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ABSTRACT Gastric cancer is the third-most-common cause of cancer-related deaths in the world. Fortu-
nately, it can be detected using endoscopy equipment. Computer-aided diagnosis (CADx) systems can help
clinicians identify cancer from gastric diseases more accurately. In this paper, we present a CADx system
that distinguishes and classifies gastric cancer from pre-cancerous conditions, such as gastric polyps, gastric
ulcers, gastritis, and bleeding. The system uses a deep-learning model, Xception, which involves depth-wise
separable convolutions, to classify cancer and non-cancers. The proposed method consists of two steps:
Google’s AutoAugment for augmentation and the simple linear iterative clustering (SLIC) superpixel and
fast and robust fuzzy C-means (FRFCM) algorithm for image segmentation during preprocessing. These
approaches produce a feasible method of distinguishing and classifying cancers from other gastric diseases.
Based on biopsy-supported ground truth, the performance metrics of the area under the receiver operating
characteristic curve (i.e. Az) are measured on the test sets. Based on the classification results, the Az of the
proposed classification model is 0.96, which is 0.06 up from 0.90 which is the Az of the original data. Our
methods are fully automated without the manual specification of region-of-interests for the test and with
a random selection of images for model training. This methodology may play a crucial role in selecting
effective treatment options without the need for a surgical biopsy.

INDEX TERMS Augmentation, computer-aided diagnosis (CADx), deep learning, gastric cancer,
segmentation.

I. INTRODUCTION
According to the worldwide gastric-cancer incidence statis-
tics released in 2018 by the International Agency for Research
on Cancer, the world’s leading cancer research institute, gas-
tric cancer is the fifth most frequently diagnosed cancer and
the third leading cause of cancer death. Fig. 1 shows the world
gastric cancer incidence rate for 2018 [1]. As can be seen,
eastern Asia and Eastern Europe have the highest incidences.
Ailments, such as gastritis, gastric ulcers, and gastric
bleeding have been identified as precancerous lesions that
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lead to gastric cancer. Because these gastric lesions are
asymptomatic until they progress to cancer, early diagno-
sis and treatment are the best ways to reduce the inci-
dence, and regular endoscopy is the preferred method for an
accurate diagnosis. Then, the lesions can be treated and/or
removed [2], [3].

Because the number of images taken by endoscopy equip-
ment is ever-increasing, and the quality of the images is
constantly improving, any doctor who relies on looking
directly at images to make diagnosis experiences mounting
fatigue. Furthermore, different doctors use different men-
tal heuristics based on experience. Thus, owing to subjec-
tive biases and occasional lassitude, misdiagnoses sometimes
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FIGURE 1. World gastric cancer incidence rate in 2018 (Source:
GLOBOCAN 2018).

occur. Computer-aided diagnosis (CADx) systems provide
doctors with objective information, which tends to increase
the accuracy of diagnosis [4], [5].

Currently, various CADx systems are used for the study
of gastroscopy. Kanesaka er al. [6] used a support vector
machine to build a CADx system to facilitate early gas-
tric cancer detection using narrow-band endoscopy images.
The study achieves an accuracy of 96.3% for cancer and
non-cancer classifications. Khryashchev et al. [7] used an
endoscopy image-analysis algorithm based on the applica-
tion of a convolutional neural network single-shot multi-
box detector [8]. They classified gastroscopy images into
three classes: normal mucosa, non-cancerous pathology, and
cancer. The mAP value for detection was 0.875. Li ef al. [9]
developed a model that distinguished early gastric cancers
and non-cancerous lesion images based on the inception-
v3 network. They compared the performance of two experts
with two non-experts and a CNN, showing that the CNN
accuracy performed excellently, but the specificity and pos-
itive predictive value (PPV) were lower than that of experts.
Cho et al. [10] collected endoscopic white-light images of
pathologically confirmed gastric lesions and classified them
into five categories: advanced gastric cancer, early gastric
cancer, high-grade dysplasia, low-grade dysplasia, and non-
neoplasm. They pre-trained three CNN models using a train-
ing dataset. These studies in [6], [7], [9] used the narrow-band
image (NBI) instead of the white light endoscopy (WLE)
image. The WLE image is a common filming mode for
endoscopy and more useful.

