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ABSTRACT Network traffic classification technology plays an important role in network security man-
agement. However, the inherent limitations of traditional methods have become increasingly obvious, and
they cannot address existing traffic classification tasks. Very recently, neural architecture search (NAS) has
aroused widespread interest as a tool to automate the manual architecture construction process. To this end,
this paper proposes NAS based on multiobjective evolutionary algorithms (MOEAs) to classify malicious
network traffic. The main purpose is to simplify the search space by reducing the spatial ratio and number
of channels of the model. In addition, the search strategy is changed in the effective search space, and the
utilized strategies include EAs with the nondominated sorting genetic algorithm with the elite retention
strategy (NSGA-II), strength Pareto evolutionary algorithm (SPEA-II) and multiobjective particle swarm
optimization (MOPSO) to solve the formulated multiobjective NAS. Through comprehensive comparison of
the population convergence times, model accuracies, Pareto optimality sets, model complexities and running
speeds of the strategies, it is concluded that the model based on NSGA-II search has the best performance.
The experimental results of the current machine learning algorithms and artificial learning methods based
on the network are compared, showing that our method achieved better classification performance on two
public datasets with a lower computational complexity, as mainly measured by FLOPs. Our approach is able
to achieve 99.806% and 99.369% F1-score with 11.501 MB and 4.718 MB FLOPs on both IDS2012 and
ISCX VPN dataset respectively.

INDEX TERMS Deep learning, multiobjective, neural architecture search, traffic classification.

I. INTRODUCTION
Network traffic classification is an essential task that can
be used to detect network intrusion or provide appropriate
network service. Recently, traffic classification has become
increasingly challenging for several reasons. First, network
applications vary, and the types of network flows have
increased immensely. Second, increasingly network appli-
cations use encryption protocols. Classical methods such as
deep packet inspection (DPI) cannot resolve encrypted traffic.
Third, real-time traffic classification requires a model with
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lower complexity and a better running speed to ensure the
classification performance.

Port-based methods [1] and DPI [2] are not effective at
addressing encrypted scenes. To handle this tough prob-
lem, feature-based methods [3] are proposed. After artifi-
cially extracting the relevant features of the network traffic,
researchers use machine learning (ML) algorithms such as
support vector machine (SVM) [4], [5] and random forest
(RF) [6], [7] to fit traffic data. However, extracting features
from network traffic requires relevant expert knowledge and
may cause missing information. Deep learning (DL) is suit-
able for directly sending the original data into DL-basedmod-
els. Previous research [8]–[10] has proposed well-designed
convolution neural networks (CNN) for classification
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problem of traffic flow. The rise of AutoML [11], [12] has
inspired us to automatically construct a network that can
be applied to traffic classification tasks. The advantages of
AutoML are obvious. First, it can improve model perfor-
mance. In addition, there will be much less human interven-
tion in designing the network architecture.

In the previous research, only simple 1D and 2D convolu-
tion layers or fully connected layers have been used. Recently,
some useful convolutional blocks, such as the bottleneck
used in ResNet [13] and the dilated convolution [14], [15]
used in segmentation task, have increased network perfor-
mance in the computer vision field. Determining how to apply
these useful network blocks to traffic classification tasks
remains a tough problem. Consequently, researchers tend to
use AutoML [34], [35] to handle it. The neural architecture
search (NAS), which is suitable for our scene, is an important
branch of AutoML. NAS seeks to automate the network
architecture design process. Some work [16], [17] gener-
ally treats NAS as a single-objective optimization problem
that only focuses on improving the effect of classification
but ignores the high complexity of the structure. However,
some network attacks (e.g., DDoS) gradually focus on the
mobile end [57], so when the DL training model is imple-
mented in resource-constrained mobile devices, it is neces-
sary to consider whether the model meets the requirements of
being lightweight frommultiple perspectives [36]. Therefore,
in order to balance the classification accuracy and complexity
of the model, we use multiobjective optimization algorithms
(MOAs), including the nondominated sorting algorithm with
the elite retrenchment strategy (NSGA-II), strength Pareto
evolutionary algorithm (SPEA-II) and multiobjective particle
swarm optimization (MOPSO), to complete the search. Then
the lightweight performance of the model is evaluated again
from the number of network parameters, FLOPs, MAccs
(multiply-accumulate operations), and other aspects to evalu-
ate the effectiveness of the above mentioned MOAs. Further-
more, we addmore predefined operation block structures into
the search space of the NAS architecture to obtain improved
performance. We test the searched model on two general net-
work traffic datasets to verify the efficiency of the designed
search space.

The following is our main work: We defined five blocks
and popular operations to simplify the search space. In abla-
tion experiments, we demonstrate that blocks with reduced
spatial ratio and number of channels can be searched for
models with lower computational complexity and higher
F1-scores. Then, based on the selected search space, three
multiobjective search strategies were used to determine the
Pareto frontier of the population on the same dataset. Finally,
we select the ideal architecture from the Pareto frontier and
compare their F1-score, complexity, lightweight, and speed.
In general, the best search strategy is determined from the
overall search situation and the optimal architecture searched.
The innovations of this paper are as follows:

(1). Simplifying the search space:We propose an improved
search space that mainly includes changing the number of

channels and the spatial ratio for the NAS based on NSGA-II
(mainly to obtain the optimal search space). The ablation
study shows the efficiency of these improvements.

(2). Optimizing the search strategy: We use different
architecture search strategies based on evolutionary algo-
rithms (EAs) to automatically generate the population of
CNN architectures that approximate the Pareto set (PS),
which can achieve low complexity and high weighted
F1-score compared with existing hand-crafted neural net-
works.

(3). Evaluating the performance of the developed model:
After comparing the performance and model complexity,
the Pareto optimality (PO) based on three optimization algo-
rithms is selected. The lightweight deployment of the optimal
model is analyzed from different aspects.

