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ABSTRACT The automation of typically intelligent and decision-making processes in the maritime industry
leads to fewer accidents andmore cost-effective operations. However, there are still lots of challenges to solve
until fully autonomous systems can be employed. Artificial Intelligence (AI) has played a major role in this
paradigm shift and shows great potential for solving some of these challenges, such as the docking process of
an autonomous vessel. This work proposes a lightweight volumetric Convolutional Neural Network (vCNN)
capable of recognizing different docking-based structures using 3D data in real-time. A synthetic-to-real
domain adaptation approach is also proposed to accelerate the training process of the vCNN. This approach
makes it possible to greatly decrease the cost of data acquisition and the need for advanced computational
resources. Extensive experiments demonstrate an accuracy of over 90% in the recognition of different
docking structures, using low resolution sensors. The inference time of the system was about 120ms on
average. Results obtained using a real Autonomous Surface Vehicle (ASV) demonstrated that the vCNN
trained with the synthetic-to-real domain adaptation approach is suitable for maritime mobile robots. This
novel AI recognitionmethod, combinedwith the utilization of 3D data, contributes to an increased robustness
of the docking process regarding environmental constraints, such as rain and fog, as well as insufficient
lighting in nighttime operations.

INDEX TERMS Autonomous surface vehicle, docking, object recognition, point cloud.

I. INTRODUCTION
Over the past few years, Artificial Intelligence (AI) has
been embraced by nearly every industry, enabling machines
to carry out tasks which typically require human intellect.
The maritime industry is no exception, but it has only
taken its first steps towards automation. The development
of Autonomous Surface Vehicles (ASVs) falls under this
scope, making it possible to greatly reduce the role of human
intervention in this industry and the inherent consequences
of human error. When navigating through real unstructured
maritime environments, this type of vehicle faces many chal-
lenges, such as harsh environmental conditions and high
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cluster density. However, there is in general a ‘‘lack of
research in autonomous decision-making tools’’ [1] in the
field of robotics to enable autonomous vessels to tackle such
challenges. There is a need for the development of more
appropriate sensors to provide vessels with improved spatial
awareness [2], but also of new navigationmethods that ensure
collision-free trajectories [3], [4]. This shortage of robust
systems is particularly noticeable with respect to one of the
key functions of an autonomous vessel: docking. The docking
process of an autonomous vessel is illustrated in figure 1.
A robust docking maneuver is fundamental for autonomous
vessels to be safely deployed to real operations and requires
the real-time detection and recognition of the dock. A number
of reasons make this a critical maneuver, while the complex-
ity of seaports and harbours make them a location prone to
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FIGURE 1. Illustration of the docking maneuver of an Autonomous
Surface Vehicle towards a docking structure.

accidents [5]. Yet, current works do not present the mecha-
nisms necessary to cope with these constraints. Oftentimes,
they are based on inadequate representation models of the
surrounding environment, which do not provide the required
spatial information, and/or establish their performance on
simulated environments, which cannot represent the chal-
lenges of a real setting.

This research aims to advance the autonomous docking
process of a vessel, by providing a perception tool necessary
for this maneuver. The developed work proposes a Deep
Learning (DL) classifier able to identify the type of a dock-
ing structure based on 3D information retrieved by sensors
onboard of the vehicle moving in any direction. The classi-
fication of the type of dock is considered an essential step
for docking because the maneuver should take into account
the shape of the structure. Different layouts may require a
frontwards docking maneuver or a side-ways one, for exam-
ple. In this manner, the identification of the type of dock is
vital for a collision-free docking process. For the develop-
ment of this recognition system, a synthetic-to-real domain
adaptation methodology was adopted to ensure robustness
to the challenges posed by authentic maritime environments
while reducing computation and data acquisition costs. The
contributions of this article include:

• A Deep Learning approach for the recognition of
docking structures based on 3D point clouds for an
Autonomous Surface Vehicle. Inference is performed in
real time due to a lightweight volumetric Convolutional
Neural Network (vCNN) based approach;

• A synthetic-to-real domain adaptation methodology to
accelerate the training process. Synthetic source data
was generated with different levels of noise to approx-
imate it as much as possible to the target domain (real
environment), thus decreasing domain bias, i.e., diver-
gence between domains;

• The integration of the classificationmodulewith a detec-
tion component, forming a real-time system that oper-
ates at more than 8Hzwith low computational resources;

• Extensive experiments in a real commercial harbour,
using an Autonomous Surface Vehicle that was able
to classify docking structures with an accuracy higher
than 90%.