CADx systems that use deep learning have developed
significantly. However, they typically rely on large labeled
datasets and significant expert knowledge and incur a high
computational cost. Data collection is time-consuming and
costly because patients require privacy and researchers
require institutional review board (IRB) approval [11].
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A data augmentation method is a representative solution to
the data collection problem. Augmentation improves perfor-
mance while solving the problem of deep-learning overfit-
ting [11], [12]. To augment data, such methods transform
existing information into colors and shapes.

Kim et al. [13] studied CADx systems and applied two seg-
mentation methods to gastroscopy data. They trained a deep-
learning model using the inception-V3 network and classified
it as normal and abnormal. They also proposed an augmented
CADx system that applied 90°, 180°, and 270° rotations of
the same data [14]. Chowdhary et al. [15] propose a segmen-
tation model for the detection of cancer in an image. They
segment the image using an intuitionistic possibilistic fuzzy
c-mean (IPFCM), which combines the intuitive fuzzy c-mean
(IFCM) and the possible fuzzy c-mean (PFCM) algorithm.

Ergashev and Cho [16] randomly applied a data
augmentation method in the range of 0.9 to 1.1 for bright-
ness and color contrast of the images. Zhu et al. [17]
performed data augmentation, in which each image was
rotated and flipped to expand the amount of data by eight-
fold. Asperti and Mastronardo [18] used methods such as
rotation, width and height shifting, shear, and zoom in their
data augmentation applied randomly within a set parameter
range. Frid—Adar et al. [19] obtained augmented samples by
randomly stretching images in the dataset horizontally or
vertically, which became the input of an adapted deep CNN
for image recognition. Zhao et al. [20] presented an auto-
mated data augmentation method for synthesizing labeled
medical images. They are trained independent spatial and
appearance transform models to generalize a dataset of
labeled images based on VoxelMorph, which learns to output
a smooth displacement vector field that registers one image
to another by jointly optimizing the image similarity loss and
the displacement field smoothness term [21]. Their methods
essentially generate a homeomorphic mapping domain with
CNN s to change the probability distribution of datasets.

The works in [14], [16]-[20] show that the results of
applying data augmentation is better. However, the method
of augmentation was different for each work. In [14], [17],
the augmentation method was chosen by them, and the
parameters were also manually adjusted. The studies
in [16], [18], [19] set the augmentation method themselves,
and the parameter values were randomly applied. These
methods can augment numerous images, but results can be
biased or lack objectivity.

The purpose of this study is to investigate fully auto-
mated methods for classifying abnormal gastric endoscopic
images into cancer and non-cancerous lesions using a deep-
CNN scheme (i.e., Xception). Two approaches, a SLIC
superpixel and FRFCM algorithm for the segmentation and
Google’s AutoAugment for data augmentation, are devel-
oped and applied. The AutoAugment method derives param-
eters for optimal augmentation policies via reinforcement
learning using typical datasets, such as CIFAR-10, which
Google has recently established as a data augmentation
method [22].
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TABLE 1. Types and number of gastroscopy image data.

TYPE NUMBER

GASTRIC CANCER 63
Ulcer 95

SMT 72

NON-CANCER Gastri.tis 194
Bleeding 5

Polyp 11

Others 30

TOTAL 470

The major contributions of this work are highlighted as
follows:

« A new method for gastric lesion recognition based on

a deep learning network that can successfully classify
the cancer from pre-cancerous endoscopic images is
presented.

o We also propose a novel method that combines image
segmentation and augmentation algorithms.

o Our method is fully automated without manual specifi-
cation of the region of interest for testing and random
selection of images for model training.

« Experimental results demonstrate that the efficiency and
effectiveness of the proposed task are superior to the
basic deep learning model.

The remainder of this article is organized as follows:
Section II provides a detailed description of the gastro-
scopic imaging data set used in the experiment and a pro-
posed methodology. The experimental results are reported
in Section III. Section IV describes the discussion of these
findings. Finally, there are conclusions in Section V.

