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ABSTRACT With the increasing sophistication of artificial intelligence, reinforcement learning (RL) has
been widely applied to portfolio management. However, shortcomings remain. Specifically, because the
training environment of an RL-based portfolio optimization framework is usually constructed based on
historical price data in the literature, the agent potentially 1) violates the definition of a Markov decision
process (MDP), 2) ignores their own market impact, or 3) fails to account for causal relationships within
interaction processes; these ultimately lead the agent to make poor generalizations. To surmount these
problems—specifically, to help the RL-based portfolio agent make better generalizations—we introduce
an interactive training environment that leverages a generative model, called the limit order book-generative
adversarial model (LOB-GAN), to simulate a financial market. Specifically, the LOB-GAN models market
ordering behavior, and LOB-GAN’s generator is utilized as a market behavior simulator. A simulated
financial market, called Virtual Market, is constructed by the market behavior simulator in conjunction with
a realistic security matching system. Virtual Market is then leveraged as an interactive training environment
for the RL-based portfolio agent. The experimental results demonstrate that our framework improves out-
of-sample portfolio performance by 4%, which is superior to other generalization strategies.

INDEX TERMS Artificial market simulation, portfolio management, reinforcement learning.

I. INTRODUCTION
Portfolio management, a long-established part of quantitative
trading, has the aim of satisfying a predefined utility function
by continually reallocating capital across some set of finan-
cial products. Methods of portfolio management come in one
of three types: 1) traditional methods (such as the momen-
tum [1] and contrarian strategies [2]), 2) machine-learning
methods (such as pattern matching [3]), and 3) reinforce-
ment learning (RL)-based methods [4], [5]. With the thriv-
ing development of deep neural networks, many researchers
have integrated deep learning with RL to achieve impressive
performance in several domains of finance, such as forex
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trading [6], portfolio management [4], [5], [7], [8], and mar-
ket making [9].

Most successful RL studies have used realistic physics
engines or dynamic interactive entities to construct the train-
ing environment. For example, AlphaZero [10] trains an agent
to play a board game through self-play. Here, self-play means
that the environment that the agent faces, which means the
player agent against, is generated by the best player (agent),
which is trained by the neural networks, from all previous
iterations. The training agent obtains continual feedback in
response to its own actions, resulting in a robust and rea-
sonable interrelationship between the training environment
and agent. Research on RL-based portfolio management,
however, has been less successful. In such research, histor-
ical price data remain straightforwardly used to construct
the training environment [4], [5], [7], [8]. From the agent’s
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perspective, feedback from such a training environment is
not responsive to the agent’s actions. Consequently, the agent
faces several problems when optimizing its actions in relation
to this unresponsive training environment. First, the state
obtained from the environment is unrelated to the agent’s
action. The agent’s interactions with this unresponsive envi-
ronment potentially violate the definition of a Markov deci-
sion process (MDP)—where the MDP theorem explicitly
defines a state transition as one that depends on the current
state and action. Because the MDP theorem is the fundamen-
tal theorem of RL, violating the definition of anMDP renders
the optimization process of the RL-based portfolio agent
unreasonable. Second, such unresponsiveness means that the
environment cannot render an appropriate market reaction in
response to the agent’s action. In other words, an environment
constructed based on historical price data cannot simulate the
agent’s impact on the market. Thus, an agent optimized using
historical price data may produce poor generalizations: the
trading knowledge constructed from data in the in-sample
period (in training) fails to apply in the out-of-sample period
(in testing). Regardless of how well a model fits the training
data, a model that generalizes poorly is useless for solving
practical decision-making problems. Thus, generalizability
can be considered the largest obstacle that must be sur-
mounted in the construction of RL-based portfolio manage-
ment models. Studies have employed data augmentation and
adversarial attack or adversarial training [9], [11] to improve
the generalization ability of RL-based trading agents by
injecting randomization into the environment. However, these
studies have mostly used historical price data to construct the
environment; the injection of random noise does not directly
address the aforementioned problems.

In our opinion, two types of solutions can be used to
address the aforementioned problems. The first is interacting
the RL-based portfolio agent with real stock exchange data
for portfolio optimization. The second is using another AI
model to construct a realistic virtual market for the RL agent
to interact with. The first solution bases rewards on transac-
tion results in a real financial market. However, because this
solution is costly and requires a relatively long data-collection
time for the agent to converge, it cannot be realistically
applied to RL-based portfolio optimization. The second
approach is where our main contribution lies. In our study,
a variation of the generative adversarial network (GAN) is
proposed to simulate market ordering behavior by modeling
the distribution of the historical limit order. The generative
model is then used to construct a synthetic stock exchange as
a training environment for the agent. The proposed learning
framework enables the agent to obtain the simulated market’s
reaction to their trading decision. By doing so, the causal
interrelationship between the state and action is enhanced.
Furthermore, because the agent is allowed to be involved with
the state transition process, the simulated stock exchange can
prevent the agent from violating the definition of an MDP;
this makes the use of RL in portfolio optimization reasonable
by ensuring that the fundamental theorem underpinning the

RL framework holds. By interacting with the simulated stock
exchange, the agent is able to explore a greater range of
previously unforeseen market situations; the training data
set is also substantially more diverse. To the best of our
knowledge, this is the first study to use a generative model to
reconstruct a financial market in a simulation for RL-based
portfolio management with the purpose of improving the
generalization ability of the agent. The major contributions
of this study are listed as follows:

• A proposed generative model, called limit order book
(LOB)-GAN, models the distribution that underlies the
historical limit order. LOB-GAN is used to simulate the
ordering behavior of the overall investors in the market.

• A limit-order transform module is introduced to allow
the LOB-GAN to synthesize the relative order quantity
instead of directly predicting the order price and corre-
sponding quantity.

• A synthetic stock exchange, called Virtual Market,
is constructed by having the generator within the
LOB-GAN cooperate with a security matching system.
Virtual Market can render a simulated market reaction
based on the agent’s trading decision.

• A novel RL-based portfolio optimization learning
framework that leverages Virtual Market is proposed.
This framework ensures that the definition of an MDP
is never violated by enabling a closer interrelationship
between the action and transition state.

The remaining parts of the paper are organized as fol-
lows: Section II reviews the literature; Section III states the
hypotheses and defines the problem; Section IV introduces
the proposed market behavior simulator, the construction of
Virtual Market, and other generalization strategies; Section V
introduces the proposed RL-based portfolio optimization
framework; Section VI presents the experimental results; and
Section VII concludes the paper and discusses future research
directions.

II. LITERATURE REVIEW
This section reviews three bodies of literature: that on lever-
aging RL in finance, on RL generalization techniques, and on
artificial market simulation.

A. REINFORCEMENT LEARNING IN FINANCE
RL has been widely applied in several domains of finance,
such as market making and forex trading, and it is especially
important in portfolio management. In this section, we focus
on reviewing the literature on RL-based portfolio manage-
ment. Empirically, portfolio management can be separated
into three major steps: portfolio selection, weighting, and
rebalancing. In portfolio selection, the focus is on selecting
portfolio assets; in portfolio weighting, the process decides
capital assignment; and, in portfolio rebalancing, a deci-
sion is made on whether and when to change the portfo-
lio weight. Sbruzzi et al. [12] focus on portfolio selection
and use an RL framework in which an agent for asset pool
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selection optimizes the selection strategy. Wang et al. [4]
bridged the processes of portfolio selection and weighting
by using their proposed AlphaStock method. Specifically,
the authors formulated the Specialized Cross-Asset Atten-
tion Network (CAAN) mechanism in AlphaStock to capture
the interrelationship within portfolio assets. Jiang et al. [7]
focused on portfolio weighting and proposed their Ensemble
of Identical Independent Evaluators (EIIE) topology. Their
portfolio selection strategy straightforwardly uses the trading
volume as the basis, and transaction cost (a critical issue in
the execution of algorithmic trading strategies) is accounted
for in their learning framework. The authors examined sev-
eral time-series feature extraction models using their EIIE
topology. Shi et al. [5] extended the EIIE topology in their
Ensemble of Identical Independent Inception (EIII) topology,
which leverages an inception network to simultaneously con-
sider different scales of price movement. Their experimental
results demonstrated that the EIII topology yields better port-
folio performance than the original EIIE does. Ye et al. [8]
also extended the EIIE topology in their State-Augmented
RL (SARL) topology, in which cooperation is introduced
into a heterogeneous data set to help the agent make bet-
ter predictions. Tang et al. [13] also emphasize combining
multiple sources, where traditional indicators and the module
of a pretrained GAN each constitute a distinct stream of
data. Li et al. [14] applied a novel RL algorithm that uti-
lizes stacked denoising autoencoders (SDAEs) to construct an
agent with the aim of obtaining a robust state representation.
Despite these advances, research on RL-based portfolio opti-
mization hasmostly used historical data to optimize the agent,
which potentially results in an agent with poor generalization
ability.

