three
new traffic controllers named TC-SBC, TC-GAC and TC-
SBC+GAC. A congestion bit is added in TC-SBC, which is
used to know traffic conditions at neighbouring intersections.
TC-GAC uses this information for optimal action selection.
Algorithms tested on simple grid networks performed well
under different traffic flows. The limitation of TC-SBC is that
it increases state space size, which is challenging to compute,
and TC-GAC does not learn permanently about traffic flows
or congestion. In [34] further enhancement of this work is
done by introducing two new algorithms TC-SBA and TC-
SBAC. Extra bits to state and accidents are added, which
cause it to suffer again from the large state space. The new
state space is exceeded four times the original TC1. Another
implementation of MARL is done in [35] on large networks
of almost 50 junctions. The algorithm is based on Q-learning,
and for state representations, the average queue length at each
link on every junction is considered. Fixed time signal plans
are used, and a green time-ratio is used for action selection.

Due to high-dimensional state and action spaces while
applying RL results in complex control problems. To solve

this problem, a combination of RL with deep neural networks
has shown promising results. The authors of the study per-
formed in [36] used value function-based agents and deep
policy-gradient to predict the optimal signal at intersections.
A snapshot of the current state is received to these adaptive
traffic light controls to produce signals at each time step.
A large volume of graphical data is challenging to manage,
delayed, or wrong data interpretation couldmislead and cause
severe impacts. Multi-agent system using RL for efficient
signal control is studied in [37]. The study used two types
of learning agents, i.e. an LQF based outbound agent for
scheduling traffic signals and a central agent for learning
value function from its locals and neighbours traffic condi-
tions. LQF algorithm is a limited approach because waiting
time in other intersections could increase if the number of
vehicles is low. Time delay due to interruption of outbound
agents also affects the case of the AVs. In [38] author devel-
oped a learning algorithm named RMART for controlling
signals. In this approach, information sharing among neigh-
bouring controllers is done by I2I communication, which
improves signal controls’ performance, but this could cause
worse traffic situations if communication between controllers
fails if used in an AV’s environment with no driver to handle
these kinds of problems. They modelled complex traffic sce-
narios and showed promising results. In [39] authors devel-
oped an intersection management system using a discrete
consensus algorithm to coordinate agents. Excessive traffic
is distributed among other intersections using a rerouting
algorithm. The authors tried to balance traffic and reach out
to an equilibrium state during the worst traffic situations.
The authors used rerouting algorithms, but there is no proper
traffic control mechanism on the intersection discussed. The
AVs era requires traffic management solutions based not only
on the combination of strategies that take into account a
high-level view of traffic scenarios.

Early techniques have used deep reinforcement learning
and rerouting for traffic congestion and management, but
there are few limitations in the existing literature: (1)Most
of the studies only consider signal control on intersection or
rerouting problem, which is not very useful. (2)The signals
are usually pre-timed fixed interval which could worsen
traffic condition in many situations. (3)Pre-timed fixed-route
plannings based on origin-destinations can make AVs stuck
in severe traffic congestion and hours of delays to reach
their destinations. To address these limitations, in this paper,
we used a combination of techniques for our approach that
will intelligently manage traffic signals using deep reinforce-
ment learning while smartly rerouting the traffic behind the
intersection to avoid more congestion. We used dynamic
signal control that is using real-time traffic information to
turn on and off. We are also using real-time traffic data
to rerouting the vehicles to alternate routes. Traffic signal
suffers from high dimensions of states and action as there
are many state-changing in traffic scenarios. DRL-based
signal controls solve high dimensions of conditions
efficiently.
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III. BACKGROUND
This section will reviewwhywe are using deep reinforcement
learning, and Q-learning instead of traditional reinforcement
learning. What are the limitations of classical RL techniques
when the number of states and actions becomes exceptionally
high?

A. REINFORCEMENT LEARNING
Reinforcement learning is based on algorithms that can learn
through the experience without any previous information or
training. In reinforcement learning, an agent employed in
an unknown environment interacts with that environment
and takes suitable actions to maximize its performance [34].
A scalar reward (positive or negative) is received based on
selected actions, and the agent continues to learn until the
best performance is achieved. Agent in an RL environment
must do some trade-off between exploration (taking random
actions to explore the environment to maximize reward) and
exploitation (agent only takes known optimal actions). Q val-
ues stored in amatrix are the expected reward of a state-action
pair based on knowledge learned by RL agent [40].

In Q-learning system selects an optimal control-algorithm
based on an action-value function Q(x,a) for all state-action
pairs [41].A q-table ismaintained for every action at any state.
Positive or negative rewards can be added in the q-table, and it
is updated whenever a new action is performed. Maintaining
a q-table for low dimension state-space is possible, but it
becomes very complex when the number of states and action
space is very high. Suppose state is a high dimensional vector
of N length where N is a big number. If we solve this problem
by q-learning and set state space to 100 vectors each of
N dimensions. Q-learning needs a table of dimensions 100 x
number of actions which becomes very difficult to manage.

