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ABSTRACT Electrocardiogram (ECG) is a physiological signal widely used in monitoring heart health,
which is of great significance to the detection and diagnosis of heart diseases. Because abnormal heart
rhythms are very rare, most ECG datasets have data imbalance problems. At present, many algorithms
for ECG anomaly automatic recognition are affected by data imbalance. Conventional data augmentation
methods are not suitable for the augmentation of the ECG signal, because the ECG signal is one-dimensional
and their morphology has physiological significances. In this paper, we propose a ProGAN based ECG
sample generation model, called ProEGAN-MS, to solve the problem of data imbalance. The model can
stably generate realistic ECG samples. We evaluate the fidelity and diversity of the data generated by the
model and compare the data distribution of the original and generated data. In addition, in order to show
the diversity of the generated ECG data more intuitively, we manually checked the diversity and calculate
the statistics of the data. The results show that compared with other ECG augmentation methods based
on GANs, the ECG data generated by our model has higher fidelity and diversity, and the distribution
of generated samples is closer to the distribution of original data. Finally, we established neural network
models for arrhythmia classification, and used them to evaluate the improvement of the classification model
performance by ProEGAN-MS. The results show that augmented data by ProEGAN-MS can effectively
improve the insufficient sensitivity and precision of the classification model.

INDEX TERMS Generative adversarial networks, data augmentation, electrocardiogram signals, ECG
generation.

I. INTRODUCTION
Electrocardiogram (ECG) is a physiological signal widely
used in heart health monitoring. It contains a large amount
of pathological information related to heart activity that
is very important for the detection and diagnosis of heart
diseases. The amount of ECG data is usually very large
since the duration of symptoms is one day or longer.
It is very time-consuming and difficult for cardiologists to
diagnose arrhythmia only by manually analyzing a large
amount of ECG data, as some important information may
be overlooked [1]. Therefore, some computer-aided diag-
nosis (CAD) algorithms have been proposed and used to
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automatically identify arrhythmias in the past few decades.
Traditional ECG automatic classification methods [2]–[10]
have achieved acceptable ECG classification performance,
but they also have disadvantages. Conventional methods need
to design a feature extractor, and then input the extracted
features into the appropriate classifier for ECG classifica-
tion.The feature extractors are usually designed and selected
through multiple trials or experience, and the extracted fea-
tures are difficult to express all the features of the signal. The
methods use hand-crafted features for classification, which
tend to generate more false positives, which may lead to
misdiagnosis [11].

Deep learning methods have the capability to automati-
cally learn features from input signals and can extract more
abstract and advanced features [12]. Therefore, recentlymany
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studies use deep learning methods to design ECG classi-
fiers [13]–[20] and achieved better performance than tradi-
tional methods. Although deep learning methods have shown
promising results in ECG classification, they are seriously
affected by data imbalance. The imbalance of the datasets
will make training models (especially deep learning models)
tend to be biased towards classes containing a large number
of samples [21]. For ECG datasets, most abnormal heart
rhythms are extremely rare, which limits the establishment
of a machine learning model. There are many methods to
overcome data imbalance in computer vision tasks, such as
randomflipping, random translation, random cropping, affine
transformation, etc. But these methods are not suitable for
the augmentation of the ECG signal, because the ECG signal
is one-dimensional and their morphology has physiological
significance. Oversampling is the most commonly used ECG
augmentation method, but it is easy to cause overfitting [22].
There are also some ECG generation methods based onmath-
ematical models [23]–[27]. The methods based on traditional
mathematical models can generate very realistic heartbeats,
but these heartbeats are too standard and similar. In addition,
each type of heartbeat corresponds to a set of equations.
In order to generate different types of heartbeats, the equa-
tions must be modified. This modification process is usually
complicated and troublesome [28].

Generative adversarial networks (GANs) were proposed
by Goodfellow et al. [29] in 2014 as a tool for generat-
ing data. The trained GAN maps the latent input noise to
the real data distribution to generate synthetic data. GANs
and improved GANs algorithms are widely used in image
generation, style conversion, speech signals generation, and
other fields in recent years, and have excellent performance.
GAN is also widely used in medical image processing.
Madani et al. [30] used GAN to generate chest X-ray images
and finally used it for the classification of cardiovascu-
lar abnormalities. Tim et al. [31] proposed a GAN-based
method to reduce noise in CT images to ensure the quality
of the CT image. Han et al. [32] used GAN to generate
multi-sequence brain magnetic resonance (MR) images and
successfully generated 128× 128 brain MR images avoiding
artifacts. Quan et al. [33] used GAN to quickly and accu-
rately reconstruct CS-MRI (Compressed Sensing Magnetic
Resonance Imaging).

