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ABSTRACT Lysine crotonylation (Kcrot), as a post-translational modification (PTM) originally identified
at histone proteins, is involved in diverse biological processes. Several conventional machine-learning
(ML) predictors were developed based on the Kcrot sites from histone proteins. Recently, thousands of
Kcrot sites have been experimentally verified on non-histone proteins from multiple species. Accordingly,
a few predictors have been developed for predicting the Krot sites for specific organisms (i.e. humans
and papaya). Nevertheless, there is a lack of research on the comparison of the crotonylomes of different
organisms. Here, we collected around 20,000 Kcrot sites experimentally identified from four different
species as the benchmark data set. We present the deep-learning (DL) architecture dubbed DeepKcrot for
predicting Kcrot sites on the proteomes across various species. DeepKcrot includes species-specific and
general classifiers using a convolutional neural network with the word embedding (CNNWE) encoding
approach. CNNWE performs better than both the traditional ML-based and other DL-based classifiers
in terms of ten-fold cross-validation and independent test, independent of the size of the training set.
Additionally, cross-species performance for each species-specific predictor is not as good as the self-species
performance whereas the cross-species performance generally increases with the size of the training dataset.
Moreover, the predictors developed based on the non-histone Kcrot sites are unsuccessful for the histone
Kcrot prediction, suggesting that the Kcrot-containing peptides from non-histone and histone proteins have
significantly different characteristics and data integration is required. Overall, DeepKcrot is an efficient
prediction tool and freely available at http://www.bioinfogo.org/deepkcrot.

INDEX TERMS Deep learning, convolutional neural network, lysine crotonylation, non-histone protein,
random forest.

I. INTRODUCTION
Lysine crotonylation (Kcrot) is a conserved type of PTMs
and it was originally found on histone proteins [1]. His-
tone crotonylation affects chromatin structure and gene
expression [1]–[4]. Recently, it has been discovered on
non-histone proteins and involved in various cellular activ-
ities [5], [6]. The rapid progress in the development of the
state-of-the-art techniques led to the identification of thou-
sands of Kcrot sites from different species through affinity
enrichment followed by high-throughput mass spectrometry.
10,163 Kcrot sites on 2445 non-histone proteins were deter-
mined from human A549 cells [7] and 2696 Kcrot sites on
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1024 non-histone proteins were identified from the human
H1299 cell line [8]. Besides, 5995/1265/2044 different Kcrot
sites were experimentally verified from Carica papaya L.
(papaya)/Oryza sativa L. japonica (rice)/Nicotiana tabacum
(tabacum), respectively [9]–[11]. Recently, CDYL-regulated
crotonylome was investigated in Hela cell lines [12].

To understand and elucidate modification kinetics and
molecular mechanisms of lysine crotonylation, a fundamental
but important step is to accurately predict the crotonylation
sites. Currently, five in-silico approaches were developed
based on the histone Kcrot sites [13]–[17]. Although these
algorithms have made great contributions to the Krot pre-
diction, they fail to identify non-histone Kcrot sites [18].
Additionally, we collected the papaya Kcrot sites and devel-
oped a panel of classifiers for the Kcrot prediction [18].
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Among the traditional ML approaches, the random for-
est (RF) model with the Enhanced Grouped Amino Acid
Composition (EGAAC) encoding feature, dubbed RFEGAAC,
had the best performance [18]. Additionally, the one-
dimensional Convolutional Neural Network (CNN) with the
word-embedding (WE) encoding approach, named CNNWE,
showed superior performance in all the models [18]. More-
over, Wang and coworkers used our collected papaya Kcrot
sites and a limited number (167) ofmammalianKcrot sites for
the construction of Kcrot predictors using the RF and SVM
(support vector machine) architectures with the combination
of different features [19]. Lv et al. [20] developed a DLmodel
called Deep-Kcr based on experimentally verified human
crotonylome [12]. These developed models were mainly
based on either the crotonylome of the specific organism
(e.g. papaya or humans) or a limited number of proteins (e.g.
histones). With the identification of thousands of Kcrot sites
from various species, it is of interest to study the diversity
of crotonylomes across the different organisms and compare
the performance of the developed methods and investigate
whether any other model with better performance than the
previously developed models.