The rest of this paper is arranged as follows. Section II
introduces the related work of this paper. Section III shows
details of the searched block structures and search strategies.
Section IV verifies the effectiveness of our searched architec-
tures. The conclusion is given in section V.

II. RELATED WORK
Considering that the proposed model of this paper seeks to
clearly demonstrate malicious traffic classification based on
a MOEA task, the literature review is divided into three parts.
The first section covers traffic classification and the previous
efforts by experts in this field. NAS and its introduction of
important methods are reviewed in the second section. In the
third section, we reorganize the relevant algorithms including
the early classic and the state-of-the-art MOEAs, and analyze
the application of NSGA-II, SPEA-II, and MOPSO algo-
rithm mainly focuses on the convenience and high feasibility
brought by its application in real world problems.

A. TRAFFIC CLASSIFICATION
At present, there are two main traffic classification methods:
one is based onML, and the other is based on neural networks.
Al-Obaidy et al. [17] systematically evaluate the social media
traffic classification performance of four supervised ML
methods, namely, SVM, naive Bayes, C4.5, and MLP. The
authors extracted 14 flow-based features including source
and destination IP addresses. When the number of features
is increased successively, the traffic classification results are
also gradually improved. It is proved that the rules generated
by C4.5 perform the best on the dataset based on flow-based
features, with the highest accuracy of 86.33%. Considering
the design of an intelligent system (tractor) to improve the
analysis of malicious traffic,Muliukha et al. [18] mainly used
RF and naive Bayesian classifiers to classify VPN connec-
tions and SSL traffic, respectively. The results showed that the
average classification accuracy of the RF is 87.9%(±0.60%);
however, there is a large difference in the accuracy when the
naive Bayes classifier is used to classify different types of
traffic, with the highest accuracy reaching 99.1379% and the
lowest accuracy only 33.33%. The classification accuracy of
ML depends largely on feature engineering, which requires
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a considerable amount of manual work. Features extracted
manually are shallow features, and more global features and
local features can improve the accuracy of assessment [58].

DL can automatically select features through each
layer [59]. The learning ability of DL is far higher than that
of ML, and DL can learn the model with higher complexity.
CNN model is designed in [19] to detect malicious URL,
which saves the step of feature extraction. To address end-
to-end encrypted traffic classification, in [20], they used a
1D-CNN to automatically learn the characteristics of
encrypted traffic, which is more suitable to the task of
encrypted traffic classification than 2D-CNN. The results
show that the classification performance score of the 1DCNN
is generally higher than that of C4.5. Yin et al. [21] explored
an intrusion detection system based on DL using a recurrent
neural network (RNN-IDS). The results show that the per-
formance of the RNN-IDS is better than those of traditional
ML classificationmethods, including the J48, artificial neural
network, RF, SVM, and other MLmethods studied by former
researchers, in binary and multiclassification tasks.

DeepDefense [49] combines the RNN and CNN to trans-
formDDoS packet-based detection into window-based detec-
tion. Compared with traditional ML, the error rate is greatly
reduced. However, DeepDefense’s training requires a large
number of parameters and takes a long time. In recent years,
Lucid, which was addressed in [50], considers the lightweight
deployment of resource constrained devices and uses a CNN
to share the weight parameters of the convolution kernel to
reduce the storage space required for the model. Experiments
show that Lucid can achieve high classification accuracy
using a low complexity model on the test dataset. The above
researches show us that the traffic classification performance
using DL is likely better than that of traditional ML, and
the lightweight model should also be used as a standard to
measure model performance.

B. NAS
A large number of ML applications rely on expert learn-
ing to preprocess data, accurately select features, select an
appropriate model and optimize the superparameters. Even if
DL is used to train the network, it is necessary to reselect
the superparameters of the network for different datasets
or even to design the network structure from scratch. As a
result, there is a growing trend towards automated learn-
ing, which allows models to be applied without human
intervention, and AutoML has emerged. In recent years,
AutoML methods [39], [44], [45] have matured sufficiently
and achieved performance comparable to that achieved
by manually designed network architectures on certain
tasks [52]–[54]. As a branch of AutoML, the main task of
NAS is to select the appropriate network architecture.

NAS has become an emerging research trend in
recent years since practitioners can no longer rely on
manually designed networks and automatically generate
task-dependent networks. The NAS method needs to param-
eterize the search space by defining the maximum number

of layers and operations. Then, the network architecture is
learned through different search strategies, and the models
with good performance are selected. Finally, the candidate
model or optimal model is evaluated accurately. Therefore,
the following studies are focused on the search space, search
strategy, and model evaluation.

The search space generally has two ways to define spa-
tial structure: searching for overall structure (global search)
or searching the cell structure and splicing cells together
according to the large structure defined in advance (cell-based
search). In earlier studies [46], [32], the global search space
was designed as a chain structure or a skipping structure.
However, it is often necessary to search all the components in
the entire network architecture, which lacks flexibility. Using
a cell-based [26], [51], [16], [39] search space is a common
choice in development in order to achieve good robustness
and effectiveness in the search structure. This method has a
simple design and usually consists of many repeated cells
used to form a larger architecture. As a result, the search
space will be greatly reduced, and the search architecture is
also reduced to searching for a single cell. The fine-grained
search space (atomic blocks) [51] limits the optional search
space for each block to the type of convolution, the number
of output channels and the size of the convolution kernel. For
the current traffic classification task, to reduce the complexity
of the model and make the structure have better transfer-
ability between datasets, the cell structure is adopted in our
design. The search strategies can be roughly divided into three
categories, namely, gradient-based methods [22]–[24], rein-
forcement learning (RL) [46], [47], [26] and EA-based [18],
[27]–[30] approaches. The model evaluation can be divided
into two stages: search objectives during the search process
and the evaluation metrics after the search. The former usu-
ally predicts the performance of candidate models through
multiple or single objectives to determine whether to keep the
model or extend it on this basis. The latter assess the optimal
model obtained after the search (which may stack models to
form a deeper network) and re-evaluates the performance of
the model by making a fair comparison with a comparative
model on the same training set or applying it to other datasets
to prove its transferability.