B. DEEP REINFORCEMENT LEARNING
DRL can solve complex high-dimensional tasks and could
apply to dynamic data [42]. Implementing real-world prob-
lems in the tabular representation of state and action space
becomes very complex to imply because of the significant
number of new and unknown states. In AVs’ traffic signal
optimization problem, such a large volume of data becomes
very complex to represent in Q learning tables due to high
dimensions. RL with some function approximators [43],
known as DRL, can be used to solve this problem. Function
approximators can be of two types: linear function approxi-
mation, in which a linear combination of states, actions, and
learned weights are used and non-linear function approxima-
tion like a neural network, we can use deep neural networks.
This paper used a non-linear function approximator, a deep
neural network, to deal with such high dimensional space
under RL’s classical setting.

IV. TWO-PHASE APPROACH FOR TRAFFIC FLOW
MANAGEMENT
This section will give a detailed description of our approach
to make a balanced flow of traffic through the network.

Our approach is based on the existing Deep Reinforce-
ment Learning (DRL), and specifically Deep Q-Learning
approaches. To make an efficient traffic control system,
we use real-time traffic information to adjust traffic signals
dynamically. We utilize a DRL approach to select the best
traffic signals to turn on, based on collected data from infras-
tructure. To reduce congestion, we train our learning agent to
optimize the traffic signals to turn on the appropriate traffic
light—the overall cumulative waiting time of all vehicles
decreases. We further empower this approach by using the
rerouting technique to reduce congestion and increase traffic
throughput. Fig.1 shows an overview of our strategy for traffic
flow management and optimization.

A. TRAFFIC LIGHT OPTIMIZATION
We used DRL approach for traffic light optimization. The
system is guided by a reinforcement learning module and
is indirectly controlled by an evaluation signal regarding
actions and performance. Reinforcement learning is based
on credit assignments where reward or punishment attributes
are assigned to individual elements to maximize perfor-
mance. Twomain types of algorithms can control problems in
reinforcement learning: Q-learning and actor-critic learning.
Actor-critic learning can be further divided into two parts:
One chooses optimal action for each state, and the other
estimates state value function V(x). We will now explain in
detail what states, actions, and rewards are used in our case.

1) STATES
In our model, states are represented as the speed and position
of the vehicles. The intersection’s road network is divided
into small sections, and states are obtained from the sensors
embedded on each section, which returns one if there is a
vehicle present and returns zero if there is no vehicle. In each
section, there could be only one vehicle at a time to reduce
the computation cost, so the position dimension is a binary
value. The speed of the vehicle is in m/s. When the velocity
of the vehicle becomes zero, it means that the car got stuck in
congestion.

2) ACTIONS
The operation performed by traffic light based on the current
traffic situation is represented as actions. The traffic light
should be optimized to take appropriate actions according to
the problem. Usually, the vehicles from opposite sides want
to move straight or turn right share the same traffic signal.
On the other hand, vehicles on opposite sides that want to
turn left from their respective ends share the same signal.
By sharing the same signal means both of the traffic lights
will turn green at the same time. Traffic lights are connected
and turn on and off at the same time are shown in following
table.
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FIGURE 1. Two-phase approach for traffic flow management: Ist phase: Intelligent traffic light module.
2nd Phase: Smart rerouting of vehicles.

FIGURE 2. Operational settings for traffic light signals on road intersection.

Here LL means Left Lane turn, RL is Right Lane turn,
and SL is straight Lane. Fig.2 shows an overview of this
operational setting for traffic light signals.

Connected Opposite Directions

LL* LL*
LL_ LL_
SL_ SL_ RL_ RL_ SL_ SL_
SL* SL* RL* SL* SL* RL*

3) REWARDS
A reward is the most important aspect of reinforcement learn-
ing, as it indicates a specific action’s performance. Based on
the reward next action is decided, so the reward should be
clearly defined to get the best action. For our agent, the reward
is based on the ‘‘cumulative waiting time’’. We record the
waiting time when a vehicle enters a specific lane. Then,
we add waiting times of all vehicles in that lane, but if the
vehicle leaves that lane, its recorded time will not be added
up in cumulative waiting time. As our main objective is to
increase efficiency, the reward is based on reducing total
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waiting time. We used the following reward function for our
agent:

R = Owt − Nwt (1)

where R is Reward, Owt is the old waiting time and Nwt is
the new waiting time. It is clear that if the current state’s
waiting time is more than the previous one, it means the
reward is negative, and the agent tries to overcome this sit-
uation gradually. It will take action and set the appropriate
traffic light on the signal intersection that maximizes its
reward.