Il. MATERIALS AND METHODS

A. DATABASE

A dataset was collected with IRB approval from the files of
patients who had undergone gastric endoscopic imaging at the
Department of Internal Medicine at the Gyeongsang National
University Hospital, South Korea. All endoscopic image data
were selected by internists and verified via medical examina-
tion and biopsy. A total of 470 endoscopic image data were
collected from 69 patients. There are 250 images used for
training and 220 for testing. The training set included 34 can-
cer and 216 non-cancer images, and the test set included
29 cancer and 191 non-cancer images. The types of lesions
listed in Table 1 include ulcers, gastric cancers, submucosal
tumor (SMT), and polyps. The “others” in Table 1 include
blood clots, hematin, gastric xanthoma, etc. Example endo-
scopic images are shown in Fig. 2.

B. DATA AUGMENTATION

It is a typical problem that there are not enough training
data to overcome the overfitting of numerous neural net-
work parameters in deep learning-based applications (viz
medical image analysis). A typical approach to handling
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FIGURE 2. Abnormal images of gastric endoscopy: (a) Gastric cancer;
(b) Gastritis; (c) Gastric submucosal tumor (SMT); (d) Benign gastric ulcer.

this problem is artificially augmenting datasets using label-
preserved transformations, such as random image trans-
lation, horizontal/vertical flipping, shearing, rotation, and
cropping [18]. A random combination of these transforma-
tions can be used to gain a manifold increase in the num-
ber of training data, which is useful for minimizing the
parameter-overfitting problem. Recently, the Google Brain
team released the AutoAugment tool, which is used to search
for improved data augmentation policies [22]. The algorith-
mic process is shown in Fig. 3. A controller recurrent neural
network (RNN) samples a policy S, to which the images are to
be appended. Using a child network, various augment policies
are applied to the dataset. It is an algorithm that obtains
performance accuracy R and updates it in the controller RNN
to find the best augment policy. By applying the optimized
data augmentation policies, high accuracy uses of public data
(e.g., CIFAR-10, CIFAR-100, SVHN, and ImageNet) have
been achieved. In our experiments, a variant of the policy
learned from CIFAR-10 data is used. 25 sub-policies are thus
used to expand the training dataset by 25-fold.

A total of 25 augment sub-policies are presented with one
sub-policy to progress two ordered operations. The opera-
tional techniques applied to the augment policy are defined
as Shear X/Y, Translate X/Y, Rotate, AutoContrast, Invert,
Equalize, Solarize, Posterize, Contrast, Color, Rightness,
Sharpness, Cutout, and Sample Pairing. Two parameters pro-
vide the probability values that indicate the likelihood that the
operating technique will be applied to the policy so that the
size of the operation techniques will be applied to regulate
the operation. Table 2 shows the CIFAR-10 augmentation
policy we used. The first sub-policy specifies a sequential
application of Invert followed by Contrast. The probability
of applying Invert is 0.1. The Invert operation does not use
magnitude information. Then, we apply a Contrast of 0.2.
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POLICY

TABLE 2. CIFAR-10 policy of augmentation [23].

OPERATION 1

OPERATION 2

SUB-POLICY 0
SUB-POLICY 1
SUB-POLICY 2
SUB-POLICY 3
SUB-POLICY 4
SUB-POLICY 5
SUB-POLICY 6
SUB-POLICY 7
SUB-POLICY 8
SUB-POLICY 9
SUB-POLICY 10
SUB-POLICY 11
SUB-POLICY 12
SUB-POLICY 13
SUB-POLICY 14
SUB-POLICY 15
SUB-POLICY 16
SUB-POLICY 17
SUB-POLICY 18
SUB-POLICY 19
SUB-POLICY 20
SUB-POLICY 21
SUB-POLICY 22
SUB-POLICY 23
SUB-POLICY 24