At present, all work on NAS mainly focuses on reducing
the network search space, searching for the search strategy
that converges as fast as possible, and selecting the appro-
priate model evaluation methods. Building the search space
(cell-based search) mainly considers the network topology
and operation type. In previous studies, the types of opera-
tions are usually fixed to simplify the search space. However,
the varied topology of the network should be the focus of the
discussion. In this paper, to the traditional traffic classifica-
tion operation, we add the related operations in the computer
vision field to enhance the classification accuracy. The setup
of our network is similar to the structure defined in [28]; that
is, the connection between nodes in the block is an operation
type, and each block is linearly connected along the depth.
We limit the number of operations in the search space to
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a fixed value and simplify it to a block of only one layer
according to the traffic classification task. We also designed
a special network structure to reduce the number of channels
and spatial ratio. In this way, the complexity of the current
search structure has fully met our expectations. However,
finding the classification accuracy comparable to [20] using
a low-complexity structure has become a more notewor-
thy problem. In other words, the architecture found should
always consider an implicit trade-off between the accuracy
and redundant memory consumption. We introduce NSGA-
Net, a genetic algorithm-based network architecture search
method proposed by Lu et al. [27], which extracts PS through
parent-generation crossover and inheritance. In this way,
we can measure both the network complexity and accuracy
to make a final choice. Inspired by this, we also considered
two other optimization algorithms similar to NSGA-II to find
a task-matching search strategy.

C. MOAs
With the increasing complexity of global optimization
problems, experts pay more attention to the problem of
multiobjective solution. In this kind of problem, the opti-
mization objective function results in a sharp increase in
the calculation amount under the mutual restraints of many
factors. The deterministic algorithms such as planning algo-
rithm and branch-and-bound algorithm have been unable to
solve the complex production and living needs. The emer-
gence of intelligent evolutionary algorithms (IEAs) solves
this problem. It uses the genetic laws of simulated biology
to solve highly complex nonlinear problems. According to
different scientific techniques, multiobjective IEAs can be
divided into Pareto-based, aggregation-based and indicator-
based. [61] proposed SPEA-II on the basis of the original
method, and the convergence and diversity of the solution set
are better. Coello and Lechuga [62] proposed a Pareto-based
MOPSO algorithm. In the iterative process, the external
archive is used to store the non-dominated solution, and other
population members are combined to guide the particles to
fly. It has the advantages of easy implementation and fast
convergence. The team of DEB [63] proposed NSGA-II,
which has become a research hotspot of multiobjective opti-
mization algorithm in recent years. Then, the DEB team
abandoned the crowding distance strategy in NSGA-II, and
introduced widely distributed reference points to deal with
the optimization problem of more than three objectives in
individual analysis, thus proposed NSGA-III [64]. NSGA-III
solves the problem of poor convergence and less diversity
of NSGA-II in the high dimensional objective optimiza-
tion task. [65] proposes multiobjective evolutionary algo-
rithm based on decomposition (MOEA/D) algorithm, which
has better performance in high-dimensional multiobjective
solution.With the increase of objective dimension inmultiob-
jective optimization problems, EAs based on indicator eval-
uation framework has been developed, such as ISDE+ [66],
HypE [67] and MAOEA/IGD [68].

NSGA-II, MOPSO, and SPEA-II are widely used in
MOEAs. However, the performance on many multiobjec-
tive testing problems has not been tested in past studies.
In fact, in the process of considering the application of
MOEAs, we comprehensively compare the following situa-
tions: NSGA-III, MOEA/D and other algorithms need a large
number of scale vectors or appropriate reference sets, which
are not easy to be applied in real world problems [72]. Our
task only contains two optimization objectives, which is not
a high-dimensional objective optimization problem. Many
of the algorithms proposed in recent years, such as ISDE+,
MAOA/IGD and other indicator-based algorithms, are more
concerned with the situation of high dimensional objectives,
and this paper does not need too much attention. There is
no fact to deny the effectiveness of MOPSO, NSGA-II and
SPEA-II algorithms in solving practical problems. On the
contrary, it is a common solution of multiobjective tasks to
combine the experimental design method with theseMOEAs.
Because of the good performance of PSO in dealing with
large-scale complex problems, researchers often useMOPSO
to solvemultiobjective optimization problemswith high com-
putational time [69], [70]. SPEA-II and NSGA-II are com-
monly used algorithms in MOEAs. [71] proposed SPEA-II
as the basic framework to solve the Pareto solution set that
maximizes the profit of smart grid. In [56], NSGA-II and
SPEA-II algorithms are applied to the smart grid environ-
ment to manage the peak load scheduling problem. The
result shows that both algorithms have good convergence, but
NSGA-II performs better in time complexity and accuracy.
Based on the above analysis, we use NSGA-II algorithm to
implement the traffic classification problem based on NAS,
and compare the results with SPEA-II and MOPSO.