In this study, we constructed the Long Short-Term
Memory (LSTM) model and compared it with our previ-
ously developed models including RFEGAAC and CNNWE
models. We found that the CNNWE model still showed the
best performance. Additionally, the CNNWE model com-
pared favourably to the reported model Deep-Kcr. More-
over, we constructed DeepKcrot based on the CNNWE
architecture that included four orgasm-specific predictors
and a general predictor. We find that cross-species perfor-
mances for species-specific CNNWE predictors are not as
good as the self-species performance. The general CNNWE
predictor based on the integration of the training data
from different species shows superior performance to the
species-specific predictors except for one organism. Over-
all, the general CNNWE models have excellent performance
for predicting Kcrot sites on proteomes across different
species.

II. MATERIALS AND METHODS
A. DATA COLLECTION AND PREPROCESSING
We collected 10,702/1265/2044/5995 Kcrot sites on non-
histone proteins from human/rice/tabacum/papaya, respec-
tively [9]–[11]. We took the human species as an example
to describe the data preprocessing. To prepare the bench-
mark data sets with high confidence for training and test-
ing, we referred to the procedure established by Chen et al.
[21], [22].

The 10,702 Kcrot sites from the 2836 human proteins were
considered as positive sites, and the remaining lysine residues
(775,123) on the same proteins were deemed as negative sites.
The 2836 proteins with sequence identities >30% were clas-
sified into 2064 clusters using CD-HIT [23]. In each cluster,
the protein with the largest number of Kcrot sites remained as
the representative, in which the Kcrot sites were considered

as positive sites and the rest lysine sites were taken as negative
sites. Note that the lysine sites in the representative were
removed if the aligned counterparts from other members
of the same cluster can be crotonylated. According to our
previous study [18], the optimal sequence window for model
construction was 29. Accordingly, the dataset contained
8,170 positive sites and 76,673 negative sites from 2064 rep-
resentatives. The representatives were randomly divided into
two groups: 4/5 (1651) for cross-validation and the rest 1/5
(413) for an independent test. Finally, the cross-validation
data set contained 6687 positives and 67,106 negatives, and
the independent test dataset contained 1483 positives and
16,497 negatives (Figure 1). The same data preprocessing
was performed for papaya, rice and tabacum, respectively
(Figure 1).

B. CONVENTIONAL MACHINE LEARNING ALGORITHMS
The RF algorithm was selected and trained with the EGAAC
feature by randomly generating 1600 decision trees. In the
EGAAC feature, the types of amino acids were categorized
into five groups (g1: GAVLMI, g2:FYW, g3: KRH, g4: DE
and g5: STCPNQ) according to their physicochemical prop-
erties and the frequencies of the groups were calculated in
the window of fixed length (the default value is 5) contin-
uously sliding from the N- to C-terminal of each peptide
sequence.

C. DEEP LEARNING ALGORITHMS
We constructed a DL framework based on a one-dimensional
CNN with the WE encoding approach [18]. Figure 2 showed
that this framework included the five layers: the input layer,
the embedding layer, the convolutional layer, the fully con-
nected layer and the output layer. These layers were described
in our previous study [18]. In the embedding layer, each
type of amino acid was converted into a predefined certain
dimension word vector. The parameters in the vectors were
updated with subsequent layers during the learning process
under the supervision of a class label. We investigated the
effect of the dimension size on the prediction performance
(Table 1). Within the range of the dimension from three to
seven, the prediction performance increased from three to five
and reach the plateau starting from five. Therefore, we chose
the dimension of the word vector as five.