B. GENERALIZATION IN REINFORCEMENT LEARNING
The generalization problem in RL has been studied in var-
ious domains. Whiteson et al. [15] divided the generaliza-
tion problem into within-task and out-of-task variants. In the
within-task variant, generalization ability is satisfactory if the
agent that was optimized on training trajectories performs
well on testing trajectories from the same environment. In the
out-of-task variant, generalization ability is satisfactory when
the agent performs well in an environment that differs from
the training environment. The methods that have been used to
address the generalization problem in RL can be divided into
five categories.

• Regularization Approach: Several techniques, such as
dropout and L2 regularization, are applied to prevent the
agent from overfitting in the limited state space [16].
Igl et al. [17] propose selective noise injection (SNI),
which preserves the regularizing effect but mitigates the
side effect on the gradient for greater adaptability to RL.

• Adversarial Training: Different settings of the pertur-
bation generation strategy are introduced in RL-based
trading [9], [11]. The injected noise can 1) help the
agent to learn how to furnish a robust representation and
2) diversify the training environment.

• Data Augmentation: To make the data more diverse,
a transformation is applied on the state [18], [19].

• Transfer Learning: By focusing on helping the agent
generalize to a new task, it is widely used for domain
adaption [20]. Gamrian and Goldberg [21] further uti-
lize GAN to map visual observations from the target to
source domains.

• Meta-Learning:The agent learns ametapolicy that helps
it quickly adapt to other domains [22]. Wang et al. [23]
also focus on the problem of making the agent rapidly
adapt to new tasks; they do so by extending a recurrent
network to support meta-learning in RL.

In this study, we focus on the within-task generalization
ability of the agent, where the goal of the agent is to learn
a general trading strategy that yields comparable portfolio
performance between the testing and training periods. This
goal is similar to that in [9], [11]. However, similar to
research on RL in finance, research on improving general-
ization in finance has been based on historical price–based
training environments. Therefore, the aforementioned prob-
lems of using historical data remain unsolved in the
literature.

C. ARTIFICIAL MARKET SIMULATION
Researchers have long attempted to model investor behav-
ior. Pioneering studies have focused on the potential of the
efficient market hypothesis (EMH) [24], which holds that
people are always rational enough to make the best decision.
However, other researchers have found that people do make
irrational decisions, such as under the herd effect [25]. Behav-
ioral economics was thus proposed to model such irrational-
ity. Recent studies have focused on behavioral prediction.
According to Lovric et al. [26], investment decisions can be
modeled as an outcome of investor–environment interactions.
Studies have also proposed several interdependent variables,
such as time preference, risk attitude, and personality, that
influence the investment process. Furthermore, in the frame-
work proposed by Shantha et al. [27], investors learn from
their trading experiences (individual learning) or by imitating
others (social learning).

Artificial market simulation enables researchers to con-
struct situations that cannot be captured in historical data.
Such simulations are thus widely used to analyze various
issues in finance, such as short selling regulations [28],
transaction taxes [29], and the speed of order matching
systems [30]. Agent-based simulation, which incorporates
multiple agents to reproduce stylized facts in a real mar-
ket, is the most common technique in artificial market sim-
ulation. The simulation process comprises several parts.
First, the intelligence levels, utility function, and learning
ability of the involved agents are defined [31]. Second,
the asset price is determined [32]. Third, the type and num-
ber of traded assets involved in artificial market construc-
tion are declared [33]. Fourth, the learning process, which
is highly related to the agent’s level of intelligence, is
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determined [34], [35]. Fifth, and finally, the simulated
market is calibrated and validated. Specifically, calibration is
the selection of parameters that make the simulated market
behave closest to a real market, and validation pertains to
whether the simulated market behaves as a real market does.
In addition to using an agent-based model to construct a
simulated market, Li et al. [36] proposed Stock-GAN to
produce limit-order data at high fidelity to support market
design and analysis in continuous trading systems. In this
study, we utilized a generative model to construct a financial
market. We not only reconstructed a financial market with a
realistic pricing mechanism but also combined the simulated
market with the RL trading agent. By synthesizing the sim-
ulation of markets with the RL-based portfolio optimization
framework, we overcame the aforementioned drawbacks of
using historical price data for agent optimization.

III. PRELIMINARIES
This section states the hypotheses, discusses this study’s
limitations, and formulates the problem of applying RL in
portfolio management.

A. HYPOTHESES
We propose a generative model to simulate the market’s
reaction to the agent’s action. The following assumptions
must therefore be made:

• Because the simulated financial market is responsible
for generating a reasonable reaction to the agent’s action,
the agent is assumed to have the ability to influence the
behavior of other investors in the market.

• The ordering behavior of investors sufficiently reflects
the influence of exogenous variables on the financial
market. Therefore, we only modeled market order-
ing behavior when synthesizing the reasonable market
reaction.

This study has another limitation in addition to these
assumptions. Because we still lack a systematic approach
for verifying the authenticity of the generated limit order,
the evaluation of portfolio performance in a simulated finan-
cial market may expose the agent to the risk of unrealistic
estimations. Thus, we used historical price data to evaluate
generalization ability.

B. PROBLEM DEFINITION
Portfolio management is a decision-making process in
which funds are continually reallocated to different assets.
The process of portfolio strategy making can be formu-
lated as an MDP. The MDP is represented as a tuple <
S,A,P,R, p0, γ >, where S is the state space, A the
action space, P the state transition function, R the reward
function, p0 the probability distribution of the initial state,
and γ ∈ [0, 1) the reward discount factor. In the case of
portfolio management, the agent aims to find an optimal
policy π (a | s), where the action a ∈ A is optimal with
respect to state s ∈ S. In this optimal policy, the expected

TABLE 1. Annotation table.

return is maximized:

π∗ = argmaxE

[
∞∑
t=0

γ tR(st , at )

]
, (1)

where s0 ∼ p0, at ∼ π (· | st ), and st+1 ∼ P(· | st , at ). The
RL-based portfolio management framework mainly contains
an environment and an agent. The mapping from MDP to the
learning framework is described as follows.

1) ENVIRONMENT
The design of the environment comprises the following ele-
ments: the (1) state st ∈ S, which contains the trading status
of the agent or a period of the environment-provided price
sequence; (2) state Transition P(· | st , at ), which renders
the next state st+1 given a previous state and action; and
(3) reward functionR(st , at ), which is the utility function that
defines the portfolio performance of the agent and serves as
the objective function for the agent to maximize.

2) AGENT
The agent is a portfolio manager that decides the portfo-
lio weight for each asset to maximize the final reward.
The design of the agent includes the following two elements.
The first is the action at ∈ A; the action corresponds to the
portfolio weight, which indicates the assignment of capital.
To fulfill the weighting requirement, the action space is set
to be continuous. The second is the policy at ∼ π (· | st );
the optimal policy is one in which the expected reward is
maximized for a given observation st .