However, there are very few studies [21], [28], [34], [35] on
ECG signal generation using GAN, and their quality assess-
ment of the generated ECG signal is not comprehensive.
The aboveGAN-based ECG generation studies have different
evaluation indicators. Some studies only show the accuracy of
the classifier after data augmentation, but do not evaluate the
quality of the production data. Some studies only compare
the distribution of the generated data with the original data
and did not evaluate the fidelity or diversity of the generated
data. In addition, these studies do not consider the problem
of mode collapse. GANs tend to generate only a subset of
the types found in the training data. This tendency will cause
the model to generate only a certain type or a few types of

samples, which is what we call mode collapse. Mode collapse
is collectively referred to the lack of diversity of the generated
samples [36]. Each type of ECG signal usually presents more
than one forms, but after testing, the above model can only
generate samples of one or several shapes. In other words,
although the generated samples are realistic, the distribution
of generated samples is different from the original samples.

In this work, we further explored GAN-based methods to
solve ECG data imbalance. The proposed method is based on
ProGAN [37]. Different from the traditional GAN structure,
the structure of the generator and discriminator progressively
grow with the training process. The model does not directly
generate an ECG signal with a target length but starts with a
low-resolution ECG signal with a length of 32 sample points,
and then generates a higher resolution ECG signal by pro-
gressively increases the convolutional layer used for feature
extraction in the model structure. In addition, the across-
minibatch standard deviation [36] is applied, which alleviates
the problem of model collapse, making the generated ECG
distribution closer to the real data distribution.

The contributions of this paper are:

1) ProEGAN-MS, an ECG signal generation model,
is proposed, which can generate ECG signals with
higher fidelity and the training process is more stable.
In addition, it can generate ECG signals of any desired
resolution without changing the model.

2) The problem of mode collapse in ECG signal gener-
ation by the GAN method is solved. There is better
diversity in the generated ECG data. The distribution of
ECG signals generated by the proposed model is more
similar to the real data distribution. There will not be
a situation where the generated signal of one type of
heartbeat has only one form, or the proportion of one
or more forms is very high.

3) Some of the GAN-based ECG generation methods are
reproduced and a comprehensive comparison of vari-
ous methods under the unified evaluation indicators are
conducted. In addition, in order to show the diversity of
the generated ECG data more intuitively, we manually
checked the diversity of the data and calculated the
statistical results.

The structure of the paper is as follows. Section II reviews
some studies on ECG signal generation based on GAN.
Section III expatiates on the proposed method including
network architecture and loss function in detail. Section IV
describes the experimental platform, database, evaluation
index, evaluation method. Model training details and results
are also described in Section IV. Section V concludes the
contributions of this paper.

II. RELATED WORKS
In this section, we review some ECG augmentation methods
based on GAN proposed in the past.

There are few studies on using GAN to generate ECG
signals. Wang et al. [34] were the first to use GAN to
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generate ECG signals to solve data imbalance. They construct
a data augmentation model based on an auxiliary classifier
generative adversarial network (ACGAN) [38]. The statisti-
cal indicators Euclidean Distance (ED), Pearson Correlation
Coefficient(PCC), and Kullback Leibler Divergence (KLD)
were used to compare the distribution of the generated sig-
nal and the original signal. Finally, classification experi-
ments on MIT-BIH [39] datasets was conducted to show
that the augmentation model can improve the classification
accuracy. Shaker et al. [21] used generative adversarial net-
works (GANs) to restore the balance of the dataset. The
generator network in their model consists of four fully con-
nected layers; the discriminator network consists of five fully
connected layers. This model is used to balance the fifteen
types of samples in the MIT-BIH dataset. Wulan et al. [28]
proposed two GAN-based ECG generation models the Spec-
troGAN model and WaveletGAN model. SpectroGAN and
WaveletGAN used short-term Fourier transform (STFT) and
stationary wavelet transform (SWT) respectively to convert
a 1-D time-domain ECG signal into a 2-D time-frequency
representation as input for the deep convolutional generative
adversarial networks (DCGAN) [40]. The GAN-Train and
GAN-Test score obtained by the SVM classifier is used to
evaluate the fidelity and diversity of the generated ECG
samples. Golany et al. [35] also used DCGAN for ECG data
augmentation to improve classification model performance.
But they only showed the accuracy of the classificationmodel
after augmentation and did not evaluate the quality of the
generated ECG signal.