We also constructed the Long Short-Term Mem-
ory (LSTM) model with the WE encoding approach. This
model contained five layers (Figure 3).

1) The Input Layer: Each peptide segment is con-
verted into an integer vector with the NUM encoding
approach, where each type of amino acid residues was
mapped to a different integer [24].

2) The Word Embedding Layer: Each integer of the vec-
tor from the input layer is encoded into a predefined
five-dimension word vector.

3) The LSTM Layer: Each of the word vectors is
input sequentially into the LSTM cell that contained
32 hidden neuron units.

VOLUME 9, 2021 49505



X. Wei et al.: DeepKcrot: DL Architecture for General and Species-Specific Lysine Crotonylation Site Prediction

FIGURE 1. Separation of the datasets for the four organisms into the cross-validation set and the independent test set.

FIGURE 2. The architecture of CNNWE. It contained five layers. The input layer received a peptide sequence of 29
residues with K in the center. In the embedding layer, each residue of the sequence was converted into a
five-dimensional word vector. In the convolution layer, 29 five-dimension word vectors were input into the CNN cell
that contained 128 hidden neuron units. In the fully connected layer, 128 neuron units were built in which the ReLU
was chosen for its activation function. The last layer included a single unit outputting the prediction scores.

4) The Dense Layer: It contains a single dense sublayer
that has 16 neurons with the ReLU activation function.

5) The Output Layer: This layer has only one neuron acti-
vated by sigmoid function, outputting the probability of
the Kcrot modification.

The parameters in the DL models were trained and opti-
mized using the Adam algorithm. The dropout rate was set
as 0.5 to avoid overfitting. We set the learning rate as 0.001,

determined using the maximum number of epochs as 500.
The early-stopping strategy was applied, where the training
process was stopped early if the performance did not improve
within 50 epochs.

D. PERFORMANCE ASSESSMENT OF THE PREDICTORS
Four measurements of accuracy (Acc), sensitivity (Sn),
specificity (Sp) and Mathew Correlation Coefficient (MCC)
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FIGURE 3. The architecture of LSTMWE.

TABLE 1. Performances of the CNNWE model with different dimensions
of the word vector in terms of the human independent test.

were calculated. They are defined as:

Sn =
TP

TP+ FN
(1)

Sp =
TN

TN + FP
(2)

Acc =
TP+ TN

TP+ FN + TN + FP
(3)

MCC =
TP× TN − FP× FN

√
(TP+ FP)× (TP+ FN )× (TN + FP)× (TN+FN )

(4)

where TP/TN is the number of the correctly predicted
Kcrot/K sites, separately, whereas FP/FN is the number of
the Kcrot/K sites incorrectly predicted, respectively.

For each algorithm, a ten-fold cross-validation test was
performed. The ROC curves were illustrated for Sn vs. 1-Sp
scores and the AUC values were calculated. The area under
the ROC curve with <10% false-positive rate (AUC01) was
considered because it reflects the performance of the pre-
dictor in a low false-positive rate, which is significant in a
practical application.

III. RUSULT AND DISCUSSTIONS
A. THE CNN APPROACH WITH WORD EMBEDDING
SHOWED SUPERIOR PERFORMANCE
We collected from literature 10,702/1265/2044/5995 non-
redundant Kcrot sites experimentally verified from human/
rice/tabacum/papaya, respectively [7]–[11]. For each organ-
ism, we first eliminated homologous Kcrot sites and con-
ducted the species-specific dataset. The species-specific
dataset was further separated into two groups: 4/5 for ten-
fold cross-validation and the rest 1/5 for an independent
test (see Methods for details, Figure 1). For instance, the
cross-validation dataset for the human species contained 6687
positives and 67,106 negatives while the independent dataset
covered 1483 positives and 16,497 negatives. As the largest
dataset is derived from the human species, our study focused
on the human species followed by the expansion to other
species.