(Invert,0.1.7)
(Rotate,0.7.2)
(Sharpness.0.8.1)
(ShearY,0.5.8)
(AutoContrast.0.5.8)
(ShearY.0.2.7)
(Color.0.4.3)
(Sharpness.0.3.9)
(Equalize,0.6.5)
(Conirast.0.6.7)
(Color,0.7.7)
(Equalize,0.3.7)
(Translate¥.0.4.3)
(Brightness 0.9.6)
(Solarize 0.5.2)
(Equalize,0.2.0)
(Equalize,0.2.8)
(Color,0.9.9)
(AutoContrast,0.8.4)
(Brightness 0.1.3)
(Solarize,0.4,5)
(TranslateY.0.9.9)
{AutoContrast,0.9.2)
(Equalize,0.8.8)
(Translate¥,0.7,9)

(Contrast,0.2.6)
(TranslateX.0.3.9)
(Sharpness.0.9.3)
(TranslateX.0.7.9)
(Equalize.0.9.2)
(Posterize.0.3.7)
(Brightness.0.6.7)
(Brightness.0.7.9)
(Equalize.0.5.1)
(Sharpness.0.6.5)
(TranslateX,0.5.8)
(AutoContrast,0.4.8)
(Sharpness.0.2.6)
(Color,0.2.8)
(Invert 0.0.3)
(AutoContrast,0.6.0)
(Equalize,0.6,4)
(Equalize.0.6.6)
(Solarize, 0.2.8)
(Color,0.7,0)
(AutoContrast,0.9.3)
(TranslateY.0.7.9)
(Solarize,0.8.3)
(Invert,0.1,3)
(AutoContrast,0.9.1)

When applied, it has a magnitude of 6 out of 10. These oper-
ations are applied in a specified order. There are 2.9 x1

augmentation sub-policies [22], which are randomly selected
and applied to learn the training data. We repeat the learning
and classification to find the best policy having improved
performance.

C. SEGMENTATION METHOD: SLIC SUPERPIXEL
The SLIC superpixel is a considerably fast clustering
method [24]. The reason for its fast calculation is that clus-
tering is performed using only cluster information within
a certain area without requiring the entire image’s cluster
information. Thus, the pixels in the image are clustered into
k superpixels using the same procedure as that of Fig. 4.
When the user inputs k clusters, the SLIC superpixel uni-
formly arranges the positions of the cluster center coordinates
in the image having interval S, as shown in Fig. 4(a). Here,
S is calculated using (1), where N is the number of pixels in
the image.

S =/NJk (1)

The advantage of a superpixel algorithm is that it maintains
cluster edge information. If the location of the cluster center
coordinates is set at regular intervals, the center coordinates
overlap with the edge, which can cause the loss of edge
information. To solve this problem, we convert the color

51850

~ Augmentation policy sample S

Train a child network
with policy S to get
validation accuracy R

Use R to update the
controller

FIGURE 3. Process of AutoAugment.

i sc
s N : . c
—
D . .
C1 Cz <3 d 2s
s o'
D .
Cs ca
. . .
c c 2s
4 Cs 6 Co
(@) (k)

FIGURE 4. SLIC superpixel clustering (a) Interval and setting between
clusters, (b) Clustering range.

space of the image to the CIELAB color space, obtain the
gradient image using a 1D gradient kernel, [—1, 0, 4+1] and
[—1,0, —i—l]T, and move the central coordinates to the lowest
of the 3 x 3 pixel nearest the cluster center coordinate.

When the central coordinate arrangement is complete,
we calculate the d,. and d; of all pixels ((2) and (3)).

d. = \/(1,- ) (@ —a) (b —b) . @
dy = (5 — xi)> + (3 — i)™ 3)

Here, [;, aj, b; represents the CIELAB color information
of the j th cluster center coordinate. /;, a;, b; represents the
CIELAB color information of the i th image pixel. x;, y;
is center coordinate of the j th cluster .x;,y; is ith pixel
coordinate. d. is the CIELAB color distance between cluster
¢j and pixel i within the 2§ range, as shown in Fig. 4(b). d;
is the distance between cluster ¢; and pixel i within the 2§
range. If d. and d; are obtained, the total distance, D, can be
calculated, as with (4).

d. 2
D=./(d)*+ (?A) m2. “)

Here, m is the weight parameter. Pixel i is assigned to the
cluster having the smallest calculated D value among clusters
in the range. After all cluster assignments are completed for
all pixels, i, we update the /;, aj, bj,xj, and y; information
of all clusters to optimize clustering. The /;, a;, bj of the j th
cluster is updated to the mean value of /;, a;, b; of the pixel,
i, assigned to the j-cluster, and x;, y; is changed to the center
of gravity of the pixel, i, assigned to the j th cluster. Repeat
until the x; and y; of all clusters are not changed [24].