III. METHODOLOGY
In this chapter, we describe in detail the structure of the
proposed ECG generation model and the loss function used.

A. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) were proposed by
Goodfellow et al. in 2014 as a tool for generating data. GANs
consist of a generator network and a discriminator network.
The generator captures the distribution of real data and pro-
duces data similar to the original data. The discriminator is
used to determine whether the input data is real (original
data) or fake (generated data). The training process of this
framework is defined as a game between two competing
networks. The discriminator learns to discriminate between
the real and fake samples and the generator learns to fool
the discriminator. The loss function of the original GAN is
defined as follows:

min
G

max
D

Ex∼Pr [log(D(x))]+ Ex̃∼Pg [log(1− D(x̃))] (1)

where x̃ = G(z), z represents the input of the generator and
follows noise distribution p, such as Gaussian distribution. G
and D represent generator and discriminator respectively. Er
is the distribution of real data and Eg is the distribution of the
data generated by the model.

In order to make the training more stable, we use
WGAN-GP [41] loss function instead of the classic GAN loss

function (formula 1). The loss function of the WGAN-GP is:

L = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)]

+ λEx̂∼Px̂
[(∥∥∇x̂D(x̂)∥∥2 − 1

)2] (2)

where λEx̂∼Px̂
[(∥∥∇x̂D(x̂)∥∥2 − 1

)2] is the gradient penalty,
which is an alternative way to enforce the Lipschitz con-
straint. x̂ is random samples obtained by random interpolation
sampling between x and x̃. Px̂ is distribution satisfied by x̂.
This method interpolates each real data with a generated one,
with a random weight. The penalty is calculated from the
gradient of the input with respect to the discriminator’s score
for that interpolated data. If the gradient of the discriminator
is far away from 1, the penalty term will prevent the training
fromwandering to unstable regions. In addition, an additional
drift penalty [36] was added to the discriminator loss. It can
prevent the discriminator output from deviating too far from
zero. The final loss function we used is as follows:

Loss = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)]

+ λEx̂∼Px̂
[(∥∥∇x̂D(x̂)∥∥2 − 1

)2]
+ εdriftEx∼Pr

[
D(x)2

]
(3)

where εdrift is a weight of drift penalty.

B. MODEL STRUCTURE
The structure of the ECG generation model we proposed
is shown in Fig. 1. The model does not directly generate
an ECG signal with a length of 256 sample pointsbut starts
with a low-resolution ECG signal with a length of 32 sample
points, and then generates a higher resolution ECG signal
by progressively increases the convolutional layer used for
feature extraction in the model structure. When a new convo-
lution structure is added to the model, there will be a fade-in
process. This is to avoid the influence of the sudden increase
of the gradient on the parameters of the trained low-resolution
convolutional layer. The advantage of progressive training
is that it can achieve stable synthesis ECG signals in high-
resolution, and it can also greatly speed up training. Because
the generation of shorter signals was more stable in the early
stage, and it is easier to supplement details progressively
than to generate all details directly. The training process is
divided into four stages. Each stage generates ECG signals
with lengths of 32, 64, 128, and 256 sample points. The real
samples used for training in each stage will also be downsam-
pled to the corresponding length. Taking the training process
of type N as an example, the signals generated at each stage
are shown in Fig. 2. (for the convenience of comparison,
we upsampled the signals with a length less than 256 to
256). Table 1 describes the structure of the generator and
discriminator in detail. In particular, we merely referred to
ProGAN to design our own generator and discriminator rather
than directly use the whole structure of ProGAN.
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FIGURE 1. The upper part represents the generator, and the lower part represents the discriminator. The training process is divided into four
stages, starting with a length of 32-sampling points ECG. After the training of the previous stage is completed, the new convolution structure
will be added to the current network. Except for the first stage, each stage of training is divided into two steps. In step 1, the newly
high-resolution block will fade-in the network with a weight (linearly increasing from 0 to 1). Then in step 2, the entire network parameters will
be optimized. The model finally generates a heartbeat signal with a length of 256 sampling points. Here, 2x and 0.5x represent doubling or
halving the signal length. In the generator, 1 × 32, 1 × 64, 1 × 128, and 1 × 256 represent the process of converting the feature vector into an
ECG signal of corresponding length. In the discriminator, 128 × 32, 64 × 64, etc. represent the process of converting ECG signals of different
lengths into feature vectors. G_block and D_ block represent convolution structure described in TABLE 1.