Many computational approaches have been developed for
the prediction of PTM sites. They are generally based on
different ML algorithms combined with various pre-defined
features encoded from peptide sequences [25]. The RF algo-
rithm is widely applied to the PTM prediction as it is robust
and insensitive to data imbalance [24]. We ever compared the
effect of the imbalanced dataset on the potential overfitting of
the classifiers and found that the RF model constructed using
an imbalanced training dataset had a similar performance to
that built using a balanced training dataset [24]. According to
our previous study on the papaya proteome, we constructed
RF-based predictors with the EGAAC encoding scheme,
dubbed RFEGAAC that showed the best performance in the
RF-based models [18].

Deep learning algorithms have recently been applied to
the field of modification prediction and have shown superior
performance to traditional ML algorithms [21], [26]. We ever
applied the CNN models for the prediction of the papaya
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FIGURE 4. Performance comparison of the Kcrot predictors. The performances of different predictors constructed for
human species were compared in terms of AUC (A) and AUC01 (B), respectively, for ten-fold cross-validation. AUC
(C) and AUC01 (D) curves were also generated using the independent test. P values were calculated using a paired
Student’s t-test. A detailed performance comparison using different measurements is provided in Table 2.

Kcrot sites and the CNN model with the word embedding
encoding approach compared favourably to other CNN-based
approaches [18]. Additionally, we developed here the clas-
sifier based on long short-term memory (LSTM) with word
embedding named LSTMWE, which was previously con-
structed to predict Cysteine S-Sulphenylation Sites and had
better performance than CNNWE [24].
Among the threemodels, CNNWE performed the best in the

prediction of human Kcrot sites for both the ten-fold cross-
validation and independent test, followed by LSTMWE and
RFEGAAC (P < 5.92 × 10−8 for CNNWE and LSTMWE;
P < 5.64 × 10−8 for LSTMWE and RFEGAAC; Figure 4 &
Table 2). For instance, the MCC value and AUC value for
CNNWE are 0.342 and 0.864 in terms of cross-validation
(Figure 4 & Table 2). As prediction performance at a low
false-positive rate is highly useful in practice, we applied
AUC01, in which the specificity was determined to be>90%,
to the estimation of these predictors. CNNWE again compared
favourably to other models in terms of the cross-validation
test as well as the independent test (Figure 4 & Table 2).
Because CNNWE showed its superior performance for the
Kcrot prediction in two different proteomes (ie, human and

papaya [18]), we concluded that CNNWE was the best and
robust model for the Kcrot prediction.

To understand the performance of the CNNWE model,
we visualized the sample distributions from the outputs of
the embedding layer and the last convolutional layer of the
human CNNWE model using the t-SNE algorithm [27], based
on the independent dataset (Figure 5A&5B). In the word
embedding layer, all the samples were mixed (Figure 5A),
whereas the positive and negative samples were separated
after the convolutional operation (Figure 5B). This compari-
son indicates that the distinctive features of the positives and
negatives were detected by the convolutional layer, and our
CNNWE model could produce a deep representation that is
more discriminating than the original input sequences.

The word embedding approach is widely applied to the
natural language process, in which each word is converted
into a low-dimension vector. This approach avoids a sparse
vector space and infers the semantic similarity of words.
We applied this concept to peptide sequences. Each amino
acid was converted into a five-dimension word vector in the
embedding layer. Finally, a 20 × 5 matrix was generated
after training where every row represented a five-dimensional
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TABLE 2. Performances of the different classifiers for the human organism.

FIGURE 5. T-SNE visualization of the sample distributions and classification of the amino acids based on the information
from the human CNNWE model. The t-SNE visualization of the output of the embedding layer (A) and the last
convolutional layer (B) of the human CNNWE model. (C) Hierarchical clustering of the 20 residues based on their related
five-dimensional word vectors in the embedding layer and the calculation of Euclidean distance in the average linkage.
The residues were grouped into four major groups: (i) the alkaline residues K and R (red colour), (ii) the amino acids with
negative charged side chains D and E (blue colour), (iii) the hydrophobic amino acids F, L, M, I, V, W, Y and A (green
colour); (iv) the mainly polar uncharged residues T, Q, S, G, H and N (purple colour).

word vector of the amino acid. Based on the matrix, we inves-
tigated the similarity of amino acid residues around the
Kcrot sites. The 20 amino acids were hierarchically clustered
using Euclidean distance in average linkage (Figure 5C).