4) TRAINING OF NEURAL NETWORK MODELS
The training is done by using an existing approached known
as Deep Q-Network (DQN), approximating the Q values
using three layers. The input layer accepts information such
as data coming from sensors in our case. The hidden layers
process the data, and output layers produce the output. Some
weights are learned and updated at each layer. We imple-
mented three neural network models; each has an input layer
with 80 input neurons and an output layer with four neurons.
The number of neurons in the hidden layers of first, second
and third neural network is 400, 500 and 200 respectively.
In Fig.4, the structure we used for our neural network model
is given.

In our approach, we used value-based Q-learning in which
the system selects an optimal algorithm for all state-actions
pairs based on an action and Q values against that action,
represented as Q(s, a). The input is given to the neural net-
work as previous state-action pairs and after doing certain
processing it outputs the new Q-values. Given below are the
equations and algorithms which are based on and utilize Deep
Q-Network (DQN).

Q(sn, an) = Q(so, ao)+ β (r + γQ(sn, an))− Q(so, ao) (2)

Hereso denotes the old state, ao is old action taken,
r represents the reward given on taking the action, discount
factor (0,1) is represented by γ , sn and an is new state and
new action.

A neural network learns the parameters by training, and
final network is ready after the training process. Trained
network is used at the prediction time to predict the best action
in the current situation. During traffic light optimization,
at the traffic intersection, when AVs are waiting in the queues
to turn on the proper light phase, our agent takes the best
action at states using the trained neural network, in order to
maximize reward.

Q(sn, an)← r(sn, an)+ γ maxa′ Q(sn an) (3)

The maxa′ Q(sn an) is the list of Q values contains
maximum of neural network’s output. We take the best
values corresponding to our action. The best action =
argmax(NNpredictedQ− values).

a = argmaxaQ(s, a) (4)

Algorithm 1: Training of Neural Network Using Deep
Q-Network (DQN)

1 Initialize replay buffer B in Memory M ;
2 Initialize Q as a training network with θo random

parameters ;
3 Initialize target network Qn with random parameters
θn = θo ;

4 while Episode = 1; Episodes < Total Episodes;
Episodes++ do

5 Start the Simulation with 1st Step J ;
6 foreach J=1 to N do
7 Action ={

Arbitrary, with probability ε
argmax′a Q(so, ao; θo), otherwise

Perform action an, and observe reward r, next
state sn;

8 Save experiences (so, ao, r, sn) in B;
9 Take mini batches from saved experiences as

samples from replay buffer B ;
10 Calculate the actual/targets L;

11 L =

{
0, If terminated
r +max′a Qn(sn, an; θn), otherwise

Do optimization as;
12 (L-Q(so, ao;θo))2 w.r.t θ ;
13 For every j′ step ;
14 Reset Qn = Qo;
15 Set so = sn ;

where s and a are current state and action. During the train-
ing process, our agent gets the intersection’s current state,
the vehicles’ action, and the reward of the recent action.
All this data is stored in the replay buffer and used dur-
ing the training. The agent explores the whole environment
and builds complete steps for transitions for every action.
At the start of the process, agent takes some actions ran-
domly and some by looking in the Q- network, this behaviour
of agent is known as an epsilon-greedy policy. We used
loss function as the squared difference between actual and
predicted value. We minimized the loss by updating the
weights.

L = (r + γmaxa′ Q (sn, an ; θn) − Q(so, ao; θo))2 (5)

During the learning process, as we have no labels here
so the actual value calculated from the actual = R +
γ maxa′ Q(so, ao) and the maxa′ Q(so, ao) is the neural net-
work’s list of Q values of output data. Target network
is also maintained here and actual weights are assigned
to target network for every N number of steps. The
Q-learning algorithm for our training process is given in
algorithm 1

We did training by taking one sample from the batch of
samples, and the data from sensors is fed to the input layer
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of the neural network. We have 80 sensors for this process,
so our neural networkmodel has 80 neurons in the input layer.
We fed the data from sensors to the input layer as a vector
containing 80 values. Our output layer has only 4 neurons
which correspond to the 4Q-values associatedwith 4 possible
actions as shown in figure 2.

The neural network is mostly known as universal function
approximates as they can approximate any function. The
network model’s activation function gives it the non-linear
properties and decides how a certain unit is activated. In this
paper, we used a rectified linear activation function or ReLU,
a linear function that directly outputs the result or makes it
zero.

f (r) =

{
r, if r ≥ 1
0, otherwise

We used Mean Squared Error and optimization for loss func-
tion by ADAptive Moment estimation (Adam) [44]. Adam
is an optimization algorithm for stochastic objective function
based on the first-order gradient.