The important annotations we use in our framework could
be found in Table 1.

IV. VIRTUAL MARKET DESIGN
In this section, a limit-order transform module is introduced.
This module transforms the limit-order stream into a rela-
tive representation, and the market behavior simulator sub-
sequently uses the relative limit-order stream as a condition
to generate the limit-order quantity. The market behavior
simulator is realized through a naive supervised learning
model and the proposed LOB-GAN. Virtual Market was
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Algorithm 1 Limit-Order Transform Module
Require: Vector shifting tool Shift(vector, unit)
Require: Anchor time step t
Input: Bid limit-order stream Obid = {Obidi }

T
i=0, ask

limit-order streamOask = {Oaski }
T
i=0, historical strike price

Ostk = {Ostki }
T
i=0

1: function Trans (Obid ,Oask ,Ostk )
2: for i = 0, . . . ,T do
3: unit ← Get price level between Ostki and Ostkt
4: Obidi ← Shift(Obidi , unit)
5: Oaski ← Shift(Oaski , unit)

6: return Obid ,Oask

constructed by combining the pretraining market behavior
simulator with a realistic security matching system. Each
component is detailed in turn in the following subsections.

A. LIMIT-ORDER TRANSFORM MODULE
Because the goal of amarket behavior simulator is to generate
the relative limit-order quantity, the limit-order transform
module is required to transform the limit-order stream into a
relative representation. The relative representation is obtained
by calculating the price level between a time step and the
user-defined anchor time step. The limit-order transform
module operates independently for each stock; this is because
the minimum tick increment of price quotes differs with the
price scale and between each financial product. Algorithm 1
formally defines the steps constituting the limit-order trans-
form module. Specifically, the vector shifting tool Shift is
used to shift the element in vector by a given offset index
unit . The sequential T time steps of a limit-order quantity
exceeding ±10 of the price level are denoted as {Obidi }

T
i=0

and {Oaski }
T
i=0 on the bid and ask sides, respectively. The

sequential T time step of a historical strike price is denoted
as {Ostki }

T
i=0. The historical strike price at a selected anchor

time step t is leveraged as the base price of a current round
of a transform operation. At each time step over period T ,
the offset index unit is calculated per the minimum tick
increment rule. The whole process should be executed each
time before the feeding limit-order streams into the market
behavior simulator as a conditional input. By executing the
limit-order transform procedure, the sequence of a bid/ask
limit-order stream can be transformed into another form, and
it is interpreted as the relative representation based on the
anchor strike price Ostkt . The limit-order transform module
is a crucial component of the market behavior simulator that
allows the simulator to model the relative limit-order quantity
distribution. In the subsequent subsection, the cooperating
transformmodule andmarket behavior simulator are detailed.

B. MARKET BEHAVIOR SIMULATOR
Because the stock market is not always efficient, it is possible
to model its market behavior to earn a profit. The market
behavior simulator is used to synthesize the limit order and

Algorithm 2Market Behavior Model (Supervised Learning)
Require: Learning rate α, window size m, predict window
size n, batch size d .
Require: Initial model µ parameters ϕ.
Require: Limit-order transform module Trans

1: for number of training steps do
2: Sample a mini-batch of limit-order sequence x
3: {Obid ,Oask ,Ostk ,Otime} ← x
4: {Õbid , Õask} ← Trans(Obid ,Oask ,Ostk )
5: x ← {Õbid , Õask ,Ostk ,Otime}
6: Get target y← x t−m+1t=t and condition x̂ ← x t+nt=t
7: Update µ parameter ϕ to minimize:

MSE = 1
d

∑d
i=1(µ(x̂)− y)

2

ϕ← ϕ − α∇MSE(µ)

can be realized through two distinct approaches: naive super-
vised learning and GAN. The inputs are the same for each
approach: the bid order log, ask order log, and strike price.
Amodel without historical strike prices can successfully gen-
erate the bid-ask order, but investors typically check the stock
price if they wish to long or short the stock. To imitate the
condition, we add the historical strike price into our model.
The models of the market behavior simulator for the two
approaches are introduced as follows.

1) NAIVE SUPERVISED LEARNING
Under the naive supervised learning setting, the goal of the
market behavior simulator is to generate limit orders that are
most similar to the historical limit order in the data. The
model must be pretrained per Algorithm 2, which proceeds
as follows. First, sample a minibatch x of a limit order
stream from the historical limit-order data; then, convert each
stream individually into its relative representation using the
limit-order transform module Trans(·). The condition x̂ and
prediction target y can be retrieved from x. The model µ uses
the previous m time step from t within the limit-order stream
as the input feature and predicts the relative limit-order quan-
tity distribution of the next n time step. The generative model
µ is set to minimize the difference between the generated
limit-order quantity µ(x̂) and the target limit-order quantity
y in terms of the mean squared error. By using naive super-
vised learning to construct the market behavior simulator,
the generative model emphasizes the direct minimization of
the difference from historical data. Therefore, the closer the
fit to the historical data, the better the generativemodel is. The
diversity of the generated limit order may be reduced when
the generative model aims at merely fitting to historical data.
Therefore, we introduce another market behavior simulator
that is derived from GAN.

2) LOB-GAN
We propose the LOB-GAN as an alternative approach to
generating a more diverse limit order. The idea underly-
ing LOB-GAN is similar to that underlying the Stock-GAN
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FIGURE 1. LOB-GAN architecture.

proposed by Li et al. [36]. Stock-GAN aims to generate
the order arrival time, order price, order quantity, and order
type of the limit order at the next time step. However,
in Stock-GAN, the generator is forced to generate a large
quantity of heterogeneous information, and the rationality of
doing so is debatable, especially for price prediction tasks.
Therefore, the LOB-GAN improves the limit-order genera-
tion task by introducing the limit-order transform module,
which eliminates the challenge faced in price prediction tasks.
Our proposed LOB-GAN focuses on generating a relative
limit-order quantity distribution instead of directly generat-
ing the limit-order price and corresponding quantity. The
LOB-GAN architecture is shown in Fig. 1.
The LOB-GAN framework follows a vanilla GAN set-

ting, which comprises a generator G and discriminator D.
To model the historical dependence within a sequential
limit-order stream, a Conditional Generative Adversarial Net
(CGAN) [37] is then introduced into the structure of the
LOB-GAN. The Wasserstein divergence and several opti-
mization techniques used in WGAN [38] are also applied
to the LOB-GAN. The generator of LOB-GAN is respon-
sible for producing a certain period in which the relative
price level is +10 and −10 for the bid and ask limit order,
respectively. The generator utilizes the previous m steps of
the limit-order stream as an auxiliary condition to generate
the relative limit-order quantity for the following n time steps.
The target of the generator is to fool the discriminator by
minimizing

−Ey∼pdata,z∼ppriorD(G(z | Trans(y)) | Trans(y)), (2)

where pdata is the distribution of the market behavior under-
lying the historical limit order; pprior is the Gaussian dis-
tribution that is used to sample random noise z as one of
many inputs for the generator; y comprises time interval infor-
mation and limit-order stream data {Õbidi , Õaski ,Ostki }

m
i=1,

indexed sequentially by order time; and Trans(·) is the
limit-order transform module. The terms Õbid and Õask

represent the limit-order stream after the transformation

process. The time interval information is incorporated as a
condition because the ordering behaviors of investors vary
between time intervals. By minimizing Equation 2, reinforce-
ment is used to help the generator learn how to execute a
generative process that can produce a realistic limit-order
stream. With regard to the network structure, for the gener-
ator, the inputs are timesteps, asset prices, and order logs.
We use two convolutional layers for learning the embed-
ding of the bid–ask conditions. Subsequently, the condition
embedding and all inputs are concatenated, and a five-layer
fully connected neural network is passed. Finally, the gener-
ator outputs the bid–ask state at the next timestamp.