The amino acids were distributed into four major clusters:
(i) the alkaline amino acids K and R, (ii) the amino acids with
negative charged side chains D and E, (iii) the hydrophobic
amino acids F, L, M, I, V, W, Y and A, (iv) the mainly
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FIGURE 6. Impact of the training set data size on the prediction performance of independent test
sets. The AUC (A) and AUC01 (B) curves were generated using five different data sizes: a sixteenth,
an eighth, a quarter, a half, and the whole independent dataset from the human species. The whole
dataset contained 6,687 positive peptides and 67,106 negative peptides.

polar uncharged residues T, Q, S, G, H and N. The special
amino acid C and P were separated from these clusters. This
clustering is similar to the classification of 20 amino acids
according to their physicochemical properties, indicating that
physicochemical properties are important as the features of
classification and our model is capable of elucidating the
significance of the correlation between amino acid properties.

B. ESTIMATION OF THE IMPACT OF DATA SIZE ON
PREDICTION ACCURACY
The performance of an ML algorithm is generally sensitive
to the size of the training data. We previously constructed
the predictors for lysine malonylation and found that the DL
algorithm has better performance than the traditional ML
approach for the large-sized dataset but it might not be true
for the small-sized dataset [21]. Here, we estimated whether
the previous observation existed for lysine crotonylation.
We selected the predictors and compared their performances
constructed based on a sixteenth, eighth, a quarter, a half
of, and the whole training dataset and evaluated them using
the independent dataset (Figure 6A&6B). The overall per-
formances of all the approaches increased with the size of
the training dataset. Additionally, CNNWE performed better
than the traditional algorithms (RFEGAAC) and LSTMWE in
terms of AUC and AUC01 values in the range of the data size
between 1/16 (including 418 positives) and thewhole (includ-
ing 6,687 positives) datasets. On the contrary, LSTMWE
had an inferior performance compared to RFEGAAC when
the data size is the smallest whereas the former compared
favourably to the latter when the data size increased. These
observations indicate that the performances of the DLmodels
are largely affected by the data size compared with the RF
models and CNNWE is a robust and reliable model with high
performance.

C. EVALUATION OF SPECIES-SPECIFIC CNNWE MODELS
AND THEIR CROSS-SPECIES PERFORMANCES
The lysine crotonylation sites have been investigated from
four different species, including human and three plant
species (i.e. papaya, rice and tabacum). The number of iden-
tified Kcrot sites ranged from 1265 for the rice organism
to over 10,000 for humans. We developed the classifier

human-specific CNNWE and found that CNNWE outper-
formed other predictors for both large-sized and small-sized
datasets (Figure 6). As the numbers of positives identified in
the three plant species are within this range (Figure 1), we did
not repeat our analyses performed above for the three plant
species and constructed the CNNWE predictors directly for
these species, using the same data processing method as the
human dataset (Figure 1). All the species-specific classifiers
have the AUC/AUC01 values larger than 0.838/0.033 using
species-specific independent test sets, respectively (Figure 7).