III. METHODS
For traffic classification, subject to the enormous amount of
real-time traffic and limited hardware resources in practi-
cal applications, we must consider the computational com-
plexity of the model. Therefore, we should balance mul-
tiple objectives (e.g., predictive performance and compu-
tation complexity). In this paper, we adopt FLOPs [37]
and F1-score to judge the models’ computation com-
plexity and classification effectiveness, respectively. Often,
when multiple objectives are considered, there may not
be a perfect solution that can reach the optimal score
in all desired metrics. Therefore, we attempt to find a
trade-off between the effectiveness and the complexity.
We apply three optimization algorithms, namely, NSGA-II,
SPEA-II andMOPSO, to architecture search, which can auto-
matically generate a set of useful CNN models. [38] states
that the network obtained by the NAS search based on cell
search space converges faster and more stably. Therefore,
we choose the architecture with smaller classification per-
formance and fewer FLOPs under three optimization algo-
rithms and compare the convergence of F1-score curve on
the validation dataset for the different architectures. In addi-
tion, by combining the traffic classification characteristics,
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we design a group useful substructure that can improve the
model performance. The rest of this section describes the
details of our architecture.

A. DATA PROCESS
In this paper, traffic packets are presented using hexadec-
imal coding. We transform the original data into decimal
coding, and the model analyzes the data directly. Compared
with traditional artificial feature engineering, it containsmore
information for the classification model. The data processing
is as follows:

1) DATA CLEANING
First, we should remove redundant and duplicate packages.
One traffic packet generally consists of an Ethernet layer,
a network layer, a transport layer, and an application layer.
We remove the data of the Ethernet layer, which contains the
MAC source/destination address, and the protocol version.
In addition, IP addresses are useless. This information is not
relevant to the network behavior.

2) DATA SPLIT
In this step, we split the traffic data with the same five-tuple
of information (source/destination IP, source/destination port,
and protocol). Traffic packets with the same five-tuple of
information form a flow. We use the SplitCap tool to split
the traffic.

3) VECTORIZATION
Weuse only 10 packets for a network flow. The network flows
that have less than 10 packets are padded with zeros to reach
a certain length. For every packet, we extract only 160 bytes
of payloads. When a packet does not have 160 bytes, we pad
zeros behind it. Finally, we transform every traffic flow into
a 1600-dimensional vector. We can resize it into a 2D-vector
that can be processed by CNN.

B. GENETIC SEARCH ARCHITECTURE
1) ENCODING
From a biological perspective, the neural network architec-
ture can be viewed as a phenotype, and it is mapped from its
genotype. Genetic operations such as crossover and mutation
are conducted in the genotype space. The mapping relation
between genotypes and phenotypes is called encoding in this
paper. This idea of coding mapping is also mentioned in [60].
In other words, we should define an encoding of the neural
network architecture.

Most existing CNNs can be viewed as a combination
of computational blocks that define the layerwise com-
putation (e.g., ResNet blocks [13], Inception blocks, and
SE blocks). We follow the encoding method proposed
by Xie and Yuille [32]. However, existing architectures
(e.g., Alexnet [41] and GoogLeNet [42]) are searched using
image processing, which requires deeper and larger net-
works for complex scenes. Traffic classification is easier to

distinguish, and a deeper network may lead to overfitting.
Therefore, we should reduce the search space for our task.
First, we divide the whole classification model into several
phases, as in [39], [40]. Each phase is a block that is composed
of several basic operations. To encode the whole network,
the blocks should be encoded first.
Block Encoding: Our proposed binary network represen-

tation encodes the network architecture into binary strings,
which are used to specify whether the data flow flowing out
of a node needs to reduce the number of channels or change
the spatial ratio. A network architecture in the population
is called a block, and a block consists of several nodes that
describe the operations. Here, a node is a basic operation unit,
which can be a single operation or a sequence of operations.
In this way, we can represent a network with a combination
of several blocks. The blocks can be viewed as a combination
of basic operations. In this paper, for simplicity, our final
network repeats the same blocks. Given the ith block xi as
a part, it is represented as xi = (xOi , xNi ), where x

O
i and xNi

represent the encoding of the set of operations and the traffic
exchange nodes, respectively.

The operation set is defined by the search space. The set
contains a total of 10 operations from which an operation
is randomly selected to act on the outflow of the current
node. In addition, for nodes with traffic outflows, we judge
whether the node needs to change the number of channels
by encoding. The kth node of the ith block in the network
architecture is defined as xki . Hence,

xki =

{
CHI ,CHO→ CHI ,CHO/nBN , if k = 0, 1
CHO,CHI → CHO,I/nBN , otherwise.

(1)

where k = 0, 1, 2, . . . ,L, and L represents the number of
nodes in the block. If node xki is connected to a node encoded
as 0 or 1, the input channelCHI of the operation that applies to
the outflow of xki does not change, whereas the output channel
CHO is reduced to 1/nBN . nBN represents the number of
empty nodes (that is, no operation is done on this node except
Concat or add). However, if the current node is connected
to the nodes other than 0 and 1, the number of input and
output channels for the operation on the outflow traffic of the
node is reduced to 1/nBN . Fig. 1 shows the complete network
architecture composed of a block.

FIGURE 1. A classification network contains one block with 4 nodes.

Search Space: To make architecture searching easier,
we should predetermine the input layer, output layer and
connection layers between blocks. The total search space of
a block is governed by the number of operations and the
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FIGURE 2. (a) Architecture with full operation set. (b) Decrease in the spatial ratio. (c) Decrease in the number of channels.
(d) Decrease in the spatial ratio and the number of channels.

number of nodes. The search space of a block is:

�xki
=

m=no∏
m=1

((m+ 1)2)n2nop . (2)

where np is the number of operations and no is the number
of nodes in the block. Because we set the encoding for the
different phases to be the same, the search space of a complete
network is equivalent to a block.

To enrich our search results and improve network per-
formance, we add some predefined architecture blocks.
A detailed discussion of the proposed predefined architec-
tures is provided in the next section.