By contrast, the mission of the discriminator is to distin-
guish the generated limit order from the real one by the given
previous m steps of the limit-order stream as the condition.
The discriminator can be interpreted as a type of scoring
function that aims to give a higher score to a real sample
and a lower score to a fake sample. The objective of the
discriminator is to maximize

Ex,y∼pdataD(x | Trans(y))

−Ey∼pdata,z∼ppriorD(G(z | Trans(y)) | Trans(y)), (3)

where the term to the left of the minus sign aims to give
a higher score to the real sample, and the term to the right
of the minus sign aims to minimize the score given to the
generated sample. Crucially, the sampled limit order x must
be time-dependent in relation to condition y. The discrimi-
nator also takes timesteps, asset prices, and the order log as
its inputs, which are processed by three convolutional layers
and four fully connected layers that subsequently output the
sample’s probability of validity.

The entire LOB-GAN learning process is summarized in
Algorithm 3. The generator and discriminator are enhanced
iteratively against each other. The adversarial learning pro-
cess listed in Algorithm 3 is the pretraining phase of the
LOB-GAN. Under the LOB-GAN setting, the target of the
generative model is different from that under naive super-
vised learning. Instead of fitting to historical limit-order
data, the generative model within LOB-GAN aims to model
the discriminator-made distribution underlying the historical
limit-order data from the critic.

From line[8] to line[12], the generator is fixed and the
discriminator is first optimized through a minibatch d of
the sequential historical limit-order stream. Each limit-order
sequence is sent into the transform module Trans to indi-
vidually obtain relative representations. The condition y is
retrieved from the transformed limit-order stream and fed into
the generator to generate a fake sample. By using the true
sample, generated sample, and conditional input, the discrim-
inator learns to justify a given sample through Equation 3.
Subsequently, the discriminator is fixed, and the generator is
optimized per line[14] to line[18]. A minibatch of limit-order
streams is resampled, and input preprocessing under similar
conditions is conducted. The generator is optimized with
Equation 2 to defeat the current discriminator.
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Algorithm 3 LOB-GAN Pre-Training Process
Require: Learning rate α, window size m, generate step n,
batch size d , number of generator steps per discriminator
iteration k , limit-order transform module Trans.
Require: Initial discriminator D parameters ω. Initial gen-
erator G parameters θ .

1: function TRANSLIMITORDER(y)
2: for j = 1, . . . , d do
3: {Obid ,Oask ,Ostk ,Otime} ← y(j)

4: {Õbid , Õask} ← Trans(Obid ,Oask ,Ostk )
5: y(j)← {Õbid , Õask ,Ostk ,Otime}
6: return y
7: for number of training steps do
8: Sample {x(j)}dj=1 ∼ pdata a batch of real data.
9: Sample {z(j)}dj=1 ∼ pprior a batch of noise.
10: Get condition {y(j)}dj=1 from {x

(j)
}
d
j=1

11: {y(j)}dj=1← TRANSLIMITORDER({y(j)}dj=1)
12: Update D parameter ω to maximize:

V =
∑

iD(x
(i)
| y(i))−

∑
i D(G(z

(i)
| y(i)) | y(i))

ω← ω + α∇V (ω)
13: for k steps do
14: Sample {x(j)}dj=1 ∼ pdata a batch of real data.
15: Sample {z(j)}dj=1 ∼ pprior a batch of noise.
16: Get condition {y(j)}dj=1 from {x

(j)
}
d
j=1

17: {y(j)}dj=1← TRANSLIMITORDER({y(j)}dj=1)
18: Update G parameter θ to minimize:

V = −
∑

iD(G(z
(i)
| y(i)) | y(i))

θ ← θ − α∇V (θ )

The generated limit order can preserve greater diversity
than the naive supervised learning model can. The generative
model retrieved from awell-trained naive supervised learning
model or LOB-GAN is then leveraged as a market behavior
simulator to construct Virtual Market. The market behavior
simulator is a critical component that allows Virtual Market
to synthesize the market’s reaction to the agent’s trading
decision. The generative process and workflow of Virtual
Market are introduced in the following subsection.

C. RECONSTRUCTION OF VIRTUAL MARKET
Virtual Market is a general purpose platform that can be
leveraged either as a training environment for an RL-based
portfolio agent or as a backtest set for investors or a financial
model. Furthermore, it can be applied to simulate any type of
financial market by leveraging the underlying security match-
ing system and by using historical limit-order data to pretrain
the market behavior simulator. In our study, the reconstruc-
tion target of Virtual Market was the Taiwan Stock Exchange
(TWSE). Therefore, the historical limit-order data for pre-
training the market behavior simulator were obtained from
the TWSE. In the year of the historical limit-order data
utilized in our study, the TWSE implemented a call auction
mechanism at a 5 s frequency. Consequently, an identical

FIGURE 2. Virtual market architecture.

security matching system was implemented in Virtual Mar-
ket. When the call auction is executed, the price that can
satisfy the maximum volume in an LOB is selected as the
strike price. The LOB is a crucial component within Virtual
Market that is used to maintain and record the current active
limit order on the market. A strike price database is also
needed to store the matched strike price on Virtual Market
at each time step.

The workflow within each component in Virtual Market is
illustrated in Fig. 2. The interaction procedure is described
as follows. First, the historical LOB is used to initialize
the synthesized LOB for the opening session (8:00 AM to
9:00 AM). Due to a trading rule stipulated by the TWSE,
the limit order during the opening session is stored and
matched only at the initiation of the first matching. After the
initialization phase, the market behavior simulator iteratively
retrieves the condition from the synthesized LOB to predict
the relative limit-order quantity at the next time step. Regard-
less of when the agent places an order, the generative process
is always executed continuously and sequentially. After the
agent places an order, the order merges into the synthesized
LOB as part of the condition for the next round of market
behavior prediction. The matching system automatically exe-
cutes security matching on the synthesized LOB every 5 s to
determine the strike price that can satisfy the greatest number
of order requirements. The strike price at each time step is
stored in the synthesized price database and provides amarket
observation to the agent.

Virtual Market provides a more realistic training envi-
ronment for RL-based portfolio agents by simulating how
the market reacts to the agent’s trading decision. Therefore,
the agent’s relationship with Virtual Market is an interactive
one in which one influences the other. In contrast to the
unchangeable price fluctuations constructed using historical
price data, price fluctuations in Virtual Market are derived
from the interplay between the agent and simulated mar-
ket. Therefore, instead of merely (over)fitting to historical
price data, which potentially yields poor generalizations in
the testing period, the replaying agent in Virtual Market
can apply their trading knowledge to novel contexts during
optimization.

D. OTHER GENERALIZATION STRATEGIES
In addition to proposing Virtual Market, we introduce two
generalization strategies, borrowing from previous studies on
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generalization in RL trading. The first strategy is adversarial
training, which has been utilized in RL applications to make
the agent more robust. Liang et al. [9] implemented adversar-
ial training by injecting random noise into price sequences to
improve the agent’s generalization ability. The authors imple-
mented a similar method in a historical price–based environ-
ment during agent training. The price sequence obtained from
the training environment at each time step is denoted as Xt .
Therefore, adversarial training can be formulated as

ε = N (0, 0.002)

Xt = (1+ ε) · Xt , (4)

where ε can be treated as a random perturbation on the price
sequence and N is the Gaussian distribution. The injected
noise is constrained to 0.2% of the price scale by setting the
Gaussian distribution to have a mean of 0 and a standard devi-
ation of 0.002. As is well known, the agent can achieve better
generalization ability if it can resist small-scale fluctuations
on the input price sequence. The adversarial training makes
the training environment more random by adding random
perturbation. Another approach to diversifying the training
environment is using a GARCH (p, q) model to augment the
price sequence. GARCH (p, q) is an autoregressive processe
that depends on past variance to predict future variance,
where p is the number of lag variances and q is the number of
lag residual errors; the model can be described as

ut = σtεt

σ 2
t = ω +

p∑
i=1

αiu2t−i +
q∑
j=1

βjσ
2
t−j, (5)

where εt
iid
∼ N (0, 1), ω > 0, αi ≥ 0, βj ≥ 0, and αi + βj <

1. The parameter is estimated using maximum likelihood
estimation; the GARCH process is detailed in Bollerslev [39].
In this study, the simplest variant GARCH (1, 1) was used to
forecast future variance with the purpose of synthesizing a
series of price sequences as input. Users of this method can
consider injecting perturbation on the price data to increase
data diversity.