FIGURE 2. Generated samples for each stage. To facilitate comparison, the generated samples with a length of less than 256 are all
up-sampled to 256.

C. INCREASING DATA DIVERSITY USING MINIBATCH
STANDARD DEVIATION
GANs tend to generate only a subset of the types found in the
training data. This tendency will cause the model to generate
only a certain type or a few types of samples, which is
what we call mode collapse. This phenomenon is collectively
referred to as the lack of diversity of generated samples [42].
Each type of ECG signal usually presents more than one
forms, but the model with mode collapse can only generate
samples of one or several shapes. In order to improve the
diversity of the generated data andmake the distribution of the
generated data more similar to the original data, we add the
across-minibatch standard deviation [36] as an extra feature
channel to the last layer of the discriminator. This gives
the discriminator a clue to detect generated batches if the

generator only learns how to generate one type of sample,
which forces the generator to learn a distribution of samples
to generate. The calculation process of across-minibatch stan-
dard deviation is as follows:

FB,L = fB,L −
1
B

B∑
i=1

fi,L (4)

which was used to calculate the difference from the average
of each location, where fB,L are feature of a batch. B and L
represent the number of features in the batch and the length
of a feature, respectively.

SL =

√∑B
i=1

(
FB,L − FB,L

)2
B

(5)
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TABLE 1. Structure of the generator and discriminator.

Equation 5 was used to calculate the standard deviation of
each feature over the minibatch.

M =

∑L
i=1 si
L

(6)

Equation 6 was used to calculate the mean standard deviation
across the entire feature map. Finally, these calculations are
repeated and the obtained results are concatenated to all
signal locations over the minibatch.

IV. EXPERIMENTAL AND ANALYSIS
In this section, we evaluate the effectiveness of the proposed
method. We first introduce the database and experimental
platform and then describe the details of the model training.
GAN-train and GAN-test scores were used to evaluate the
fidelity and diversity of the generated data. Statistical indices
of index Euclidean Distance (ED),Dynamic Time Warping
(DTW), Pearson Correlation Coefficient(PCC), and Kullback
Leibler Divergence (KLD) were used to compare the dis-
tribution of the generated data and the distribution of the
original data. Because the evaluation indexes of previous
studies are not uniform, we have reproduced some meth-
ods and compared them with our methods under the above
evaluation criteria. In addition, in order to visually show the
improvement of generated data distribution. We performed
artificial diversity statistics on ECG samples generated by
different methods and showed the statistical results. Finally,
we established a neural network classification model for
arrhythmia and used the evaluation index of the classification
task to evaluate the improvement of the classification model
performance by ProEGAN-MS.

A. EXPERIMENTAL PLATFORM
The experiments were executed on a computer withWindows
10 operating system, Intel (R) Core (TM) i7-8700MCPU,
GeForce RTX 2080 SUPER, 16GB RAM, and by program-
ming in Python. All the models are run over GPU using the
PyTorch deep learning framework.

B. MIT-BIH DATABASE AND SIGNAL PREPROCESSING
In this study, we use the MIT-BIH arrhythmia database [38].
The database contains 48 half-hour records, each record
contains two 30-minute ECG leads signals with a sampling

frequency of 360 Hz. Four of the records (102, 104, 107, 217)
are generated by pacemakers and are excluded in this study.
The database contains 16 types of heartbeats. Five majority
types: normal beat (N), left bundle branch block beat (L),
right bundle branch block beat (R), premature ventricular
contraction (V), and atrial premature contraction (A) are
involved in this study.