2) PREDEFINED ARCHITECTURE BLOCKS
In this section, we predefine some useful blocks that have
lower spatial ratio and fewer channels. We also tested the
lightweight and running speed of the architecture and com-
pared it with the hand-designed CNN model, proving that
the architecture is lighter and faster in the predefined search
blocks. In our paper, a normal block is a directed acyclic
graph.
Original Architecture: First, as a comparison with the

previous hand-crafted network, we use only the original
operations such as 2D convolution and pooling. In Fig. 2,
we show the complete structure of a block. The convolutional
operations are the edges in the block. A node in a block has
two inputs, and we use add to merge the two inputs. Finally,
a Concat operation selectively combines the information of
previous nodes to make an output. The original operation
set consists of ReLUConvBN, MaxPooling, AvgPooling, and
Skip. The detailed structures are shown in Fig. 3.

Architecture With the Full Operation Set: Recently, some
more effective convolutional operations have been proposed.
For example, in order to extract more detailed information
and expand the receptive field without changing the spatial
ratio of feature map, we add the dilated convolution operation
to the full operation set. To solve the disappearing gradient
problem in the training process, the ReLU nonlinear function
is introduced as the activation function in the operation set,
and batch normalization is added in some operations. Sep-
Conv uses two horizontal and vertical convolution kernels
to replace the original convolution kernels. We add some
new operations to the operation set to construct new blocks.
Fig. 3 shows the detailed structures of the new operations.
Decrease in the Spatial Ratio: For a convolutional network,

decreasing the spatial ratio of the feature maps can decrease
the computation complexity and integrate low level informa-
tion. Therefore, we change the stride of convolution operation
in the operation set from 1 to 2. Then, the spatial sizes of the
featuremaps will be cut in half after passing a block.We show
the difference between the original blocks and blocks with a
decreased spatial ratio in Fig. 2.
Decrease in the Number of Channels: In addition to reduc-

ing the spatial ratio, reducing the number of channels in
operations is effective. The different paths in blocks can
be viewed as different information flows. Then, decreasing
the number of channels of an information flow means com-
pressing the information. Finally, the operation is used to
combine all the information flows. In this setting, we keep
the number of channels equal between the inputs and outputs
of blocks. We call the node connected to the output node the
null node. Then, we set the number of nodes between the
input and output nodes to M so that the number of empty
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FIGURE 3. Detailed implementation of major operations. The left side contains common operations
in traffic classification, while the right side adds rectangular convolution, deep separable
convolution, dilated convolution, and skip connection.

nodes is [1, 2, . . .M − 1]. Therefore, the number of output
channels should be a common multiple of [1, 2, . . . ,M − 1].
Fig. 2 shows the detailed structure of a block with fewer
channels.
Decrease in the Spatial Ratio and Number of Channels:

Next, we can construct a block that has both decreased spatial
ratios and fewer channels. Fig. 2 shows the structure of this
type of block.

In addition to the above four design blocks, we hope to
further expand the search space to find a better structure.
Therefore, we design two groups of search spaces: fixed
initial channels and searching for initial channels. Since the
former simply specifies the original number of channels,
the set value will be described in Section 4. Only the relevant
principles of the latter are introduced here.
Searching for Initial Channels: The search space is

expanded by modifying the number of initial channels from
the original fixed value to a variable number of channels. The
initial population length of the first generation was modified
to (Lengthfixed+1), where Lengthfixed is the initial population
length under the condition of a fixed number of channels.
The last value of the network architecture code represents the
searchable channel value, which we set to 12, 24, 36, and 48.

3) SEARCH PROCEDURE
After thousands of years of evolution, the existence of all
things in nature must be justified. People seek the opti-
mal laws in nature and develop them into EAs. NSGA-II,
MOPSO, and SPEA-II areMOEAs based on the optimization
rules of nature. In the current task, we stipulate that every
bit of an individual must be an integer; therefore, the integer
programming problem is worthy of attention. When an indi-
vidual in a population crosses and mutates, it is essentially a
bit in an individual and a random number ranging from (0,1)

that is added and subtracted. Therefore, the modified code is
remapped to an integer by rounding. The details of these three
optimization algorithms are provided below:

(1) NSGA-II
This is a process in which the solutions become grad-

ually better. First, we randomly initialize several network
architectures, which are called populations. In every itera-
tion, new network architectures are generated by the parent
networks sampled from the population, including mutation
and selection processe [55]. Each network competes for both
survival and reproduction (becoming a parent). After several
generations, the networks in the population will obtain PO
for this dataset. The procedures of mutation and selection in
NSGA-II are described below:
Mutation: To enhance the diversity of the population (hav-

ing different network architecture) and the ability to escape
from local optima, we randomly flip the bit encoding. To pre-
vent creating a completely different architecture, we restrict
the number of flipped bits to one for each mutation operation.
Selection: After generating the network architecture,

we use a unified metric to select the effective network. In the
traffic classification task, we use the FLOPs and F1-score to
select networks.

(2) SPEA-II
Compared with NSGA-II, SPEA-II has less efficient oper-

ations but is better able to address high-dimensional optimiza-
tion problems. In addition, Herstein et al. [43] demonstrates
that SPEA-II has better performance than NSGA-II in both
constrained and unconstrained multiobjective optimization
problems. The following are the key steps in SPEA-II, first
initializing an archive set At for storing the historical genera-
tions and a population set Pt for the current generation. The
environmental selection strategy is implemented in both At
and Pt to generate the resulting generation At+1 and Pt+1.
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Then, the mutation operation is applied to the individuals
of the newly formed At+1 and Pt+1. The specific imple-
mentation process of the environment selection strategy is as
follows:
Environmental Selection Strategy: Pareto optimal soluitons

(nonnormalized soluitons) is characterized by the fact that
it cannot weaken at least one other objective function while
improving any objective function. The nondominated solu-
tions are selected from Pt and Et . The set of nondominant
solutions is preserved in the next generation of the archived
population Et+1. If the number of solutions in the nondom-
inant solution set of Pt and Et is less than the size of Et+1,
the dominant individuals with the lower dominance level in
Pt and Et will be saved in Et+1 to maintain the population
diversity. However, when the number of nondominant solu-
tions is larger than the size of Et+1, the truncation strategy
based on k-nearest neighbors follows to maintain the size of
the external population.