D. SEGMENTATION METHOD: FRFCM
The fuzzy c-mean (FCM) algorithm with spatial constraint
(FCML_S) is an effective algorithm for image segmentation.
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However, this algorithm cannot be robust, especially if it
does not have enough knowledge of noise. The fast and
robust fuzzy C-means (FRFCM) algorithm is more advanced
than other FCM algorithms. Lei et al. [25] proposed a new,
fast and robust FCM frame walk for image segmentation by
integrating local spatial and gray information. The objective
function of FRFCM is defined as (5).

q c
In= D, D, v &= vill? ®)

The parameter uy; represents the fuzzy membership gray
value [ with respect to cluster k, and & is the gray levels.
Utilizing the Lagrange multiplier technique, the optimization
problem can be converted to an unconstrained optimization
problem as (6).

~ q c c
Tw= 0 S g =P = (3w 1)

(6)

The parameter A is a Lagrange multiplier. Therefore, the
minimization problem is converted to finding the saddle
point and taking the derivation of the Lagrange J,, with
respect to the parameter, i.e.., uy and vi. By minimizing (5),
we obtained the corresponding solution as follows.

T
e —2/(m—1)"
=51l vl
Z;‘{zl i uz;

We can get a membership partition matrix U = [u]<*9
using (7). To obtain a stable U, repeat (7) and (8) until
max {U(’) - U("H)} < ¢ is satisfied, where ¢ is an exceed-
ingly small error threshold. A new membership partition
matrix, U’ = [uy ]V, that corresponds to the original image
can be obtained because uktl) is a fuzzy membership of gray
value / with respect to cluster k. N is the total number of pixels
in the image.

To speed up the algorithm’s convergence and obtain a

better membership partition matrix, they use the median filter
as (9).

)

®

Ve =

U" = med {U/} 9)

E. DEEP LEARNING MODEL: XCEPTION NETWORK

Xception is a CNN model that was released in 2016. The
network uses the Inception module to reduce connectiv-
ity between nodes, further separating finding relationships
between each channel from searching local information.
Fig. 5 shows an extreme version of the inception module that
separately operates 1 x 1 and 3 x 3 convolution operations of
all channels of the resultant feature map. Thus, this module
calculates the feature map per channel. Xception uses the
depth-wise separable convolution created by modifying this
operation. The depth-wise separable convolution is used to
perform a convolution operation on each channel and to apply
the 1 x 1 convolution operation to the result. As shown
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FIGURE 6. Comparison of convolutions (a) Standard convolution,
(b) Depth-wise separable convolution.

in Fig. 6(a), if the conventional convolutions create a feature
map that takes all channels and local information, the depth-
wise separable convolution, shown in Fig. 6(b), creates one
feature map for each channel and performs a 1 x 1 convo-
lution operation to adjust the number of feature maps that
are output [26]. The 1 x 1 convolution operation is a point-
wise convolution. The difference from the extreme version of
the inception module is the sequence of operations and the
presence or absence of an intermediate nonlinear activation
function.

In a previous study [27], we found that the results of
Xception in the gastric medical image classification were
the best among four different deep learning models, Xcep-
tion, Inception-V3, Resnet-101, and Inception-Resnet-V2.
It also found out that the CIFAR-10 augmentation policy is
the best for the classification among ImageNet, SVHN and
CIFAR-10. Based on the result [27], we selected Xception
network for this study.

F. EVALUATION METHODS

As a pre-processing step, images are augmented and seg-
mented using AutoAugment and the SLIC superpixel, respec-
tively. First, each image is augmented into 25 new images
using the CIFAR-10 AutoAugment policy. Second, each
of these 25 images is segmented into nine areas using
the SLIC superpixel and FRFCM algorithm. Ground-truth
information of the segmented area is provided by the
internist. Fig. 7 shows the process of image augmentation and
segmentation.
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FIGURE 7. Image augmentation and segmentation process.
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FIGURE 8. Flowchart of the entire procedure.