There are two mainstream data category selection methods
in papers that useMIT-BIH data: one uses five categories data
of NOR, LBBB, RBBB, PVC andAPC (which is the category
selected in this article), and the other uses five categories data
of N, S, V, F and Q. (where N includes NOR, LBBB, RBBB,
AE and NE; S includes APC, AP, BAP and NP; V includes
PVC, VE and VF, F only includes VFN, and Q includes FPN
and UN.) We chose the first data selection method for the
same reason as many other studies because these five types
of heartbeat data are abundant in each category. Four records
(102, 104, 107, and 217) ofMIT-BIH arrhythmia database are
generated by pacemakers and only contain paced heartbeats.
They were excluded from this study, as has been done in
many studies using the five data categories, because it does
not contain the five major heartbeats we need. If the second
data classification rule is adopted, the number of heartbeats in
the heartbeat categories other than the above five types is very
small. For example, the number of AE and UN is only 16 and
15. The number of NP, VE, and AP is also less than 100.
Lack of data will seriously affect the performance of machine
learning algorithm. Although we can also use the second data
category selection rule, the neural networkmodel trainedwith
such a small amount of data is not reliable. There is no special
standard in this experiment for the selected data, which is
commonly used in ECG research, so reproducibility can be
guaranteed.

Lead MLII ECG data were sliced to single heart-beats
which were used for sample generation in this study. On the
basis of the position of R-peak provided by Annotation Files,
we intercept 0.24s (88 points) forward and 0.47s (168 points)
backward (256 points in total) to form a single heartbeat
sample because a heartbeat usually lasts 0.6 to 0.8 seconds.
After segmentation, some samples with a length of fewer
than 256 points are excluded. In addition, samples containing
two R-peak are also excluded. The separated ECG samples
are shown in Fig. 3. The number of heartbeats in each type
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TABLE 2. Overview of the data used in this work.

FIGURE 3. A heartbeat sample of type N.

is shown in Table 2. Original samples represent the data of
original data, generated samples represent the data used for
diversity and fidelity evaluation and distribution evaluation,
and augmented samples represent the augmentation data used
in classification experiments. In order to get the generated
data closer to the original sample, but also to make the GAN
model more robust, we did not perform any filtering on ECG
samples used for generator training.

C. MODEL TRAINING AND GENERATED ECG
1) TRAINING DETAILS OF THE MODEL
The input z of the generator is a noise vector of length 128,
and z follows a normal distribution with a mean of 0 and a
variance of 1. The ProEGAN-MS is trained by Adam [43]
with β1 = 0.0, β2 = 0.99. The learning rates of generator
and discriminator are 0.001. The hyperparameters λ and εdrift
of the gradient penalty and drift penalty are 10 and 0.001,
respectively. Since the number of N categories in the orig-
inal data is sufficient, we only generate data for abnormal
rhythms (L, R, V, and A). The models of type L, R, and V
are trained for 30 epochs each stage, the model of type A
is trained for 50 epochs each stage. We call the model after
removing the across-minibatch standard deviation feature in
ProEGAN-MS as ProEGAN. We did the same training on
the ProEGAN model and compared the following parts to
verify the effect of across-minibatch standard deviation on
improving the diversity of the generated data. All experiments
are performed five times and the middle value is taken.

2) GENERATED ECG SAMPLES
Fig. 4 (a) to (d) shows four types of original data, and (e) to
(h) shows the generated data. The goal of the GAN model
is to generate data similar to the original data but not in the

training set. As we can see from Fig. 4, the generated sample
is very similar to the original sample but slightly different.
Different types of ECG samples have different character-
istics, ProEGAN-MS can automatically learn and generate
samples with high fidelity. In addition, even the same type of
heartbeat, there will be several different main forms, as shown
in Fig. 5, for example, there are four main forms in the type
of LBBB. ProEGAN-MS can also generate realistic samples
of the same type of heartbeat in different forms.

D. EVALUATION OF FIDELITY AND DIVERSITY
1) EVALUATION INDICATORS
It is important to evaluate the generated data in two aspects:
the fidelity and the diversity of the data. The fidelity of the
generated data is not enough, which clearly indicates that the
model is performing poorly. If the fidelity of the generated
data is enough but the diversity is insufficient, it indicates
that the model has mode collapse. This phenomenon is also
what we do not want. There are several indicators, such as
Inception Score (IS) [44], Frĺȩchet Inception Distance (FID)
[45], Mode Score [46], GAN-train, GAN-test [47], and so
on, are widely used to evaluate the performance of a GAN.
Although IS and FID are widely used, they are not suitable for
evaluating the ECG data generation model because they rely
toomuch on Inception V3. In this study, we utilize GAN-train
and GAN-test to evaluate the fidelity and the diversity of the
ECG data generation model.