5) EPSILON GREEDY POLICY
Initially, all the Q-values are zeroes. Then we iteratively
update the Q values. As initially, all values are zero,
then updating values for the first time we use epsilon.
Epsilon is basically a trade-off between exploration and
exploitation [45], [46]. Exploration is exploring the envi-
ronment in which the agent is working. It will explore the
environment regardless of the fear of higher negative rewards.
The more the agent explores the environment, the more it
learns about new states [47]. On the other hand, exploration
is meant to reach the states based on the agent’s knowledge
based on epsilon values. Epsilon may also be called the prob-
ability to explore the environment. Initially, it means the agent
will investigate the environment, and later it will decay at
some rate, which means we are moving towards exploitation.
Epsilon greedy policy generates a number between 0 and 1.
If the random number is less than the epsilon value, we will
select spontaneous action to explore the environment. On the
other hand, if it is more significant than epsilon, we pick
the best possible action based on the agent’s knowledge.
As the epsilon is decaying, the agent will move towards more
exploitation rather than exploring new states. In other words,
the agent is greedy about exploiting the current knowledge.
The concept of max steps or episodes are the times the agent
will play in the environment. The episode will end when the
agent achieves its goal or reaches the max step’s value.We are
decaying the epsilon value episode by episode in the follow-
ing way: Epsilon = 1−CurrentEpisodes/TotalEpisodes

6) AGENT’s MEMORY
An agent needs memory for learning and performance. For
this purpose, we created a stack of samples. One sample
consists of the old state, old action, reward, and current state
as we need all these elements in our Bellman optimality
equation. We have created a stack of 50,000 samples. If the

stack is full, then we pop the oldest sample from the stack and
insert the new sample.

The sample is composed of Previous states, Previous
actions, Rewards, and Current state.

7) EXPERIENCE REPLAY
Experience replay strategy is used to update weights
during the updating process. It chooses samples from mem-
ory explained in the previous section, which leads to effi-
cient learning and optimized final policy. We took the batch
size of 200 samples, selected randomly during our training
process of neural networks. We are testing our agent on
100 episodes, and each episode has a maximum of 2500 steps
(simulation steps).

We used this strategy because two consecutive states corre-
late with each other. An upcoming state that directly evolves
from the previous state has chances of correlation and mini-
mize this; we used experience replay (choosing randomized
batches of samples from sample stack). Further, it will be
helpful for our neural network to refresh the states which
passed earlier.

Algorithm 2: Routing Vehicles to Alternate Paths

1 Initialize Memory ;
2 Calculate the O-D matrix for each vehicle ID;
3 Store Vehicle ID with O-D matrix in memory ;
4 Calculate shortest paths P1,P2 and P3 using Dijkstra

algorithm;
5 Compute T-T (Travel-Time) for each route ;
6 Store the T-T against each path as P1-T-T, P2-T-T, and

P3-T-T in route file;
7 foreach Vehicle at Intersection I do
8 Get the current state of the intersection;
9 Calculate T-W-T(Total-Wait-Time) on the

intersection ;
10 Add the T-W-T to the P1-T-T ;
11 Calculate U-T-W-T(Updated-Total-Wait-Time) ;
12 if (U-T-W-T > P2-TT or P3-TT) then Reroute

Vehicles on the route P2 or P3;
13 else if (U-T-W-T <= P2-T-T or P3-T-T) then
14 Stay on the same route P1

When the DRL module is well trained by experience,
it takes the current state of the intersection and calculates
the queue length and waiting time of each vehicle. It checks
for the appropriate action from replay memory. If the current
action is not equal to the old action stored in the memory,
it turns the yellow light. If the current action is equal to the old
action, it turns on the green light. It means now our module
is using a greedy policy (only best action) to optimize the
traffic light. In the next section, we will see the working of
our second module in detail.

B. I2V BASED SMART REROUTING
The traffic signal control described in the previous section
solves the congestion problem at intersections by optimizing
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traffic conditions. It minimizes the long queues and reduces
the waiting time for vehicles at intersections. This approach
could be further empowered by taking the higher-level view
of the traffic situation and involving infrastructural compo-
nents (I2V) because we want to improve traffic flow. The
deep reinforcement module manages traffic on intersections,
but what about the vehicles that have not yet reached the con-
gested intersection. These vehicles can halt in the congestion
for more longer than the vehicles reached the intersection,
which could worsen traffic conditions. In this paper, we pro-
pose a smart routing technique to reroute the vehicles that are
not yet reached on the intersection but coming towards it. The
upcoming traffic is rerouted to alternate routes that are less
congested but could be longer in travel times. For the purpose,
we use lane area detectors in our experiments. We placed
16 detectors such that 4 detectors at each lane at each side
of the intersection. These detectors give us the current view
of the roads and the information about the routes. These
detectors maintain the information about the traffic on each
side in a log file separately. We analyze the data from detec-
tors after every 30 seconds. A threshold limit is set for the
intersection. If the number of vehicles exceeds the threshold
limit and vehicles are coming continuously, then using that
data from detectors about the number of vehicles, speed, and
direction of vehicles, we shift traffic to alternate routes. This
strategy holds equally good for signal-free routes and unique
routes for VIP vehicles or ambulances. The combination of
techniques provides a powerful metaphor to optimize the
routes and avoid congestion. It also helps to achieve exception
handling, e.g. when the traffic light fails, and cars are stuck
near the intersection, it will help us by providing the informa-
tion to reroute the upcoming traffic. The strategy ensures to
reroute vehicles on the fastest route rather than the shortest
congested route. For this purpose, first of all, we took the
O-D (Origin-Destination) matrix against each vehicle’s ID
and computed all the paths from the start of a trip to the end.
We calculated shortest paths using Dijkstra algorithm [48]
and named them P1 for Path1, P2 for path 2, and so on. P1 is
considered the shortest path, P2 as the second shortest path,
P3 as the third shortest path, and so on. In normal conditions,
AVs will take P1, which is the shortest path. Still, there is
a possibility of a congested intersection on P1, and more
vehicles are not allowed to enter the crowded intersection as
it reached the threshold limit. Now, vehicles coming behind
the intersection will have to decide whether they should wait
behind the intersection or take alternate routes. In the case of
autonomous vehicles, the decision will be based on the com-
putation of travel times. The Total-Wait-Time (T-W-T) on the
intersection is added to the travel time of Path 1 (P1-T-T),
and an Updated-Total-Wait-Time (U-T-W-T) is obtained.
If U-T-W-T of P1 is greater than (P2-T-T), than the vehicle
is rerouted on P2. If U-T-W-T is less than or equal to P2-T-T,
than the vehicles waits for the intersection. In the simulation
setup, we are assuming that P2 is the signal-free route. Com-
putations become less complicated; therefore, we are taking
one shortest path, P1 and two alternate paths P2 and P3.