(3) MOPSO
In MOPSO, each solution of the multiobjective optimiza-

tion problem is regarded as a particle, and each particle’s cur-
rent position is represented by a fitness function. Moreover,
each particle can remember its own historical best position
and choose the flight direction and distance based on its own
experience and other particles in the population. To guide
particles to the Pareto front (referred to as the global optimal),
the position and velocity of particles need to be updated as
follows:

vi = ωvio + c1r1(xPio − xio)+ c2r2(x
G
go − xio). (3)

xi = xio + vi. (4)

where vio and xio(0 ≤ i<N ) are the velocity and position of the
current generation of particle i, respectively. xPio is the optimal
position reached by the ith particle, and xGgo is the optimal
position reached by all particles in the population. c1 and c2
are two coefficients of acceleration, and r1 and r2 are two
random numbers. ω is represented as follows:

ω = ω −
t × (ωmax − ωmin)+ 1

tmax
. (5)

A large ω is good for the particle to jump out of the local
optimum. However, a small ω is good for the convergence
of the algorithm. We set the initial value of ω to 1 and use
the above formula to reduce the value of ω linearly. t rep-
resents the current number of iterations, tmax represents the
total number of iterations, ωmax is an all-one D-dimensional
vector, and ωmin is an all-zero D-dimensional vector. D is the
encoding length of each generation of particles. The initial
velocity of the particle is random.

Similar to the previous two methods, MOPSO is also an
iterative optimization algorithm, but there is no crossover or
variation in the implementation process.

C. LIGHTWEIGHT MODEL
Due to storage space and power consumption limitations,
the neural network model still faces great challenges in the

storage and computing of embedded devices. We start with
the basic convolution operation to reduce the computational
complexity without sacrificing the network performance.
MobileNet V1 and V2 and shuffle Net V1 use the FLOPs
to evaluate the model dimensions, so we calculate the FLOPs
for the final network searched by NSGA-net. We reduce the
FLOPs in the following two ways: 1) Following MobileNet
V1, we use the deep separable convolution instead of the
standard convolution to reduce the number of parameters.
2) We design a network architecture to reduce the number
of channels and the spatial ratio at the same time. Reducing
the number of channels obtains a more lightweight model,
and reducing the spatial ratio reduces the model complexity.
The complexity of the evaluation model is measured using
the FLOPs, MAccs, and model inference ability. In addition,
the lightweight of the model is evaluated using the model
parameters and memory usage.

IV. EXPERIMENTS
In this section, we will explain the parameter settings and
implementation details of the network structure. The exper-
iment is divided into three parts. First, the NSGA-II-based
optimization algorithm is applied to the five search spaces
previously designed, and the ablation experiment is con-
ducted to select the one with the best effect. In this part,
we focus on comparing which search space can find the better
model, so we only choose NSGA-II as the search strategy.
Second, the performances of the three optimization algo-
rithms in the selected search space are compared, and then
three structures are selected from the Pareto optimal set based
on the three optimization algorithms. Finally, the lightweight
and speed performance of the searched architectures are ana-
lyzed by comparing the MAccs and F1-score curves. For
more details, see the following description:

A. IMPLEMENTATION DETAILS
Data Description: To verify the effectiveness of the search,
we select two public datasets. We use the IDS2012 dataset
to detect intrusion traffic. This dataset contains different
types of malware traffic including Brute Force SSH, DDoS,
HTTPDos, and relaying attacks. The difficulty of analyzing
this dataset lies in the unbalanced distribution of different
traffic flows, which can be shown in Table 1. To prove that
the search strategy can search the network architecture with
better performance than the manually designed on different
datasets, we rerun the experiment on the ISCX VPN dataset.
This dataset has 7 general categories of encrypted traffic,
namely, web browsing, email, chat, streaming, file transfer,
VoIP, and P2P, which are shown in Table 2. We split both
original training sets to create our training (70%) and valida-
tion (30%) sets for the architecture search. Finally, when the
architecture is completely retrained, and the test results are
obtained by the original partitioned dataset.
Hyperparameters: The network architecture consists of

only one block in which there is no repetitive pattern
in each architecture. In our design, each block contains
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TABLE 1. IDS2012 dataset description.

TABLE 2. ISCX VPN dataset description.

6 operations and 5 nodes. Of the 5 nodes, 2 nodes are fixed
nodes (No.0 and No.1 nodes which are marked in Fig. 1),
and the remaining 3 nodes are intermediate connected nodes
of 6 randomly generated operations. Finally, the output data
streams of all intermediate connected nodes are spliced
together as output results. Hence, we set the number of blocks
to 1 and the number of nodes to 3 (except for two fixed input
nodes). We set the random seeds as 0 and determine the initial
population of the first generation using uniformly distributed
random numbers to ensure that each experiment starts with
the same random numbers to iterate. The number of genera-
tions is 10, and the population size is 20 for each generation;
therefore, 200 offspring can be obtained per search, which
takes approximately 2−3 days on an NVIDIA 1080Ti GPU
in PyTorch.
Training Details: For each convolutional block, we train

for 12 epochs with a batch size of 128 in both the training
set and test set. Then, we use momentum stochastic gradient
descent (SGD) to optimize the weight and adjust the learning
rate with cosine annealing. At the end of a cyclical learning
rate, the initial learning rate is 0.025, which can decrease
to 0. We set the momentum to 0.9 and the weight decay
to 3 × 10−4. In NSGA-II, the crossover probability and
mutation probability are set as 0.4. In SPEA-II, the archive
size is set to 20.