2) EVALUATION METHODS
In order to get the two scores GAN-train and GAN-test,
we need a basic multi-category heartbeat classifier.
We removed the feature normalized part of the SVM heart-
beat classifier described in the article [28] as the basic classi-
fier used in this study. The classificationmethod is as follows:
Firstly, Daubechies wavelet 6 is utilized to decompose each
heartbeat at 4 levels. Then, approximation coefficients at level
4 as a feature vector were input to SVM. Finally, the trained
SVM is used as a classifier to classify the heartbeats based on
the feature vector.

For getting the GAN-train score, SVM needs to be trained
on the generated ECG sample and tested on the original ECG
sample. If the SVM can classify the original data correctly,
it means that the generated data is similar to the original
data. Under the premise that the generated data is realistic,
the higher the GAN-train score, the better the diversity of
the generated data. For getting the GAN-train score, SVM
needs to be trained on the original ECG sample and tested on
the generated ECG sample. The higher the GAN-test score,
the better the fidelity of the generated data.

3) RESULTS
We utilize GAN-train and GAN-test to evaluate the diver-
sity and the fidelity of the ECG data generated by different
models. The results are shown in Table 3. The higher the
GAN-train score, the better the diversity of the generated
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FIGURE 4. Different types of original heartbeat samples and generated heartbeat samples. (a) to (d) show the original samples of type
LBBB(L), type RBBB(R), type PVC(V), and type APB(A). (e) to (h) show the generated samples of type LBBB(L), type RBBB(R), type PVC(V), and
type APB(A). The generated heartbeat has the characteristics of the original heartbeat and is slightly different from the original sample.

FIGURE 5. Four main forms of LBBB in MIT-BIH arrhythmia database. (a) to (d) show the four main forms of the LBBB-type heartbeat in the
original data. (e) to (h) show the four main forms of the LBBB-type heartbeat in the original data. The proposed augmentation model can
effectively generate different forms of heartbeats of the same type.

data. The higher the GAN-test score, the better the fidelity
of the generated data. We used GAN-train and GAN-test
score from real data as benchmarks. We can see that the
GAN-train score of the model proposed by Shaker et al. [21]
and Golany et al. [35] are about 30 and 40 lower than the
benchmark, respectively. The GAN-train score of ProEGAN
is 91.73, which is much higher than the scores of other
methods and is also the closest to the benchmark. Com-
pared with ProEGAN, ProEGAN-MS has further improved
diversity and fidelity due to the addition of MSS features,
with GAN-train score of 92.64. The GAN-Test score of the
model proposed by Shaker et al. [21] is 98.04 or even higher
than the benchmark. Through the analysis of the generated
samples, this is due to the poor diversity of generated sam-
ples. The model only generates a few types of samples with
extremely obvious characteristics, so it is easier to identify.
The GAN-Test scores of ProEGAN and ProEGAN-MS were
87.31 and 89.84, respectively. The result shows that compared
with other methods, ProEGAN and ProEGAN-MS can not
only ensure high fidelity, but also ensure the diversity of the
generated data. However, other methods can guarantee the

TABLE 3. Evaluation of generated data fidelity and diversity.

fidelity of the generated data, but the diversity is poor. This
result is also reflected in subsequent experiments.

In order to visually show the improvement of generated
data diversity and distribution, we divided the main forms of
heartbeats in each type in the original data and made manual
statistics on their proportions. From Fig. 6 (a) to (d), we can
see that the ECG data generated by the models proposed by
Shaker and Golany has a particularly different distribution
from the original data. In addition, there are some forms that
cannot be generated in each type of heartbeat. From Fig. 6 (e)
to (h), we can see that the ECG data generated by ProEGAN
and ProEGAN-MS has a highly similar distribution to the
original data, and there is almost no ECG form that cannot
be generated.
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FIGURE 6. The forms distribution statistics of the original data and the generated data. (a) to (d) show the distribution of the form of the four
type LBBB(L), RBBB(R), PVC(V), and APB(A) in the original data and the data generated by the compared method. From the red and green bars
in (a) to (d), it is obvious that the form of generated samples have obvious biases, and some forms cannot be generated. The distribution of the
data generated by these two models is very different from the original data distribution. (e) to (h) show the distribution of the form of the four
types of the original data and the data generated by our method. The blue, red and green bars indicate the proportions of forms in the original
data and the data generated by the two methods we proposed, respectively. The form distribution of the generated data is highly consistent with
that of the original data.