V. PROPOSED RL-BASED PORTFOLIO FRAMEWORK
Fig. 3 summarizes the proposed RL-based portfolio frame-
work. The framework contains a training environment and
agent. Virtual Market instead of historical price data (as used
in traditional RL trading) is utilized as a training environment.
The agent is an extension of EIIE [7] topology, which is
widely discussed in RL-based portfolio research. However,
Virtual Market is applied in a learning framework that differs
from the original EIIE topology. Thus, the details of policy
state space, action space, and reward function are introduced
to describe the optimization process.

A. POLICY STATE SPACE DESIGN
The state can be divided into two partitions. The first is
the market state (denoted Xt ), which is the price sequence

obtained from the environment. The second is the self state
(denoted Ut ), which is used to represent the status of the
agent. Because the properties of these two states are het-
erogeneous, the agent handles these pieces of information
individually. The state observed by the agent from Virtual
Market at time step t is written as st = (Xt ,Ut ).

The price sequence provided by Virtual Market consti-
tutes a matching result from the security matching system.
Therefore, the original time frequency is on a scale of 5 s.
To manifest the price fluctuation, the raw strike price within
a given period is aggregated every 12 units and converted
into an open-high-low-close price (o, h, l, c) format in the
minute scale. Within every 12 units of a sequential strike
price, the first price represents the open price vo, the highest
price represents the high price vh, the lowest price represents
the low price vl , and the strike price at the last time step
represents the close price vc. In cooperation with the afore-
mentioned step of price formatting, the market state at each
time step Xt comprises a price movement vector {V f

t }f ∈{h,l,c}
in a predefined window size n and formulated as

V f
t =

{[
vft−n+1
vft

,
vft−n+2
vft

, . . . ,
vft−1
vft

,1

]}
f ∈{h,l,c}

, (6)

where vf ∈ {h, l, c} is the high, low, and close price, and
1 = [1, 1, . . . , 1]> has a vector length that varies with the
amount of assets for a given portfolio. In the Virtual Market
setting, we only considered the high, low, and close price
movement vector. Thus, the market state can be formulated
more precisely as Xt =

[
V h
t ,V

l
t ,V

c
t
]
.

The self state is designed to make agent decision-making
more realistic by having the agent evaluate its own situation.
To prevent the agent from changing their portfolio strategy
too drastically and too often, the portfolio weight at the pre-
vious time step is given as an input observation for the agent.
Therefore, the self state can be formulated as Ut = wt−1,
where wt is the weight of each asset within a portfolio that is
decided by the agent at the previous time step.

B. CONTINUOUS PORTFOLIO ACTION
At each time step t , the agent takes action at , which is syn-
onymous with the portfolio weight wt . The portfolio action is
represented as

wt = [w0,t , . . . ,wq,t ]>

s.t.
q∑
i=0

wi,t = 1, ∀t, (7)

where wi,t (1 ≤ i ≤ q) is the weight of the ith asset at
time step t , and q is the amount of assets within the portfo-
lio. The first element in the portfolio weight w0,t indicates
the weight on cash. The agent always starts trading with
w0 = [1, 0, . . . , 0]>; this means that all cash is initially
in the agent’s hand. Because the portfolio weight indicates
the assignment of capital, it has a constraint that requires
the sum of the weights to be 1 at each time step. To fulfill
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FIGURE 3. Structure of the proposed RL-based portfolio framework.

the hard constraint on the portfolio weight, Softmax nor-
malization is applied. While interacting with Virtual Mar-
ket, the agent must specify the order quantity and price.
Consequently, the portfolio weight at each time step t is
transformed into Oagentt based on the portfolio value pt . The
term pt can be obtained from further inference based on the
prior weight wt−1 and the price relative vector yt . The term
yt can be interpreted as the price return that indicates the
relative movement of price; if price increases and decreases
from t − 1 to t , then the fraction is greater and less than 1,
respectively.

yt =
vct
vct−1
=

[
1,

vc1,t
vc1,t−1

, . . . ,
vcq,t
vcq,t−1

]>
(8)

However, due to the price movement between time steps,
the portfolio weight at a previous time step wt−1 evolves into
w′t as follows:

w′t =
yt � wt−1

q∑
i=1

(
yi,t · wi,t−1

) , (9)

where� is the element-wise product operation. According to
Equation (9), the portfolio value is denoted as pt = pt−1yt ·
w′t . Based on pt , the order placed by agent at time step t is
formulated as

Oagentt =

{
C · pt · (wi,t − w′i,t )

vorderi,t

}q
i=1

(10)

where C is the cash held initially, q is the number of portfolio
assets, and vorderi,t is the limit-up price and limit-down price
for the ith asset at time step t . Therefore, the order placed
by the agent is a type of market order. The aforementioned
conversion procedure is executed at each time step when the
agent interacts with the environment.

C. COST-AWARE REWARD FUNCTION
To evaluate the portfolio switching cost at time step t , the pre-
vious weight wt−1 must be rebalanced. Thus, at the beginning
of time step t , the portfolio weight w′t is reestimated using
Equation 9. After the portfolio weight at the beginning of time
step t is retrieved, the portfolio switching remainder factorψt
can be formulated as

ψt = 1−

(
c

q∑
i=1

|w′i,t − wt |

)
, (11)

where c is the transaction cost and q is the number of portfolio
assets. The transaction cost is triggered only by changing the
holding position. Consequently, the reward rt can be defined
as

rt = log
pt
pt−1

= log(ψtyt · wt−1). (12)

The final goal of the agent is to maximize the final total
reward; in doing so, the agent identifies the long-term port-
folio control strategy that achieves the optimal trade-off
between revenue and cost.
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D. POLICY OPTIMIZATION
Suppose that the policy of the agent (denoted πφ) is parame-
terized by φ. The policy πφ is responsible for determining a
portfolio strategy wt according to observation st . Therefore,
construction of a portfolio strategy is at = πφ(st ). The
output at is considered the optimal action for a given state.
The agent is optimized through constant interaction with
Virtual Market. Throughout the process, the target of the
agent is to maximize the final reward R, which is expressed
as R = 1

T

∑T
i=1 rt where T is the length of an episode.

Therefore, the objective function of πφ can be formulated
as

J (πφ) = E

[
p0

T∏
t=1

r(st , πφ(st ))

]
, (13)

where p0 is the initial portfolio value, which is always ini-
tialized as 1, and r is the reward function. The objective
function highlights the final goal of policy πφ , which is set
toward the reward function. Because the goal of a policy is
to maximize total reward, the optimal policy is formulated
as

π∗φ = argmax
φ

E
[
J (πφ)

]
= argmax

φ

Eτ∼πφ (τ )

[
T∑
t=1

log(ψtyt · wt−1)

]
. (14)

The criterion embedded in the formulation of (14) is derived
from (12). The optimal policy is obtained based on the infer-
ence that the policy always selects the most advantageous
action for any state st . After the optimization criterion is
established, the gradient ascent algorithm is applied for the
agent to iteratively update the model parameters by using the
following equation:

∇φJ (πφ) =
1
N

N∑
n=1

T∑
t=1

R(τ n)∇φ logπφ(st , at ), (15)

where τ is the number of trajectories, and R(τ n) is the total
reward for trajectory n. Using the equation, the agent calcu-
lates the gradient for each update by sampling N trajectories.
The gradient vector is then utilized to update policy parame-
ters φ per Equation 16, where η is the learning rate.