B. ABLATION EXPERIMENTS
To study the influence of different numbers of input chan-
nels on the classification performance and complexity of the
model, we design two groups of comparative experiments:
a fixed initial channel and searching for the initial channel.
In the experiment with a fixed number of initial channels,
we conduct the ablation experiments in five different search
spaces. We find that the structural results found in the search
space based on the original operation are not ideal; therefore,
in the search for the initial channel experiment, only the last
four groups of search spaces are selected.

Table 3 shows the performance of the Pareto optimal solu-
tion representation model for each search space. The original
architecture using original operations is significantly more
complex. The model performance improved as more opera-
tions are added. Therefore, the new operation is also suitable
for traffic classification.

The results of the decrease in the spatial ratio are shown
in Table 3. It is clear that the F1-score increased whereas the
FLOPs decreased. Reducing the spatial ratio of the feature
graph can aggregate the intermediate features and reduce the
computational complexity. According to the channel reduc-
tion data, we find that if only the number of channels is
reduced, the performance of themodel cannot be significantly
improved. However, if the space ratio and channel are reduced
at the same time, as shown in bold in the table, this search
space can find a network structure with a higher F1-score.

To prove that our results are not due to chance, we will
analyze the overall trend as follows. Fig. 4 shows the scat-
ter plot obtained by NSGA-II based on the bi-objectives
in different experimental groups. The figure clearly shows
the improvement of the entire population under the four
groups of ablation experiments. A large number of outliers
appear in the experiment of the full operations, which is
more clearly reflected in the box diagram in Fig. 5, indicating
that many architectures with unsatisfactory bi-objectives are
searched out in the operation of the full set. In the search
space with only a reduced spatial ratio, the outliers of the
F1-score and FLOPs are greatly reduced, while their met-
rics are improved. For the method of decreasing the num-
ber of channels, the F1-score is improved and the outliers
are reduced, whereas the model tends to be more compli-
cated. However, the method of decreasing the spatial ratio
and the number of channels can greatly improve F1-score.
In addition, the initial number of input channels can vary.
We can add the initial input channel to the search space. The
result of increasing the number of initial input channels for
searching is shown in Fig. 6. We can see that the value of the
FLOPs in the four groups of the search space is significantly
increased compared with that of the fixed initial channels,
and the overall F1-score is also improved. Whether viewed
from the individual comparison in PO (Table 3) or the overall
search results (Fig. 6), there is a significant decrease in the
FLOPs after reducing the spatial ratio, and the F1-score is
also increased after reducing the spatial ratio and number
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TABLE 3. The best structure in the two group experiments (The results after training for 12 epochs).

FIGURE 4. Improvement of the bi-objective with the population in four
sets of ablation experiments based on the IDS2012 dataset.

of channels. The above results show that the search space
designed by us is effective at reducing the complexity and
improving the classification performance. This result is more
intuitive in Fig. 7. As the number of initial channels increases,
the F1-score and FLOPs improve to varying degrees.

The above experimental results are summarized as follows:
in the variable initial channel method, although the F1-score
of the model is relatively high, the complexity also increases
more. In addition, we find that both the complexity and the
F1-score of the model are ideal when the number of channels
is 12. Therefore, in the case that the number of channels is
fixed to 12, we consider extending the search space to the full
set of operations and conducting subsequent experiments on
the operating space with a reduced number of channels and
spatial ratio.

C. CONCLUSION REGARDING THE SEARCH STRATEGIES
In this section, we adopt different optimization algorithms to
decrease the spatial ratio and channel search space to select
the best search strategy. We adopt 3 optimization algorithms
introduced in Section II, which can automatically search
structures that approximate the Pareto front between the error
(error = 100 - F1 score) and complexity of malicious traffic
classification tasks. It is clear from Fig. 8b that 10 generations

of structures are searched by using MOPSO, and the FLOPs
of each generation are very low (the FLOPs of the initial
generation are lower than the other two). MOPSO performs
well in the task of searching low-complexity architectures.
However, in terms of the number of structures in the PS,
as shown in Fig. 8a, the NSGA-II algorithm has more than the
other two (the red dots represent Pareto optimal outcomes).
From 8c, we observe that SPEA-II cannot search out a struc-
ture with less than 2.5 Mb FLOPs, and the number of POs is
also the least.

Because the complexity of the structure is generally low
and the implementation of the MOPSO algorithm is sim-
pler, as shown in Table 4, the shortest running time of the
three optimization algorithms is achieved by the MOPSO
algorithm, followed by NSGA-II, and SPEA-II needs the
longest running time. Fig. 9 compares the distribution of total
number of POS of each generation under the bi-objectives
obtained after the search of the three optimization algorithms.
NSGA-II is more likely to search for individuals with high
F1-scores, while MOPSO tends to search for individuals
with low FLOPs. In addition, Table 4 shows that in the
PO searched by the three optimization algorithms, NSGA-II
searches for the highest F1-score and MOPSO searches for
the lowest FLOPs. In addition, the POs searched by NSGA-II
and SPEA-II are relatively clustered while the POs searched
by MOPSO are more dispersed from Fig. 9. We analyzed
the possible reasons as follows: NSGA-II and SPEA-II have
genetic crossover and mutation, and the information shared
between the populations is close, so the number of outliers
in the models searched by these two algorithms is relatively
small. MOPSO, on the other hand, follows a single informa-
tion sharing mechanism. Although the particles can converge
at a fast speed, they are not closely related to each other,
so there are many outliers.