During the test step, we use the score to represent the
results of classification. If the classification model classifies
more than 1/3 of the segmented areas as cancer, then it
will classify the entire image as cancer. The size of gastric
lesions can vary significantly and can include all the seg-
mented regions or only half of them. Others can contain
just one region. Therefore, classification is conducted using
(10), and the classification threshold value is set through
experimentation:

Number of cancerous segmented areas - 1 (10)
Total number of segmented areas — 3

Fig. 8 presents a flowchart of the proposed system.
First, the training data are augmented and segmented to gen-
erate the classification model. Then, the test data are applied
to the segmentation to determine whether the image is cancer
Or non-cancer.

Ill. RESULTS

In the field of medical image analysis, a small amount of
training data is always a restrictive concern. Lesions of vari-
ous sizes can be found in endoscopic images. Thus, a model
lacking augmentation and segmentation is insufficient for dis-
tinguishing and classifying gastric cancer from other gastric
diseases. Thus, we proposed using the AutoAugment and two
segmentation algorithms to create a CADx system for gastric-
lesion diagnosis, as shown in Fig. 8. In models with augmen-
tation, a total of 25 augmented sub-policies are applied, which
progresses two tasks in order. In models with segmentation,
we used SLIC superpixel and FRFCM to segment images
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FIGURE 9. Segmented gastric cancer image. (a) Ground truth (b) SLIC
superpixel segmentation (c) FRFCM segmentation.

and training was performed based on the internist’ ground
truth for segmented areas. The number of segmentation areas
per image was set to nine. After the segmentation, nine
images are generated from one image, and each image has
one segmented region which takes the pixel value of the
original image and the other region has a pixel value of zero.
Fig. 9 shows the segmentation results according to two differ-
ent segmentation methods. Fig. 9 (a) is the original endoscopy
image, and the blue line indicates the area of the lesion as
the ground truth as defined by an internist. Fig. 9 (b) and (c)
are images with SLIC superpixel and FRFCM segmentation
applied, respectively. Clearly, the results of the two segmenta-
tion methods are different. The SLIC superpixel has restric-
tions on clustering space at the segmentation, but FRFCMs
have no area limit; therefore, the clustering patches can have
very long and wide shapes and may be separated altogether
and far away.

The performance comparisons of the application of both
algorithms are shown in Fig. 10 and 11. It shows the total
results of gastric-lesion classification using original data with
augmentation only, segmentation only, and both augmenta-
tion and segmentation. The area under the receiver oper-
ating characteristic (ROC) curve was 0.90 for the original
data, 0.92 with augmentation only, 0.94 with SLIC super-
pixel segmentation only, 0.92 with FRFCM segmentation
only, 0.96 with augmentation and SLIC superpixel segmenta-
tion, and 0.94 with augmentation and FRFCM segmentation.
As shown by the ROC curves, the proposed algorithm per-
formed the best.

The proposed methods were executed on a 14-core
2.20 GHZ Xeon CPU and 128 GB memory using the CentOS
7.7 Linux operating system. Two NVIDIA Tesla T4 GPUs
with 16 GB device memory were used. The network archi-
tecture was implemented on MATLAB 2019a using the deep-
learning toolbox library. For the original data, the program
took ~1 h to train 100 epochs using the training dataset. For
augmentation, the program took ~1 d to train 100 epochs
using the training dataset. For segmentation, the program took
~3 h to train. For augmentation and segmentation, the pro-
gram took ~10 d to train 47,000 iterations. The mini-batch
size was 60, and the initial learning rate was 0.001.