Algorithm2 provide a snapshot of the steps involved in the
process of rerouting the vehicles.

V. EXPERIMENTAL SETUP
In this section, the experimental setup is discussed in
detail. We conducted our experiments in the simulation tool
SUMO (Simulation of Urban MObility) [49]. SUMO is an
open-source traffic simulator that provides simulation of traf-
fic in real-time. The Python-based API provided by SUMO
manages the timings of traffic signals. Description of vehi-
cles, roads, traffic sensors is given in detail in the following
subsections.

A. PROPERTIES OF INFRASTRUCTURAL NETWORK
A detailed description of road network properties, traffic
policy, and sensors is given with other necessary information
in this subsection.

1) ROADS AND LANES USED
The road network used for simulation is shown in Fig. 3.
It becomes complex to manage the sensor’s data, detector’s
data, and traffic flow as we try to get optimum performance
from agents since the computational cost is high. There are
multiple paths to reach from one point to another point in
the network. Some tracks have traffic signals, and some are
signal-free, but as mentioned earlier, signal-free paths are
usually lengthier. We have chosen the roads’ length: the
South to the intersection, north to the intersection, west to the
intersection, and east to the intersection (with traffic signal)
as 800 (750+50) meters. The length of the roads on the
diagonals is 1040 meters each. Signal free paths are available
through roads on diagonals. All the roads connected to traffic
signal are 4 lane roads (4 lanes for incoming and 4 lanes for
the outgoing). Two middle lanes on each side are for those
vehicles that want to travel straight, and one lane is for those
vehicles which wish to turn left or right on each side of the
intersection.

Simulation Parameters
Parameter Value
Simulator SUMO
Number of Vehicles
per Episode

1000

Number of traffic
lights

01

Simulation Time 2500 (s)
Simulation Time for
each vehicle

41 (min)

Simulation Map 4 leg intersection
Transmission Range 750 (m)

2) ROUTE ASSIGNMENT IN NETWORK
There are two types of route assignment. First is static that is
set before simulation or initially assigned routes. Second is
the dynamic route assignment implemented with the help of
TraCI based on the run time traffic situation on roads. In static
route assignment, 60 per cent of vehicles are allowed to go on
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FIGURE 3. Road network configuration.

FIGURE 4. Neural network models for deep reinforcement learning based traffic light control. Models has same
input(80 Neurons), output(4 Neurons), but different hidden layer’s neurons (400 for Model 1, 500 for Model 2 and 200 for
Model 3).

the straight path (which will pass through the intersection),
and 40 per cent will follow directions using a left turn or
right turn lane, signal-free trails, and alternate paths. Traffic
condition is constantly monitored by the detectors placed
on east, north, west, and south regions. The log file of data
obtained from detectors is preserved and maintained of each
side separately. If vehicles are more than the threshold limit
specified on the road based on its capacity, the message
is passed to upcoming vehicles whether to wait or to take
alternate routes based on the rerouting strategy.