The crotonylation is catalyzed by crotonyltransferases.
Some of them are evolutionarily conserved such as MOF
that is found in both yeast and human [28] while others are
not such as CBP and p300 that only exist in mammalian
cells. Therefore, the enzymes from different species may
have diverse characteristics and the produced Kcrot sites
may have different features. To compare these modifications
between different species, we interrogated the cross-species
performance of CNNWE. The test dataset was the indepen-
dent test dataset from each species. Expectedly, the cross-
species performances for each species-specific predictor are
not as good as the self-species performance in terms of
AUC and AUC01 values (Figure 7). For instance, the rice-
specific model had the AUC value of 0.858 whereas other
specific models only had the AUC value with the range
of 0.76 to 0.80 (Figure 7). Additionally, we combined the
training datasets from all four species and constructed a
general CNNWE classifier. The general predictor based on
the large dataset had better performance than cross-species
performance. Furthermore, the general predictor compared
favourably to a few species-specific predictors (Figure 7). For
example, the general classifier had the AUC/AUC01 value
of 0.890/0.0377 for the papaya test set while the value
reduced to 0.878/0.0355 for the papaya-specific classifier,
respectively. However, the general classifier also showed
inferior performance to the Tabacum-specific classifier in
terms of the Tabacum independent test set. The former had
the AUC/AUC01 value of 0.833/0.0319 whereas the latter
had the values of 0.838/0.0337, respectively (Figure 7). These
suggest that the large size of the Kcrot training dataset has
comprehensive coverage of the Kcrot commonality across
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FIGURE 7. Comparison of prediction performances for species-specific CNNWE and the general CNNWE
classifier. The AUC (A) and AUC01 (B) values were calculated for self-species and cross-species Kcrot prediction
using the species-specific CNNWE and the general CNNWE. The former classifier was constructed using the
species-specific training dataset while the latter was developed using the combination of species-specific
training datasets. The test datasets were the independent test dataset from different species (Figure 1). The
species were ordered according to the number of positives used for predictor construction.

FIGURE 8. Prediction performances of the CNNWE model were developed
and evaluated using the dataset from Deep-Kcr. The performance of the
CNNWE model in terms of ten-fold cross-validation (A) and the
independent test (B).

different species and thus increases cross-species prediction
performance, although the exceptional species (i.e. tabacum)
exist (Figure 7). These observations may be consistent with
the fact that some crotonyltransferases are conserved and
others are not.

D. COMPARISON OF CNNWE WITH REPORTED KCROT
PREDICTORS
The current classifier CNNWE was constructed using Kcrot
sites on non-histone proteins as the benchmark dataset.
We estimated whether CNNWE could efficiently predict
Kcrot sites of histone proteins. The histone test set contained
169 positive sites and the rest 816 K-containing peptides as
negative sites [15]. CNNWE failed to distinguish the positives

TABLE 3. Performances of papaya-specific CNNWE with the models
developed by Wang et al. [19].

from the negatives (AUC = 0.623, AUC01 = 0.003). It indi-
cates that the Kcrot sites from non-histone and histone pro-
teins have distinct characteristics. We re-constructed CNNWE
by adding 4/5 (i.e. 134 positives) of known histone Kcrot
peptides into the training set and considered the rest positives
and all negatives (i.e. 35 positives and 816 negatives) as the
test set. The new CNNWE model showed improved accuracy
for the histone Kcrot prediction (AUC = 0.966, AUC01 =
0.081). The larger AUC value for the histone Kcrot prediction
than the AUC value for the non-histone Kcrot suggests that
the histone Kcrot sites have common features whereas the
features of non-histone Kcrot sites are relatively diverse.
In summary, it is necessary to build CNNWE by including
Kcrot sites from histone proteins.

We compared our CNNWE architecture with the Deep-
Kcr model. As the developers of the Deep-Kcr model shared
the training data set and the independent test set through
https://github.com/linDing-group/Deep-Kcr, we developed
the CNNWE model using the same dataset and evaluated
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it through ten-fold cross-validation and independent test.
The average AUC values were 0.914 ± 0.007 and 0.924 ±
0.002 in terms of ten-fold cross-validation (Figure 7A) and
independent test (Figure 7B), respectively. Both AUC values
are significantly larger than the counterparts of Deep-Kcr
(0.885 and 0.859). Therefore, the CNNWE architecture
compared favourably to Deep-Kcr.