TABLE 4. Quantitative evaluation of the generated data.

E. EVALUATION OF SAMPLE DISTRIBUTION
1) EVALUATION INDICATORS
We evaluate the data distribution difference between the gen-
erated data and the original data by some indicators based
on statistical characteristics, such as Euclidean Distance
(ED), Dynamic Time Warping (DTW), Pearson Correlation
Coefficient (PCC), and Kullback Leibler Divergence (KLD).
ED quantifies the distance between the generated data and the
original data, DTW reflects dissimilarity between two differ-
ent time series signals [48], PCC reflects the linear correlation
between distributions, and KLD measures the closeness of
two distributions.

2) EVALUATION METHODS
If there is no comparison standard, it is difficult to measure
the quality of generated data by indicators based on statistics.
Therefore, we use the method proposed byWang et al. [34] to
conduct a comparative evaluation of the generated data. The
calculation steps are as follows:
Step 1: Calculating the average of the original data as the

template;
Step 2: Calculating averaged ED, DTW, PCC, and KLD

between the template and original data for indicators of CIs;
Step 3: Calculating averaged ED, DTW, PCC, and KLD

between the template and original data for indicators of FIs;
Step 4: Comparing FIs with CIs.

TABLE 5. Quantitative evaluation of the generated data for each category.

TABLE 6. F1 score for each type.

The smaller the difference between CIs and FIs, the higher
the distribution similarity between the generated data and the
original data.

3) RESULT
The results are listed in Table 4 and Table 5. Table 4 shows
the distribution difference between the original data and the
generated data by different methods. We can see that the
ED and DTW of the data generated by ProEGAN have the
smallest difference to the template, and the PCC and KLD
indicators of the data generated by ProEGAN-MS have the
smallest gap with the template. This shows that the distribu-
tion of the data generated by our proposed method is most
similar to the original data. This result is consistent with the
result of the sample distribution of manual statistics in the
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TABLE 7. Overview of the data used in classification experiment.

TABLE 8. F1 score with different data augmentation strategies on the
simple network.

TABLE 9. Comparison of the effects of different GAN-based methods on
the performance of classifiers.

previous part. For the ECG data generated by ProEGAN and
ProEGAN-MS, Table 5 shows the distribution differences
between the generated data and the original data in each
category.

F. EVALUATION OF PERFORMANCE
1) EVALUATION INDICATORS
We established neural network models for arrhythmia classi-
fication, and use evaluation indexes of the classification task
to illustrate the improvement of the performance of the model
by ProEGAN-MS. The evaluation indexes used in this part
include accuracy (ACC), sensitive (SEN), precision (PRE)
and F1 score. ACC shows the proportion of correct prediction
examples to the total data. SEN indicates the proportion
of all positive examples that are divided into pairs, which
measures the ability of the classifier to find positive examples
in an all-round way. PRE indicates the proportion of positive
examples that are actually positive examples, measuring the
query accuracy of the classifier to positive examples. Their
calculation method is shown in formula 7-9.

ACC =
TN + TP

TN + TP+ FN + FP
× 100% (7)

SEN =
TP

TP+ FN
× 100% (8)

PRE =
TP

TP+ FP
× 100% (9)

where TP means the number of true positive samples,
TNmeans the number of true negative samples, FP means the
number of false positive samples, and FN means the number
of false negative samples.

FIGURE 7. The simple neural network consisting of two convolutional
layers and two fully connected layers.

FIGURE 8. The network consists of 19 layers, including 17 convolution
layers, an average pooling layer and a fully connected layer. Residual
blocks are used to ensure that the depth of the network increases
without reducing performance. A large convolution kernel with a length
of 32 is used to ensure that the features of ECG signals are extracted.

F1 is the harmonic average of sensitive and precision, with
maximum of 1 and a minimum of 0, the calculation method
is shown in formula (10). F1 score for each type are obtained
based on the confusion matrix, as shown in Table 6, in which
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FIGURE 9. Confusion matrix comparison.