3) TRAFFIC GENERATION
We tested different models of the neural network on almost
1000 vehicles. Every second, when a new vehicle joins the
network, a route is assigned to it based on its destination.
We used different vehicles (standard cars, buses, trailers, and

ambulances) for our simulation having different speeds. Each
vehicle takes route according to its destination, which is most
probably the shortest route. In the simulation setup, 60 per
cent of the traffic will take the direct shortest path from origin
to destination lying opposite to each other while Each vehicle
having to pass through the signal intersection. Remaining
40 per cent traffic may or may not have to pass through the
signalled intersection. These vehicles may take the alternate
path that is a signal-free path, which in some cases becomes
the fastest path when it comes to time calculation. For exam-
ple, if a vehicle wants to move from west to east, it has a
direct shortest signalled path of length 1040 meters, and if
it follows the path via signal-free intersection, it needs to
travel 1500+meters which is not the shortest path but fastest
path that takes less time due to the congestion on signalled
path.
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4) WEIBULL PROBABILITY DENSITY FUNCTION
Vehicles at the intersection can be defined by modeling vehi-
cles’ arrival time at that intersection in the given interval of
time. It could be done by specifying the time interval between
two successive vehicles arriving at the intersection. We used
the well-known and one of the most widely used existing
probability distribution, i.e., Weibull distribution to model
the vehicles at the intersection. Probability Density Func-
tion equation is usually used to express Weibull distribution.
The three-parameter Weibull distribution is the most general
expression available in the literature, and is given below:

f (T ) =
β

η

(
T − γ
η

)β−1
e−
(
T−γ
η

)β
(6)

Training Parameters and attributes of agent
Parameter Value
GUI False
Total Episodes 100
Gamma Value 0.5
Batch Size 200
Memory Size 5000
Number of states 80
Actions 4
Maximum Step 2500
Green Duration 5(s)
Yellow Duration 2(s)

β, η and γ are the parameters for slope, scale and loca-
tion respectively. We need only scale parameter for vehicles’
arriving time, so by setting γ = 0 and assuming β = C =
Constant our distribution become one parameter weibull.
Fig.5 is the visualization of weibull distribution which

shows the heavy and light traffic volumes during congestion
and normal situations.

FIGURE 5. Weibull distribution for vehicle arrival time.

5) NETWORK OF SENSORS
We use sensors for obtaining current traffic information. The
simulation used 80 sensors that are spread on different places
on the incoming traffic lanes, 20 sensors on each intersection
side. On each side of intersection, 10 sensors are placed
on 3 lanes, i.e. 2 straight lanes and right turn lane because
all of these three lanes share the same traffic light. The
remaining 10 sensors are placed on the left turning lane.
These sensors are placed at different distances from the traffic

light. These sensors will provide information about vehicles’
position, which could be, e.g., 10 wheeler trailers, school bus,
emergency car, standard cars, or VIP cars on the lanes. All
80 sensors have a unique identity, and the density of sensors
close to the traffic light is high (as it is of more importance)
than at the end of the lane. If at least one vehicle exists in
the sensor’s vicinity, it will give a signal about its presence.
In this way positions of all the vehicles could be tracked
which are approaching traffic signals. Now there are 280

possible different states in the network. This 280 conditions
are computationally challenging to manage for the agent.

Structure of Neural Network
Parameter Value
Simulator SUMO
Neural network lay-
ers

200, 400, 500

Loss Function Mean Squared Error
Activation Function Relu
Optimization
Function

Adam Optimizer

6) PERFORMANCE PARAMETERS
These are the underneath performance parameters used for
performance evaluation

a: REWARD
The agent should take actions that maximize the reward. The
general trend of all the networks is that the negative reward
approaches zero, which means the agent learns gradually.

b: DELAY
When cars are stuck in traffic jams, they have to wait more
and as a result, delay increases. The cumulative delay (sum-
mation of all cars’ delay) decreases gradually when the agent
gets to know about the environment.

c: QUEUE LENGTH
When roads are loaded with traffic and signals are closed
during peak hours, queues of vehicles waiting for a signal
to turn on (green) become lengthy. We selected the average
queue length as the performance parameter of the agent.
It should decrease with the increase in episodes.

d: SIMULATION TIME
When the last car exits the simulation environment,
the simulation ends. The maximum time for simulation is
2500 seconds which is more than half an hour. Suppose we
reduce congestion with the help of reinforcement learning
and I2V communication. In that case, vehicles have to wait
for less, and they will reach their destinations quicker, and
eventually, the simulation time will reduce.

VI. RESULTS AND DISCUSSIONS
We have conducted three different steps in experiments.
In the first step, we ran traffic typically using traditional
settings (using fixed time signals) without implementing rein-
forcement learning or smart routing and observed the traffic
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FIGURE 6. Cumulative delay, average queue length for model 1 with 400 neurons, start decreasing while total negative reward starts
increasing as episodes are increasing.

condition. We recorded these experiments’ results for the
comparisons after applying our deep reinforcement learning
based solution and smart routing solution. In the second step
of the experiments, we implemented a deep reinforcement
learning module to make intelligent traffic light signals to
optimize traffic on intersections and recorded the results.
In the third step, using an intelligent traffic light module
on the intersection, we implemented a smart routing mod-
ule to reroute the traffic headed towards the intersection,
load-balanced the traffic flow and observed our approach’s
final results. We further implemented our strategy by chang-
ing our neural network model’s number of neurons, changing
the gamma values, and showing its effects. Then we per-
formed experiments by changing the number of hidden layers
of the neural network model and proved with the results why
we used a 5-layered neural network model for our approach.