II. RELATED WORK
Most current object recognition methods were developed
within the 2D domain. Fast R-CNN [6] and YOLO [7] are
a couple of examples of these already consolidated strategies
which were widely employed in 2D applications. However,
the nature of the task at hand requires a robustness level that
a 2D-based system cannot provide. A 3D representation of
the environment is able to provide a different level of spatial
awareness and, therefore, it is fundamental for this work.
Nonetheless, as explained below, 3D object recognition is a
very recent topic. There are not many works which explore
this subject and those which employ Deep Learning are even
fewer. The first part of this section focuses on 3D generic
object recognition, describing some representation models
and architectures. The second part summarizes the few exist-
ing dock recognition strategies found in the literature, which
make use of some of the mentioned 3D data representations.

The performance of a 3D object recognition method is
highly dependent on the representation model it uses for the
input data. A point cloud is an unstructured and unordered set
of 3D points of rather inexpensive acquisition. Its processing,
on the other hand, is a demanding task. PointNet [8] is an
example of a method which deals with raw point clouds. This
network presents good performance, but has a high number
of parameters and, therefore, requires a high computational
effort. Volumetric representations, such as voxel grids and
octrees, are a common strategy to deal with this issue. A voxel
grid characterizes data as a 3D grid in which each voxel
is classified as free or occupied, making it rather easy to
access and manipulate data. Among the works analysed in
this scope, a few of the developed architectures stood out,
such as VoxNet [9] and LightNet [10]. These 3D CNNs have
a rather low number of parameters, while being amongst
the most accurate methods. An octree representation may
allow for an even faster processing of the input data. This
modeling approach is similar to voxel grids, but it is based
on varying-sized voxels. This means that a large empty space
may be represented as a single voxel and, therefore, a lot
of computation steps may be skipped. This feature makes
octrees more memory efficient than other representations.
However, due to its hierarchical structure, it does not allow
for efficient access to the underlying data [11].

Considering classification methods based on Deep Learn-
ing, an important factor that influences performance is the
selection of the optimizer. A study by Bera et al. in 2020 [12]
analysed the performance of several optimizers, such as SGD,
Adagrad, Adadelta, RMSprop, Adam and Nadam, and found
that regarding classification accuracy Adam presented the
best results.

When shifting the application of object recognition from
a generic matter to a more specific topic, such as docking
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and harbour platforms, the work developed by the scientific
community is found to be quite scant and does not present
suitable results. For example, in 2014, J. M. Esposito and
M. Graves proposed an algorithm to detect docking platforms
from 3D LiDAR scans [13]. This work achieved quite accu-
rate results, but was developed on top of data collected from
a LiDAR mounted onshore and not on a moving vehicle.
Furthermore, the filtering and detection of a single structure
took over 10s and, thus, the system did not provide real-
time operation, which is of major importance in the field of
robotics. The task of recognition of docking structures is also
explored in the Maritime RobotX Challenge,1 a well-known
robotics competition. A few of the solutions proposed by par-
ticipants [14], [15] made use of LiDAR and/or image data to
solve these challenges. Despite having obtained good results,
these methods relied upon the geometric symbols imprinted
in the docks. Another approach to the detection of docking
structures for ASVs was that proposed by P. Leite et al.
in 2019 [16]. The work consisted in an hierarchical approach
to template matching which, although having achieved a
good performance for minor and more severe environmental
circumstances, required the structure to have a certain shape.
A different strategy was developed by M. I. Pereira et al.
in 2020 [17], in which the detection is carried out by a neural
network that achieved an accuracy of approximately 96%,
being robust to several degrees of Gaussian noise. Despite the
accurate results, this work only produces a prediction about
whether there is a dock present in the data or not and does not
extract any other information regarding the structure.

In conclusion, there are many gaps to fill in this subject.
Some of the presented approaches attempted to buildmethods
suitable for real maritime environments, but required high
computational resources. Others achieved a fast operation,
but were only tested in simulated scenarios and/or dealt with
a very low diversity of structures. The robotics field requires
precision, speed and robustness to the challenges posed by a
real environment. This paper presents a strategy to tackle all
of these issues.

III. 3D REAL-TIME RECOGNITION OF
DOCKING STRUCTURES
Most of the related work focuses solely on the detection
of the docking structure. This article goes a step further
in the topic of perception of docking platforms, providing
information such as the type of structure. This assessment is
necessary for the docking approach given that the maneuver
can vary according to the layout of the dock. Furthermore, this
work proposes a method to deal with the challenges posed
by 3D recognition, a very unexplored topic, by developing
a system focused on the balance between speed and preci-
sion. A 3D LiDAR approach is robust to different lighting
conditions and harsh environmental constraints such as rain
and fog. Moreover, a 3D scene representation provides a
more complete portrait of the environment, including depth

1https://robotx.org/

information, allowing the extraction of the 3D position of
objects.