We further compared our papaya-specific CNNWE model
with the models developed by Wang et al.. [19]. All the
models were based on the same papaya dataset (3453 pos-
itive and 37,134 negative sequences). We separated the
data into the cross-validation dataset (2742 positives and
29,676 negatives) and independent test dataset (711 posi-
tives and 7458 negatives), whereas Wang et al. generated the
training dataset (2548 positives and 2548 negatives) and the
testing dataset (669 positives and 6720 negatives) [19]. Please
note that the sum of positives in Wang’s datasets is 3217,
which is smaller than 3453. It may be due to the filtering
of the sequences of length less than 31 amino acid compo-
sitions or those containing uncertain composition, described
by Wang et al. As our independent dataset was larger than
Wang’s testing dataset, we randomly selected from our inde-
pendent test dataset 669 positives and 6720 negatives for ten
times as the test dataset for the evaluation of our CNNWE
model. Wang et al. developed several models with different
features and found that the models with the incorporated and
selected features had the best performances. According to
Table 4 [19], the RF model with the LGBM selection method
(LGBM_RF) and the SVM model with the MRMD selection
method (MRMD_svm) had the best performances. Therefore,
we selected these twomodels for comparison. Table 3 showed
that DeepKcrot had the largest AUC value and had the largest
sensitivity when specificity was fixed at 0.72. In summary,
the Papaya-specific CNNWE model compared favourably to
the models developed by Wang et al..

E. CONSTRUCTION OF THE ONLINE KCROT PREDICTOR
We developed an easy-to-use online tool for the predic-
tion of the Kcrot sites, dubbed DeepKcrot. DeepKcrot con-
tained four species-specific CNNWE predictors and a general
CNNWE classifier. The users could select the general model
or species-specific model at the input interface and input
the query protein sequences directly or upload the sequence
file. The prediction results are output in tabular form with
five columns: sequence header, position, sequence, prediction
score, and prediction result that was colour-coded with at the
specificity levels of 80, 90, and 95%, respectively.

IV. CONCLUSION
The common PTM prediction approaches are based on
ML that requires experts to pre-define informative features.
They have been widely applied to the prediction of lysine
crotonylation based on the Kcrot sites on histone proteins.
Recently, thousands of Kcrot sites have been identified on
non-histone proteins from different species but it is unclear
whether lysine crotonylation on these proteins could be

effectively predicted. In this study, we compiled a benchmark
data set of known Kcrot sites and evaluated the performance
of different machine-learning approaches, including deep-
learning algorithms. We found that the DL-based classifier
CNNWE had the best performance compared with the tradi-
tional ML model and the LSTMWE model that showed supe-
rior to CNNWE for the prediction of cysteine sulphenylation
sites, even for the limited training dataset [24]. It suggests
that CNN andLSTMmay have distinct characteristics that are
feasible to extract different PTM features. Furthermore, these
models were compared using different sizes of the training
data set and CNNWE again shows the best performance,
suggesting its superior performance and robustness. We also
compared CNNWE with the recently reported Deep-Kcr
model and CNNWE showed better performance. Additionally,
the CNNWE model constructed based on non-histone Kcrot
sites failed to predict the histone Kcrot sites, suggesting
the histone and non-histone Kcrot sites may have different
features. Accordingly, we reconstructed the CNN models by
including the histone Kcrot sites. Moreover, we constructed
four organism-specific CNNWE models and found that cross-
species performances for species-specific CNNWE predictors
were not as good as the self-species performances. It suggests
that the crotonylome for each organism has its specific fea-
tures. The general CNNWE predictor based on the integration
of the training data from different species showed superior
performance to the species-specific predictors except for one
organism. Taken together, we developed the first DL archi-
tecture DeepKcrot for predicting Kcrot sites on proteomes
across various species. The outstanding performance of the
DL algorithms in the prediction of Kcrot sites suggests that
DL may be applied broadly to predicting other types of PTM
sites.
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