The neural network model we used for our experiments is
shown in Fig.4. The neural network has 80 states as input and
4 states at the output layer, and we changed the number of
neurons in the hidden layers to 200, 400 and 500. There is no
hard and fast rule in deep learning on choosing the number
of hidden layers or the number of neurons on hidden layers.
Selecting the number of hidden layers and the number of
neurons in the hidden layer is an integral part of planning and
design of neural network architecture. Even though these lay-
ers do not interact directly with the external environment, but
these layers have significant impact on the output. Similarly,
using too many neurons in layers could cause over-fitting,
which means that our model has enormous information pro-
cessing capacity but a limited amount of information. Using
too few neurons could cause under-fitting, which means that
significantly fewer neurons are available to detect the correct
signal in massive data set adequately. Therefore we should
carefully consider these layers. We chose a 5-layer network
because it worked best for our case, and we proved it by
results. Now we will discuss in detail the quantitative effects
of our two-phased approach.

A. WHEN NO REINFORCEMENT AND SMART ROUTING
TECHNIQUE APPLIED
We used 1000 vehicles for our experiments. We have no
intelligent traffic light controller implemented on the inter-
section, or no routing technique is applied at this step of
experiments. We implemented simple pre-timed traffic light
at the intersection and observed the behaviour of vehicles.

In a few seconds, we observed that vehicles got halted in the
congested intersection, and there were long queues of cars at
the intersection and behind the intersection.We used the same
road network, as explained in the previous section, for all
experiments. Results of 1st step of our experiments in Fig.10
green bar show that 1000 vehicles are taking almost 2500 sec-
onds to get out of the specified area on the road network due
to the congestion. Now we will see the implementation of our
approach and results in the next sub-sections.

B. WHEN INTELLIGENT TRAFFIC LIGHT MODULE
IMPLEMENTED
In the second step of the experiments, we implemented intel-
ligent traffic light control using deep reinforcement learn-
ing to control the traffic and schedule traffic lights. Our
intelligent traffic light module takes the current state of the
intersection from sensors, compute the waiting times (delay)
of vehicles, measures the queue lengths on the intersection,
and takes the appropriate actions (turn on the appropriate
lights) situation. Our traffic light agent aims to minimize
cumulative delay, average queue length, and negative reward.
We explore results and find a significant reduction in waiting
time and the longest queues in congested environments. There
is a general trend in all the models, i.e. with the passage
of episodes, the cumulative delay and average queue length
decrease while the agent’s reward increases (total negative
reward tends towards 0). We are taking a neural network
model with 400 layers as model 1, with 500 layers as model 2,
and 200 layers as model 3. The part A of Fig. 6, 7 and 8 shows
the cumulative delay or waiting time of model 1, 2 and 3;
vehicles tend to decrease as episodes increases and agents
start to learn things. At each episode, we test the average delay
time of vehicles. Traffic rates on all lanes are also the same.
Similarly, the part B of Fig.6, 7 and 8 shows the average queue
lengths of vehicles are also decreasing as the agent starts
learning about the environment in a better way and congestion
is reducing, making the overall traffic flow efficient. Total
negative reward in part C of 6, 7 and 8 starts increasing, which
means the agent is performing better with the increment
of episodes. The blue bar in Fig.10 shows that the average
waiting time of vehicles reduced from 2500(s) to 1980(s)
when applied to the neural network model with 200 neurons,
to 2180(s) when applied to the model with 400 layers and
2200(s) when applied on model with 500 layers. Here we can
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FIGURE 7. Cumulative delay, average queue length for model 2 with 500 neurons, start decreasing while total negative reward starts
increasing as episodes are increasing.

FIGURE 8. Cumulative delay, average queue length for model 3 with 200 neurons, start decreasing while total negative reward starts
increasing as episodes are increasing.

FIGURE 9. Changing gamma value for cumulative delay, average queue length and negative reward.

notice that the performance degradation of neural network
models increases the number of neurons on hidden layers.
Specifying the best values for any neural network model
can be done via systematic experimentation, and the neural
network model with 200 layers is performing best for our
system. An apparent reduction of time with DRL controlled
traffic lights reduced the congestion level by 13%.

C. WHEN INTELLIGENT TRAFFIC LIGHT MODULE WITH
SMART REROUTING MODULE IMPLEMENTED
In the third set of experiments, we applied Smart Rerouting
(SR). The RL module controls congestion at the intersec-
tion and controls the traffic coming behind the intersection.
We implemented the smart rerouting technique to reroute
vehicles to alternate paths so that the traffic load on the inter-
section could be distributed among other routes, and vehicles
could avoid congested situations. The red bar in Fig 10 shows
more reduction of time by 12%. The total decrease in time by
using both intelligent traffic lights and smart routing module
is 25%. We tested all three sets of experiments on neural net-
work model two and three to check the model’s performance.