φ← φ + η∇φJ (πφ). (16)

The fundamental elements within the RL-based portfolio
algorithm are fully introduced. The details of the interaction
between each component in Virtual Market and the learn-
ing framework of our RL-based portfolio agent are both
described in Algorithm 4. From line[4] to line[10], the policy
retrieves state st from Virtual Market and decides a portfolio
weight at accordingly. The portfolio weight for each asset is
then transformed into an order quantity Oagentt per (10) as
the new arrival order made by the agent. Adding the agent
order into Virtual Market and using the market behavior
simulator G to generate the market order at the next time

Algorithm 4 Proposed RL-Based Portfolio Framework
Require: Learning rate η, asset number q, epoch M , tra-
jectory length T , update frequency N , transition buffer D
Require: Initial policy π parameter φ
Require: Pretrained LOB-GAN generator G
Require: Stock matching systemMatch, limit-order trans-
form module Trans
Require: Initial Virtual Market LOB B̃, order record Õ,
price database Q̃ with historical data

1: Initial action a0 = { 1q ,
1
q , . . . ,

1
q }

2: for epoch = 1, . . . ,M do
3: for t = 1, . . . ,T do
4: Get market state Xt from Q̃t
5: Observe state st = (Xt , at−1)
6: Select action at = πφ(st ) based on current policy
7: Transform at into agent order Oagentt
8: Merge Oagentt into B̃ and update to Õt
9: Get strike price vt+1← Match(B̃)
10: Format price {V f

t+1}f ∈{h,l,c}← OHLC(vt+1)
11: Store {V f

t+1}f ∈{h,l,c} back to Q̃t+1

12: Sample z from N (0, 1) and yt from Õt
13: Predict Omarkett+1 ← G(z | Trans(yt ))
14: Merge Omarkett+1 into B̃ and update to Õt+1
15: Observe reward rt
16: Store transition (st , at , rt ) in D
17: if epoch mod N = 0 then
18: Calculate ∇φJ (πφ) by Equation 15
19: Update policy: φ← φ + η∇φJ (πφ)
20: Empty transition buffer D

step is realized at line[11] to line[14]. The matching process
is executed over the market current active order B̃ to obtain
the strike price. The strike price is then stored back into the
price database Q̃. The agent andmarket iteratively affect each
other through this generative process. Furthermore, the agent
can obtain a reasonable market reaction based on its trading
decision. The agent is optimized by interacting with Virtual
Market, as shown in line[17] to line[20]. By using Virtual
Market, the agent can influence the state transition in the
training environment; such influence cannot be simulated
using historical data alone. The proposed learning framework
can help the agent apply their trading knowledge to novel
contexts and tighten the relationship between the transition
state and agent’s action.

VI. EXPERIMENTAL RESULTS
Three experiments were conducted. The first demonstrated
that Virtual Market improved the optimization of the
RL-based portfolio agent, the second demonstrated that our
generalization strategy outperforms its counterparts, and the
third demonstrated that our strategy yields optimal portfolio
performance among its counterparts. The subsequent subsec-
tions first describe the experimental setting before describing
each experiment in turn.
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TABLE 2. Hyperparameters of the proposed framework.

A. EXPERIMENTAL SETTING
In our experiments, we usedminute-level price data and limit-
order-log data from the TWSE for the period of January to
December 2016. The minute-level price data were used to
construct a benchmark environment against which Virtual
Market was compared. An environment constructed based on
historical data was used as a static, noninteractive simulator
for the agent, and the limit-order-log data were used to pre-
train our proposed market behavior simulator.

The limit-order data must go through a two-phase pro-
cedure. In the first phase, data aggregation is executed by
aggregating limit-order quantities with the same order price
every 5 s. The aggregated order quantity can be considered
an ordering expectation from overall investors. In the second
phase, data reduction is applied to retain orders having a±10
price difference relative to the strike price at the previous
time step; doing so can not only appreciably reduce noise
considerably within the limit order but also help the model
learn a market ordering behavior that has greater generality.
The limit orders obtained after this two-phase procedure were
used to pretrain the market behavior simulator.

Because the price fluctuation of each asset varied within
time periods, a rolling test was applied in the experiments
aimed at verifying portfolio performance. Each rolling test set
comprised data from 3months of training and 1month of test-
ing. For example, the market behavior simulator was trained
on limit-order data for the January–March 2016 period, and
the well-trained generative model was used to construct Vir-
tual Market as the training environment for the agent. Agent
performance was then evaluated using April 2016 data. For
the subsequent round of rolling tests, the training and testing
periods shifted forward by one month. Under this rolling test
setup, the data utilized in our experiment can be divided into
nine partitions to cross-check the generalization ability of
each portfolio strategy.

Our LOB-GAN use 2 convolutional and then 5 fully-
connected layers as generator; for the discriminator, we use
3 convolutional and 4 fully-connected layers.

The hyperparameter settings of our learning framework
are presented in Table 2. The LOB-GAN was set to use the
previous 12 time steps of the limit order as the condition
to generate the relative order quantity distribution for the
subsequent time step. For the RL trading framework,

TABLE 3. Portfolio assets within each portfolio combination.

the agent was set to simultaneously manipulate 11 assets
and incur a 0.25% transaction cost when switching between
portfolio strategies. The trading frequency is defined as the
time interval between two portfolio decisions. The cash held
initially is used to represent the capital assigned to the agent.
An agent with more capital can place an order for a greater
quantity, which perturbs the market more greatly. The win-
dow size represents the length of the price sequence obtained
by the agent from the environment at each time step. The gen-
erative step number indicates the generative process between
the agent and Virtual Market within an episode.

In our study, the agent was set to be responsible for only
portfolio weighting. Therefore, we applied 3 distinct heuristic
asset selection rules to select 11 assets from the TWSE. The
assets of each portfolio combination are listed in Table 3. The
selection rule for each portfolio combination was as follows:
• Considering that volume is a critical metric for evaluat-
ing market liquidity, port #1 was constructed by select-
ing the 11 highest-volume assets on the 2016 TWSE.

• Port #2 first restricts the asset pool within other
firms in the electronics industry and then selects the
11 highest-volume assets within the asset pool.

• Port #3 first ranks all assets by market capitalization and
retains mid-cap and small-cap assets. Second, to bet-
ter simulate the agent’s impact on Virtual Market, port
#3 filters the asset pool by using the criterion that>30%
of stocks are held by directors and supervisors. Third,
the 11 highest-volume assets within the remaining asset
pool were selected to ensure liquidity.

Three indicators were used to evaluate the performance of
a portfolio strategy. The first indicator was the accumulative
portfolio value (APV), which is defined as

APV = p0
T∏
t=1

pt , (17)

where p0 is the initial portfolio value, and T is the time span
of a given portfolio management process. A higher APV indi-
cates greater profitability in portfolio management. The sec-
ond indicator was maximum drawdown (MDD), which is
defined as the maximum loss from a peak to a trough of a
portfolio return as follows:

MDD = max
τ∈(0,T )

[
max
t∈(0,τ )

[
pt − pτ
pt

]
+

]
. (18)
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A lower MDD indicates more stable returns from a portfolio
strategy. The third indicator was the Sharpe ratio (SR), which
encapsulates both profit and risk. The SR is defined as the
average portfolio return in excess of a risk-free rate under one
unit of risk:

SR =
E
[
ρt − ρf

]√
var

(
ρt − ρf

) , (19)

where ρt =
pt
pt−1

is the portfolio return, and ρf is the risk-free
asset rate. A higher SR indicates a portfolio’s greater prof-
itability per unit risk.

Although we use these three evaluation metrics, APV is
prioritized. Because our primary goal is portfolio manage-
ment, our aim is to maximize the size and stability of profits.
MDD and SR are metrics that are only used for evaluating the
results.