IV. DISCUSSIONS

The results show that the models trained using augmentation
and/or segmentation performed better than the one trained
without them. This provides a solution for one of the biggest
problems of deep learning in medical image analysis, which
relies heavily on large amounts of data. In Fig. 10 and 11,
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FIGURE 11. The results of ROC curves for the original image with
augmentation only, with FRFCM segmentation only, and with
augmentation and FRFCM segmentation (the proposed method).
the Az values of the two segmentation algorithms were
higher or equal to those of augmentation. One possible
reason is that it was more effective to transfer information
from the lesion location to the network via segmentation.
Fig. 10 and 11 show that the results of the SLIC superpixel
are higher than those of the FRFCM. In this study, SLIC
superpixel is clearly the best overall performer. It is the
most memory-saving and the fastest method, segmenting a
471 x 407 image in 0.29 s, while FRFCM takes 11.32 s.
It shows outstanding boundary adherence, while the seg-
mented shape of the FRFCM method spreads widely in the
image. The segmented shape of the SLIC superpixel is more
focused on lesions than that of FRFCM. As shown in Fig. 9,
SLIC superpixel with restrictions on the clustering area can
select about four patches to segregate images with lesions,
but at least five patches must be selected in FRFCM. In the
gastroscopy image, the SLIC superpixel method was more
suitable for detecting cancers because they spread widely
from one place rather than from many places. This could be
one of the reasons why SLIC superpixel turned out better than
FRFCM. SLIC superpixel is easy to use, its only parameter
being the number of necessary superpixels.

The classification results obtained after applying segmen-
tation methods are better than the use of only the original
image data, demonstrating that learning through area labeling
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is effective. It also shows the potential for later detection
studies that can provide lesion region information using the
probabilities of each patch.

We have proposed a performance improvement in
computer-aided diagnosis (CADx) systems for white light
gastric endoscopic images instead of narrow-band imag-
ing (NBI) magnification. NBI is an optical technology
newly developed and applied in the area of gastrointestinal
endoscopy. This technique highlighted to blood vessels using
the wavelength, which can be easily absorbed by hemoglobin
for maximum contrast. While adding NBI images may
improve the performance of the proposed system, they are
still used as auxiliary tools in the hospital. We plan to study
comparative models using NBI images with different deep
CNN networks.

Google’s AutoAugment provided the best data augmenta-
tion policy for a given dataset using reinforcement learning.
A subset of policies achieved by the AutoAugment, which
were excellent for the CIFAR-10 dataset, was applied to
improve the performance of our gastric cancer classifica-
tion task. However, several powerful computational resources
were required to produce optimal data augmentation on this
training dataset. Thus, a fast and flexible data augmentation
solution based on Bayesian optimization instead of reinforce-
ment learning should be researched in the future. In addition
to methods of finding and applying optimal augmentation
policies, a general adversarial network, which is a model
architecture for training a generative model, is under investi-
gation. We also plan to study comparative models using other
policies of AutoAugment with different deep CNN networks.

V. CONCLUSION

Deep CNNs are powerful and useful algorithms that com-
monly work well when trained using a large amount of
data. The shortage of labeled training data in gastric can-
cer research is a major problem that limits the application
of CNNs in the field of medical image analysis. In this
paper, we proposed the CADx system, which can distinguish
and classify gastric cancers from other gastric diseases. The
system used the Xception network, which involves depth-
wise separable convolutions. The proposed method used two
algorithms: Google’s AutoAugment for augmentation and the
SLIC superpixel and FRFCM algorithms for image segmen-
tation. As a result of analyzing the classification performance
of the system, we found that augmentation and segmentation
enabled the classification model to perform better because
the applied data augmentation policy prevented overfitting.
Additionally, the segmented images expertly identified as
cancer or non-cancer by the internist facilitated our focus
on the features of the lesion during training. In this study,
we achieved a ROC curve of 0.96, which is 0.06 higher than
that achieved when the two methods were not applied, indi-
cating that it is meaningful to train by dividing the area of an
augmented image. This methodology may play a vital role in
selecting effective treatment options and survival predictions
without the need for a surgical biopsy.
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Future work includes verifying the results of this study
by applying the CADx system to a larger and independent
data set, expanding a deep-learning model, comparing other
segmentation and augmentation methods. The major question
of the impact of the number of segmentations and the classifi-
cation threshold value in segmented areas as cancer will also
need to be addressed in future studies.
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