D. CHANGING THE NUMBER OF NEURONS OF NEURAL
NETWORKS
We have tested our approach on different parameters by
changing the number of neurons in the hidden layers. The
Fig.10 shows the difference in the results of neural net-
works with different neurons. The blue bar of the perfor-
mance graph with 200 neurons shows that RL controlled
traffic lights helped reduce simulation time by around 17%,
and SR module further reduced simulation time by around
14%. The total reduction in simulation time is 31% in this
case. In Fig.10, we will observe that when we increased
the number of neurons to 400 the RL controlled traffic
lights helped reduce simulation time by around 12% and
SR components further reduced simulation time by around
9%. The total reduction in simulation time is 21%. Sim-
ilarly, when we increased the neurons to 500 the total
reduction is 12%. As we expand the number of neurons
on neural networks, our performance degrades, so we can
say that our approach’s best model is when the number
of neurons is 200 as it reduces the simulation time up
to 31%.
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FIGURE 10. Performance graph when no Reinforcement Learning(RL) or Smart Routing(SR) applied,
when only RL applied, When RL with SR applied.

FIGURE 11. Deep network with eight hidden layers vs shallow network with three hidden layers.

E. CHANGING GAMMA VALUE
We changed the gamma value (discount factor) to check the
effects on our neural network model. The blue line shows
gamma value = 0.5, whereas the red line shows gamma
value = 0.75. In Fig.9-A,B and C, we can notice a slight
difference in output by changing gamma value. The perfor-
mance with gamma value equals to 0.5 is slightly better than
with gamma value equals to 0.75.

F. DEEPER VS SHALLOWER NETWORKS
In the final part, we checked what happens if we make our
neural network more deep or shallow (increasing or decreas-
ing hidden layers). We experimented by varying the number
of hidden layers for our neural network. A neural network
with eight hidden layers is shown in Fig.11-A, whereas
a shallower network with three hidden layers is depicted
in Fig.11-B. The reason to do experiments using more and
few hidden layers is that using few hidden layers is sufficient
for some functions, but for others, the number of hidden
layers is less than the system becomes inefficient. The perfor-
mance graph in Fig.12 shows that simulation time increased

by 21% as compared to our best model. Similarly, the perfor-
mance graph with an external network shows an increment
by 18%.We can see the effect of performance degradation by
adding or removing layers from Neural Network.

Since traffic data is non-linear and dynamic, we use sys-
tematic experimentation to determine what works best for
our specific model. We perform experiments with varying
number of hidden layers and also neurons, and analyze
accuracy of epochs. Less number of layers causes under-
fitting, and more number of layers results in over-fitting.
Finally, we choose 5 layers neural network, which gives the
best results for our specific problem. All the results show
that using reinforcement learning to control traffic light and
infrastructural components for smart routing can improve
performance and make traffic flow efficient in autonomous
vehicles. The change in neurons in hidden layers can also
affect the neural network’s performance, and changing the
number of hidden layers can also affect the traffic flow’s
performance. We have tuned an optimum model that per-
forms better through these experiments than others to increase
traffic efficiency. When combined with this model with the
routing module, we obtain the best performance in the given
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FIGURE 12. Performance of deep vs shallow neural networks.

scenarios. All experiments suggest that using a combination
of strategies, specifically in traffic scenarios, gives better
results than just a single technique. Deep reinforcement learn-
ing gave us optimal traffic control on the intersection while
rerouting managed traffic behind the intersection, maintain-
ing the overall traffic flow that directly leads to safety
management, fuel consumption reduction, and accidents
avoidance.

VII. CONCLUSION
We present a two-phased approach to control the traffic
and avoid congestion in scenarios where all vehicles behave
autonomously. In the first phase, we build a deep reinforce-
ment learning-based intelligent traffic light module to opti-
mize traffic flow during congestion. We observe that traffic
signals are using longer queue lengths and waiting times to
adjust dynamically. We demonstrated that using a 5 layered
deep neural network model with 200 neurons on the hidden
layers optimizes our model’s performance and gives the best
solutions through extensive simulation results. In the sec-
ond phase of our approach, we proposed a smart rerouting
technique that considers the congestion on the intersection
by adjusting a thresh-hold limit and calculating travel times
for each vehicle’s O-D matrix. We compared the distance of
the current route and waiting time on the intersection with
the alternate routes; it reroutes the vehicles to the roads,
which takes less time. Results show significant improvement
in congestion situation and in managing traffic flow. Exper-
iments show the effectiveness of our approach compared to
the traditional settings; 17% reduction of time is achieved
when intelligent traffic lightmodule is applied, and 14%more
reduction in time is obtained when the smart rerouting mod-
ule is implemented. The results show the total performance
efficiency up to 31%.

In future, we plan to extend this approach to more com-
plex road networks, with multiple signal intersections, and
real-world road data set. Including V2V coordination with
V2I and I2V could lead us to better traffic flow management
for future smart cities.
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