B. IMPROVEMENT DUE TO VIRTUAL MARKET
Before we improve the virtual market, we must evaluate how
well the virtualmarket performs.We compare ourVM (GAN)
and VM (SL) with the autoencoder and with a real market.
The results are shown in Fig. 4. Specifically, Fig. 4(a) presents
the price–quantity distribution, which describes how many
stocks are ordered by investors at a given price. The unit for
price is the price level, where 0.0 represents the current strike
price. As evident in Fig. 4(a), the VM (GAN) outperforms
the VM (SL) and the autoencoder; it generates a curve with no
overly large peaks or troughs that are closest to the real market
curve. The strong performance of the VM (GAN) is further
evidenced in Fig. 4(b). The figure illustrates the quantity
generated by the generative models. Both VM (GAN) and
VM (SL) outperform the autoencoder, as indicated by the
near-zero value that it generated. A likely explanation for
the autoencoder’s poor performance is the presence of many
zeros in the training data, which makes data difficult to learn.
Furthermore, VM (GAN) andVM (SL) perform similarly, but
VM (GAN) is good at generating occasional outliers, which
are present in a real market.

To verify Virtual Market’s ability to yield improvements
in the optimization of various types of RL-based portfolio
agents, in this experiment, Virtual Market was applied to the
four following policy networks:

• CNN EIIE (CNN) [7]: A convolutional neural net-
work (CNN) was used to extract a fixed size of the
price movement trend. The feature within each asset is
processed individually.

• Vanilla RNN EIIE (RNN) [7]: A vanilla recurrent neural
network (RNN) cell was applied to extract features on
the historical market price for each portfolio asset.

• LSTM EIIE (LSTM) [7]: A time series feature extrac-
tor network was switched to a long short-term
memory (LSTM) cell to better capture time-series
information.

FIGURE 4. Comparison of virtual market to real market.

• EIII [5]: An extension of the EIIE topology, the incep-
tion network was leveraged to extract multi-scale infor-
mation on time-series data.

The experimental results are presented in Table 4.
VM (GAN) stands for Virtual Market as constructed by
LOB-GAN. For the MDD evaluation, EIIE (RNN) +
VM (GAN) under port #1 had an MDD of 0.02905, which
was a slight deprovement. EIII + VM (GAN) under port
#3 had an MDD 0.05307, which was also a slight deprove-
ment. By contrast, the agent optimized using Virtual Mar-
ket performed better most of the time. For APV , Virtual
Market yielded significant improvements. Only for EIII +
VM (GAN) under port #3 was there a slight deprovement
from the original EIII (an APV of 0.97060 vs. 0.98516). For
SR, Virtual Market’s performance exhibited greater variance
relative to the other evaluation metrics. The agent optimized
using VM (GAN) did not outperform the original agent in
several cases. However, VM (GAN) yielded a more stable
overall portfolio performance.

The overall portfolio improvements due to VM (GAN)
were more significant on port #2 and port #3 than they
were on port #1. Upon analyzing the property of each port-
folio combination, we noticed that stocks in port #1 were
mostly large-cap stocks, suggesting that the agent had less
market impact on port #1 relative to the other combina-
tions. The experimental results indicated that our proposed
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FIGURE 5. Improvement in portfolio value due to virtual market.

TABLE 4. Generalization improvements of policy networks.

VM (GAN) yields lower reliability for the portfolio combina-
tions in which the agent has less market impact. However, our
VM (GAN) could still achieve reliable testing performance
under different portfolio combinations. We also noted that
our VM (GAN) was less sufficient on the EIII topology
than it was on other policy networks. However, as evident
in the table, improvements are still present in port #1 and

the EIII topology. This finding indicates that our VM (GAN)
still greatly improves the overall portfolio performance on
average.

Portfolio performance is compared between the use of
Virtual Market–generated data and the use of real mar-
ket data (Fig. 5). Because portfolio management must be
based on some strategy, we select four distinct strategies
for the given task in our comparison. Each strategy is
applied to Virtual Market–generated data and compared
against its identical counterpart as applied to real market
data.

In Fig. 5, it illustrates the accumulated portfolio value of
the four policy networks. In the figure, the blue line represents
the agent optimized using a historical price–based environ-
ment, and the orange line represents the agent optimized
using VM (GAN). The use of VM (GAN)—in conjunction
with EIIE (CNN), EIIE (RNN), and EIIE (LSTM)—clearly
yielded a greater accumulated portfolio value than the use of
the historical price–based environment did over the testing
period. However, the improvement in portfolio performance
due to VM (GAN) was less significant for the EIII policy net-
work than it was for the other policy networks. The original
EIIE (CNN), EIIE (RNN), and EIIE (LSTM) obtained port-
folio values of 1.08193, 1.02281, and 0.91115, respectively.
By contrast, the EIIE (CNN) + VM (GAN), EIIE (RNN)
+ VM (GAN), and EIIE (LSTM) + VM (GAN) obtained
portfolio values of 1.08193, 1.06692, and 1.06511, respec-
tively. The application of the VM (GAN) to the EIII network
improved the accumulated portfolio value from 1.05299 to
1.05381. Therefore, using our LOB-GAN to construct Virtual
Market as a training environment can improve the generaliza-
tion ability of various types of portfolio agents.
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TABLE 5. Comparison with different generalization methodologies.

C. COMPARISON OF GENERALIZATION STRATEGIES
In this experiment, the proposed VM (GAN) was com-
pared against the other generalization strategies introduced in
Section IV. The experimental results are presented in Table 5.
For simplification, VM (SL) stands for Virtual Market with
a naive supervised learning market behavior model, Adv.
stands for a historical price–based environment with adver-
sarial training, and GARCH stands for an environment uti-
lizing GARCH(1,1) to synthesize the price sequence. Under
port #1, MDD performance improved significantly from
the use of adversarial training and GARCH (0.02227 and
0.02371, respectively, on average). Virtual Market was less
effective; VM (GAN) and VM (SL) obtained 0.02905 and
0.03033, respectively. With respect to APV , Virtual Market
outperformed other generalization strategies. TheVM (GAN)
yielded the greatest profit at APV = 1.00752. With respect
to SR, the original setting performed best at SR = 0.02186.
The original EIIE (RNN) achieved comparable profitability
at less volatility, indicating that VM (GAN) achieves the
greatest profit at the expense of greater downward volatil-
ity (which was the highest among strategies). Adversarial
learning yielded the most stable portfolio but at a consider-
able expense to profitability. For the port #2 combination,
adversarial training yielded the best MDD at 0.03533; the
proposed VM (GAN) and VM (SL) yielded MDD values
of 0.03814 and 0.03559, respectively; however, the perfor-
mance was still worse than that of the original EIIE (RNN).
VM (GAN) yielded the best APV and SR at 1.00448 and
0.00678, respectively. Under port #3, Virtual Market yielded
the best improvements to generalization ability. VM (GAN)
had the best MDD and APV of 0.02534 and 1.00812,
respectively, and VM (SL) had the best SR at
0.05569—although VM (GAN) performed second best at
SR = 0.01453. As noted in the row of average values,

FIGURE 6. Portfolio value curves for various generalization strategies.

although the adversarial training and GARCH techniques
exhibit the best performance in terms of MDD, they exhibit
the worst performance in terms of APV and SR, even when
compared with their original counterparts. Nevertheless,
VM (GAN) and VM (SL) perform comparably in terms
of APV and SR, and VM (GAN) performs almost as well
as adversarial training in terms of MDD. The experimental
results indicated that Virtual Market achieved the greatest
improvements to generalization ability relative to other strate-
gies. Furthermore, the use of LOB-GAN to construct Virtual
Market further resulted in greater stability in generaliza-
tion than the use of naive supervised learning did. On port
#3—which could manifest the advantage of the Virtual Mar-
ket framework—VM (GAN) yielded better improvements to
generalization relative to its counterparts. Notably, Virtual
Market yielded better profitability than adversarial train-
ing did, although adversarial training yielded the greatest
improvement in portfolio stability among the generalization
strategies.