To ensure real-time inference, the recognition system is
based on a lightweight volumetric Convolutional Neural Net-
work (vCNN) with a low number of parameters. The input
point clouds are also subject to a pre-processing stage to
further reduce inference time. To obtain a robust inference
system, which is able to perform in different conditions and
in a multitude of scenarios, it is necessary to have access to a
large quantity of data for the training process of the network.
However, there are no datasets available targeted for real
maritime environments and different types of docking struc-
tures. The acquisition process of this kind of data is also very
difficult and expensive to carry out. Synthetic-to-real-domain
adaptation methodologies have been adopted and obtained
success in other tasks employing Deep Learning [18]–[20],
taking advantage of the simplicity and inexpensiveness of
generating synthetic data, and then building a strategy to
adapt the system to a real scenario. The objective is to accel-
erate the training process using a large amount of synthetic
data, which will be generated in a way to minimize domain
bias, that is, the divergence between the synthetic and real
domain. To accomplish this feature approximation between
domains, different techniques will be employed, such as the
utilization of a simulated maritime environment and different
docking structures, as well as the addition of noise, scaling
and downsampling. Due to this approach, the development
of the network will be complemented by a training process
on a small amount of data collected from a real seaport,
which greatly decreases the cost of data acquisition, to fine-
tune the model and ensure its applicability to real maritime
environments.

In the context of this research work, two distinct prob-
lems arose: detecting whether there is a docking structure
in the vehicle’s surrounding environment, thus providing its
location relative to the vehicle, and identifying the type of
dock from a set of pre-defined layouts. The recognition of the
shape is critical for the maneuver. Given these circumstances,
developing a set of two sequential classifiers was the adopted
strategy. Figure 2 illustrates the architecture of this cascade
classifier. The first classifier has a binary output: the input
point cloud either contains a dock or it does not. These two
cases represent the two output classes for the first model [17].
If a dock is detected, the input data will proceed to the second
model, where the dock will be classified according to its type.
The development of this module is described throughout the
rest of the paper. Considering the most common dock layouts
found in commercial harbours and the primary shapes which
constitute them, the models in figure 3 were selected and
labeled as Y-Shape,U-Shape, T-Shape, L-Shape, and Straight.
The classification module entails seven output classes
(‘Y’, ‘U’, ‘T’, ‘L’, ‘S’, ‘N’, ‘O’): one for each of the five
models aforementioned and two additional ones. The first of
the latter two classes (‘N’) represents the case in which the
extracted information is not enough to identify the type of
structure. In this case, the vehicle should move closer to the
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FIGURE 2. Integration of the detection and classification of docking structures in a single sequential system that takes as
input a LiDAR point cloud.

FIGURE 3. The five different dock models considered during the development of the system: Y-Shape (a), U-shape (b), T-shape (c), L-shape (d), and
Straight (e). The resulting seven classes of the inference model are ‘Y’, ‘U’, ‘T’, ‘L’, ‘S’, ‘N’, ‘O’, and include these five layouts and the 2 additional cases
previously described.

dock and the classifier should compute a new prediction. The
classifier is also allowed to reject the detector’s prediction.
If the input data features differ from the generic features of
a docking structure, the classifier should be able to conclude
that it does not represent a dock after all and assign such an
instance to class ‘O’.

The remainder of this paper is organized as follows:
Section III-A presents the first stage of the synthetic-to-
real domain adaptation method, describing the techniques
for approximating the two domains (III-A1), the architecture
of the network (III-A2 and III-A3), and several experiments
to evaluate the system’s robustness and its behaviour in a
dynamic setup (III-A4 and III-A5). The second stage of the
adaptation process to a real domain is presented in section III-
B, depicting the fine-tuning of the vCNN and the experiments
conducted in a real commercial harbour.

A. TRAINING ACCELERATION WITH SYNTHETIC
DATA GENERATION
1) SYNTHETIC DATA GENERATION
As explained above, the network will be trained over a large
corpus of synthetically generated data. The DORA@CRAS
dataset [17] was utilized for this purpose. This process of
generation of synthetic data was carried out within the 3D
simulator Gazebo, which is able to simulate the dynamics of a
maritime environment, such as tidal waves and wind, and the
kinematics of the vessel, thus providing a framework similar
to a real maritime setting. It also allows for the 3D repre-
sentation of a great variety of objects, such as docks, buoys,
and boats. An ASV model equipped with several sensors
was placed in the simulated scenario, as depicted in figure 4,

FIGURE 4. Simulated maritime environment in Gazebo, in which data was
acquired.

to gather information regarding the docking structures. The
specifications of these sensors are given below:
• LiDAR - HDL-64E - Frame Rate: 10Hz, Range: 120m,
Range Accuracy: 0.02m, Field of View: 360◦ horizontal
and 41.34◦ vertical;

• Stereo Camera - Mako G-125 - Frame Rate: 30Hz,
Resolution: 1292 x 964, Field of View: 80◦ horizontal;

• IMU - MTi-30 Xsens - Frame Rate: 200 Hz, Angular
Accuracy: 0.2◦/0.5◦;

• GPS - Swift Navigation - Frame Rate: 20 Hz,
L1/L2 RTK, Accuracy: < 0.04m.