TABLE 10. Comparison of our proposed recognition model with related work.

N1x is the sum of a row, Nx1 is the sum of a column.

F1 =
2× PRE × SEN
PRE + SEN

(10)

2) EVALUATION METHODS
We established two neural network classification models for
arrhythmia, one of which is a simple neural network con-
sisting of two convolutional layers and two fully connected
layers, as shown in Fig. 7. The other network is a 19-layer
residual network, and its structure is shown in Fig. 8. The
purpose of designing a simple network is to clearly reflect
the performance difference between different GAN-based
ECG augmentation methods. ResNet19 was established to
compare the classification performance with other excellent
ECG recognition algorithms. For simple network, we set the
L2 regularization coefficient to 0.0005, the learning rate to
0.0001, and training for 150 epochs. For 19-layer residual
network, we set the L2 regularization coefficient to 0.001,
the learning rate to 0.01, and training for 50 epochs. The data
used in this part is shown in Table 7. We randomly select
10% of the original sample as the test set, and the remaining
data with less than 10,000 are augmented to 10,000 by three
GAN-based ECG augmentation methods.

3) RESULT ON SIMPLE NETWORK
In order to illustrate the advantages of ProEGAN-MS,
we compared the F1 scores of three GAN-based ECG aug-
mentation methods. The purpose of using data augmentation
is to improve the recognition performance of the classifier
on minor classes. From the first column of Table 8, we can
see that due to the imbalance of the sample, the neural
network classifier trained with the original data can hardly
recognize the minor category A heartbeat, with a F15 score
of 0.009. Augmentation by ProEGAN-MS, F15 increased
from 0.009 to 0.837, which shows that the performance of

small category recognition has been significantly improved.
This score is 0.247 and 0.131 higher than the other two
GAN-based methods, respectively. In addition, the overall F1
score also increased from 0.752 to 0.957. This result is also
higher than the two compared methods. It can be seen from
the comparison of the confusion matrix in Fig. 9. that the
number of correct recognition of type A by the classifier has
increased significantly after data augmentation.

As shown in Table 9, we listed ACC, SEN, PRE of the
simple ECG recognition network as a reference for classifi-
cation performance. The accuracy of the model is acceptable,
but due to the imbalance of data, sensitive and precision are
relatively low. After data augmentation by ProEGAN-MS,
the ACC, SEN and PRE of the classifier are increased to
98.55%, 99.36% and 92.89% respectively, which is the high-
est score among all comparison methods. This shows that
using ProEGAN-MS to augment the ECG signal is more
helpful to improve the performance of classifier than using
other GAN-based methods to augment the ECG signal.

4) RESULT ON RESIDUAL NETWORK
As shown in Table 10, we listed ACC, SEN, PRE of different
related works as a reference for classification performance.
The accuracy of different classification methods is very high,
but due to the imbalance of data, sensitive and precision will
be relatively low. Before data augmentation, although the
ACC and SEN of the 19-layer convolutional network we built
were the highest among all methods, the PRE was still not
satisfactory. After data augmentation by ProEGAN-MS, our
classifier not only improved further in ACC and SEN, but also
increased by 1% in PRE, making it the highest 97.90% of all
methods. This shows that augmented data by ProEGAN-MS
can effectively improve insufficient sensitive and precision.
It also illustrates the role of ProEGAN-MS in improving data
imbalance.
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V. CONCLUSION
In this paper, we proposed a progressive ECG generation
model called ProEGAN-MS to solve the problem of ECG
data imbalance. Themodel does not directly generate an ECG
signal with a target length but starts with a low-resolution
ECG signal with a length of 32 sampling points, and then
generates a higher resolution ECG signal by progressively
increases the convolutional layer used for feature extraction
in the model structure. In addition, the across-minibatch stan-
dard deviation is used to enrich the diversity of generated
data. In the experimental part, we comprehensively evaluated
the proposed method from three parts: the fidelity and diver-
sity of generated data, the distribution of generated data and
the performance improvement of classification model. The
experimental results show that the ECG data generated by
ProEGAN-MS has outstanding performance under the above
three evaluation standards, which shows that our proposed
method can effectively solve the problem of ECG data imbal-
ance and promote the development of ECG classification
technology.
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