To further compare the performance of the PO searched
by the three algorithms, the F1-score curve measured on the
validation dataset is depicted. Fig. 10 shows that the searched
block based on NSGA-II has a short shock at approximately
the 40th epoch, but it tends to be stable as training progresses;
meanwhile, the F1-score curves of the other two models have
a large amplitude shock. In addition, the NSGA-II searched
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FIGURE 5. Box plots of the four groups of experiments with fixed numbers of input channels based on the IDS2012 dataset.

FIGURE 6. Box plots of the four groups of experiments with the number of searched input channels based on the IDS2012 dataset.

FIGURE 7. Bar charts of the four groups of experiments with the number of searched input channels based on the
IDS2012 dataset.

model tends to have small convergence errors and small
damped oscillations after the 50th epoch of training, while
the other two models only converge after approximately the
70th epoch. This result indicates that the model obtained by
NSGA-II has better stability and convergence than the other
models.

D. EVALUATION OF THE ARCHITECTURE
The F1-score of our searched architecture based on NSGA-II
has exceeded that of the architecture designed by hand. How-
ever, in malicious traffic detection, it is necessary to stop
malicious traffic in time via real-time detection. In addition
to the F1-score, the computational complexity is another
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FIGURE 8. (a) Trade-off frontier of NSGA-II (the Pareto optimal set contains 17 optimal solutions). (b) Trade-off frontier of MOPSO (the
Pareto optimal set contains 12 optimal solutions). (c) Trade-off frontier of SPEA-II (the Pareto optimal set contains 11 optimal solutions)
based on the IDS2012 dataset.

TABLE 4. Comparison with different optimization methods. In this table,
each optimal solution is selected from the Pareto optimal solution set,
and the F1-score is the result of 120 epochs of training based on the
IDS2012 dataset.

FIGURE 9. Pareto optimal outcomes of the optimization algorithms based
on the IDS2012 dataset.

TABLE 5. Comparison of the complexity, numbers of parameters and
speeds of the search models under different EA algorithms.

important metric to be considered by the CNN network.
To meet this requirement, the performance of the three
searched models in terms of the model complexity and speed
is evaluated below.

FIGURE 10. Validation F1-score (%) curves of the architectures based on
MOPSO, NSGA-II, and SPEA-II on IDS2012 dataset during training.

When evaluating the complexity of the model, that is,
the amount of calculations of the model, we use a naïve
solution method. In the previous design of the search space,
there are many convolution operation blocks in which a large
number of point multiplication and accumulation forms are
included. Therefore, in addition to the FLOPs, we use the
MAccs to measure the amount of calculations of the model.
The lightweight of the model was evaluated by calculating
the number of parameters of the model. To make the model as
light as possible, we reduce the number of input channels into
the convolution kernel. To evaluate the model speed, we use
a more intuitive comparison method to compare the results of
the inference experiments.

The final comparison results are shown in Table 6. It is
clear that the model searched using NAS is better than the
model designed by hand in terms of the model complexity
and operating speed.

In Table 6, the MAccs and FLOPs can be used to indi-
rectly evaluate the model speed, and we directly measure
the running speed of the model on the GPU using inference
experiments. Intuitively, the higher the FLOPs of the model
are, the higher the complexity of the model, which will lead to
a slower running speed. The model based on MOPSO has the
lowest complexity and the fastest running speed. The speed
of the search model based on NSGA-II is slightly lower than
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FIGURE 11. Optimal architecture searched based on NSGA-II on the IDS2012 and ISCX VPN datasets.

TABLE 6. Comparison between the Pareto optimal solution obtained by NSGA-II search in our designed search space (decreased spatial ratio and number
of channels) and other classification algorithms on the IDS2012 and ISCX VPN datasets.

that of NSGA-II. However, the model based on SPEA-II is
not the most complex, but the running speed is the lowest.
in the research on ShuffleNet V2 [36] stated that the model
complexity is not the only factor affecting the speed of the
model, and the memory access cost (MAC) is also important.
In other words, packet convolution can reduce the parame-
ters of the model, but it can slow down the running speed.

There are many packet convolutions in the model searched by
SPEA-II (more than the other two models), which decreases
the model speed.

E. COMPARISON WITH OTHER MODELS
The above analysis shows that it is the best to choose the
search space with a reduced space ratio, fewer channels,
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and use NSGA-II as the search strategy. Therefore, we train
the searched architecture from scratch on the training set.
The ML classification algorithms (KNN, LR, RF, DT, and
XGBoost) and two manually designed CNN network models
are trained on the IDS2012 and ISCX VPN datasets. The
results are shown in Table 5. The table shows that the network
obtained from the search has good performance in terms
of the classification and model complexity, so the designed
search space is applicable and the search strategy performs
well in this task. Fig. 11 shows the best architecture searched.

V. CONCLUSION
This paper studies traffic classification models based
on NAS. To conduct the network search, we designed traffic
classification network search architectures using NSGA-II,
and compared the results with SPEA-II and MOPSO. First,
we conducted ablation experiments to prove that the designed
search space is effective, and the search space that reduces
the spatial ratio and the number of channels can search for
PO based on their FLOPs and F1-score. Second, the search
strategy is changed in the optimal search space, and the
accuracies and search times of the models are evaluated
based on three optimization algorithms. It is concluded that
the model searched by NSGA-II has the highest F1-score,
the MOPSO search model can save time and energy, and the
models searched by SPEA-II has the lowest F1-score. Finally,
we designed inference experiment under the same GPU con-
dition and prove that theMOPSO searchmodel has the lowest
complexity and the fastest running speed. When there is little
difference in the search time and complexity, we believe that
the weighted F1-score is the most important metric, and the
number of optimal solutions in the PS obtained by NSGA-II
is the largest. Hence, NSGA-II is more suitable than the
other two optimization algorithms for the traffic classification
problem. In all of the cases mentioned above, the weighted
F1-score and speed of the resulting model exceeded that of
the artificially designed model.
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