Fig. 6 illustrates the accumulated portfolio over all testing
periods. The accumulated portfolio values of VM (GAN)
and VM (SL) were 1.06691 and 1.05881, respectively. Both
VM (GAN) and VM (SL) yielded markedly higher portfolio
performance than traditional RL did. The adversarial train-
ing and GARCH methods had the ultimate portfolio values
of 1.01549 and 0.97836, respectively. Adversarial training
and GARCH yielded much lower portfolio volatilities than
their counterparts did. As indicated in the figure, the strat-
egy that the agents adopted between July and August 2016,
which was optimized with adversarial training and GARCH,
involved keeping cash on hand most of the time. This strategy
resulted in a more stable portfolio value. Between the original
EIIE (RNN) and the EIIE (RNN) + VM (GAN), portfolio
performance over the testing period increased by 4% as a
result of leveraging Virtual Market in RL-based portfolio pol-
icy training. Overall, these results indicated that the Virtual
Market framework outperformed other generalization tech-
niques on various portfolio combinations. Under different
settings of the market behavior simulator, Virtual Market
may yield different results. Nonetheless, using LOB-GAN
to construct Virtual Market yields a strategy that balances
profitability with stability.
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D. EVALUATION OF PORTFOLIO PERFORMANCE
This experimental test of portfolio performance compared the
agents optimized with Virtual Market with those adopting the
following traditional portfolio strategies:

• Momentum Strategy: Also known as ‘‘follow the win-
ner,’’ this strategy continually increases the weight
of profitable assets; this strategy has been applied in
the universal portfolios (UP) [1], exponential gradient
(EG) [40], and online Newton step (ONS) [41] methods,
which we tested.

• Contrarian Strategy: Also known as ‘‘follow the loser,’’
this strategy is a mean reversion strategy based on the
assumption that less profitable assets will subsequently
become profitable; this strategy has been applied in
the ANTICOR [42], passive aggressive mean rever-
sion (PAMR) [43], online moving average reversion
(OLMAR) [44], weighted moving average mean rever-
sion (WMAMR) [45], and robust median reversion
(RMR) [2] methods, which we tested.

• Pattern Matching: This strategy is based on the assump-
tion that historical patterns recur, and a portfolio is
thus constructed based on similar historical sequences.
This strategy has been applied in the M0 [46] and
correlation-driven nonparametric learning (CORN) [3]
methods, which we tested.

Table 6 summarizes the portfolio performance of tradi-
tional portfolio strategies and of RL-based agents under dif-
ferent generalization strategies. The following results are
those for port #1: EIIE (RNN) + VM (GAN) achieved
the best APV at 1.00753; among traditional strategies,
EG achieved the best APV at 1.00379. EIIE (RNN) + Adv.
achieved the bestMDD of 0.02227; among traditional strate-
gies, UP achieved the bestMDD of 0.02801. EG (a traditional
strategy) had the best SR at 0.00496, which was higher than
the SR of 0.01321 of EIIE (RNN) + VM (GAN).

The following results are those for port #2, UP yielded
the best portfolio performance among traditional strategies at
the MDD, APV , and SR of 0.03951, 1.00430, and 0.00811,
respectively. As for RL-based strategies, EIIE (RNN) +
Adv. yielded the best MDD at 0.03533, and EIIE (RNN) +
VM (GAN) yielded the best APV and SR. EIIE (RNN) +
VM (GAN) yielded a better MDD and APV than UP did.
Nonetheless, EIIE (RNN)+VM (GAN) and UP yielded sim-
ilar portfolio performance. In the experiment, EIIE (RNN)+
VM (GAN) tended to learn a portfolio strategy that was akin
to the momentum strategy, but at lower portfolio volatility
and higher profitability relative to the traditional momentum
strategy. For the port #3 combination, UP was the most stable
and profitable among traditional strategies with an MDD,
APV , and SR of 0.03921, 1.00769, and 0.01567, respectively.
The best RL-based strategies were those in which Virtual
Market was used: EIIE (RNN) + VM (GAN) outperformed
UP with an MDD of 0.02534 and an APV of 1.00812, and
EIIE (RNN)+ VM (SL) had the highest SR of 0.05569; EIIE
(RNN) + VM (GAN) had a comparable SR of 0.01453.

TABLE 6. Comparison with various traditional portfolio approaches.

These experimental results indicate the following. First,
among traditional strategies, the contrarian strategy is the
least effective, and the momentum strategy, as applied in UP,
is the most stable and profitable. Second, EIIE (RNN) +
VM (GAN) and UP employ qualitatively similar strategies,
but EIIE (RNN)+VM (GAN) outperforms UP inmost cases.
In general, these results demonstrate that Virtual Market
outperforms not only other generalization strategies but also
other traditional portfolio strategies.

Fig. 7 presents the portfolio curve of the various portfolio
strategies. The most profitable strategies in each strategy
category were compared. UP had the most profitable momen-
tum strategy at an accumulated portfolio value of 1.03281,
ANTICOR had the highest-performing contrarian strategy
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FIGURE 7. Portfolio value curves for various portfolio strategies
(cumulative over all testing periods).

at an accumulated portfolio value of (only) 0.5655, and
M0 had the highest-performing pattern-matching approach at
an accumulated portfolio value of 0.921. Among all portfolio
strategies, EIIE (RNN) + VM (GAN) had the highest accu-
mulated portfolio value of 1.06692, and the contrarian strat-
egy yielded the lowest profit (because the market was con-
sistently trending upward during the experimental period).
UP and EIIE (CNN) + VM (GAN) had qualitatively similar
portfolio value curves, but the EIIE (RNN)+VM (GAN) had
a higher portfolio value.

In summary, the experimental results indicate that 1) Vir-
tual Market affords the agent a realistic training environment,
2) optimization using the VirtualMarket framework improves
the generalization ability of the agent, and 3) Virtual Market
outperforms traditional portfolio strategies in portfolio per-
formance.

VII. CONCLUSION AND FUTURE RESEARCH
We proposed a generative model that simulates the ordering
behavior of investors in the market. This model was then
used to construct a simulated stock exchange, called Virtual
Market, as a training environment for an RL-based portfolio
agent. We then formulated a novel RL-based portfolio opti-
mization framework that utilizes Virtual Market to improve
the generalization ability of the trading agent. Our contribu-
tions include the following:

• Our LOB-GAN models the distribution that underlies
ordering behavior in the market.

• By utilizing a limit-order transform module, the
LOB-GAN aims to generate the relative order quantity
distribution instead of precisely generating the order
price and quantity.

• Virtual Market is constructed by having the generative
model of a well-trainedmarket behavior simulator coop-
erate with a security matching system.

• When Virtual Market is used as a training environment
for an RL-based portfolio agent, the agent can obtain
realistic market feedback in response to its previous
action.

Our experimental results demonstrated that our framework
operates reliably under different policy networks to improve
the generalization ability of an RL-based portfolio agent. Our

framework also yields greater improvements to generaliza-
tion ability relative to other generalization methodologies.
Virtual Market can also prevent the agent from overfitting to
the historical environment during the exploration and trial-
and-error process; Virtual Market does so by amplifying the
feedback given by the environment in response to the agent’s
previous action. Virtual Market yielded an approximately 4%
improvement to testing portfolio performance.

Future studies can address several issues. First, the diver-
sity of the generated limit order remains unverified, and an
evaluation metric is required. Second, the Virtual Market
can be further extended to a benchmarking metric or an
environment as a means to evaluate generalization ability
as it relates to portfolio strategy. Finally, Virtual Market’s
ability to handle complexity requires further examination;
its ability to reconstruct complex trading systems and the
challenge of applying the generative model to capture com-
plex market ordering behavior are topics that warrant further
investigation.
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