The dataset is composed of circa 38 000 data instances
of LiDAR points clouds, stereo images, IMU, and GPS
information, which can be accessed in an online repository.2

2https://doi.org/10.25747/xpj9-2j17
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From the generated data, only the output of the LiDAR was
needed for the proposed recognition method. To obtain an
accurate assessment of the network, it is necessary to uti-
lize different data for the training and evaluation processes.
Therefore, the point clouds of the dataset were split into three
fractions: training (72%), validation (18%), and testing (10%)
data.

a: DATA PRE-PROCESSING
Processing the input data plays a major role not only in
improving the accuracy of the system but also in ensuring
a real-time operation. A point cloud is a very unstructured
3D representation and, thus, a pre-processing stage greatly
contributes to facilitate the inference of the model and speed
up the classification process. Initially, the points clouds have
to be filtered to remove outliers. An infra-red based LiDAR
sensor of 905 nm wavelength such as the one considered in
this work does not obtain returns from water surfaces, given
that the light is only able to penetrate through 1 cm below
the water [21]. However, a drawback of 3D simulator Gazebo
is that it is not able to replicate this characteristic and, thus,
the majority of the points in the LiDAR scan correspond to
the surface of the water, as depicted in figure 5a. Due to this
feature, the point cloud can be approximated to a plane and
then, one can define a certain threshold with respect to the
plane’s surface, below which all points should be removed.
The result is illustrated in figure 5b.

FIGURE 5. Example of a point cloud before (a) and after (b) the filtering
stage which removed the points that corresponded to the surface of the
water.

Secondly, each object in the point cloud is isolated through
an Euclidean clustering approach [22]. This stage will enable
the system to easily extract the docking structure’s location

FIGURE 6. Result of the voxelization of a point cloud (grid resolution
of 32× 32× 32) before (a) and after clustering (b).

relative to the ASV and will facilitate the classification
process by providing input data representing solely the
dock and dismissing the rest of the point cloud’s con-
tent, thus reducing inference time. Finally, to obtain a
more lightweight and structured representation of the data,
the point clouds are converted to voxel grids, as those rep-
resented in figures 6a and 6b. The grid is formed based on
a binary occupancy approach, which means that each voxel
is defined as being either free or occupied. The definition
of the grid resolution is done through a trade-off between
ensuring enough object detail and minimizing the processing
time. In this case, each grid has 32× 32× 32 voxels, which
is in fact a 24 × 24 × 24 grid with padding of 8 voxels.
Padding the voxel grid prevents data from becoming too
sparse.

b: DATA AUGMENTATION
Data augmentation is a crucial step in increasing the robust-
ness of the system, given that it contributes to decreasing
domain bias, i.e., the divergence between the synthetic and
real domains. Networks trained within a synthetic environ-
ment usually do not function well in real settings [18].
However, if one renders synthetic data as realistic as possi-
ble, through the implementation of data augmentation tech-
niques, for example, then the system will need no or minor
fine-tuning to be able to perform in authentic environments.
Three techniques were defined for the augmentation of data:
scaling, downsampling, and the addition of Gaussian noise.
Table 1 presents an overview of the chosen methods and
specifications.

TABLE 1. Data Augmentation Parameters.

The first technique has the objective of preventing the net-
work from learning the size of a dock as an invariable charac-
teristic of these structures. Thus, each point cloud was subject
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FIGURE 7. Effect of different degrees of Gaussian noise on voxel grids representing a docking structure. The noise is quantified by the
standard deviation (σ ): σ = 0.0m (a), σ = 0.1m (b), and σ = 0.5m (c).

FIGURE 8. Network Architecture: two convolution stages, and two fully connected layers followed by a softmax layer, which outputs a probability for
each of the 7 classes. The dimensions of the output channels of the layers are presented as Height x Width x Depth.

to an operation of up-scaling or down-scaling by a factor that
randomly varied between 0.6 and 1.5. This approach also
enables the system to recognize structures in a wide range of
distances. Secondly, considering that physical sensors, rather
than simulated ones, may not be able to acquire data with such
density, a downsampling operation was applied to the point
clouds, retaining between 50% and 100% of the points in
each instance. Finally, to ensure the network is robust, a noise
component was added to the point clouds. This operation sim-
ulates the intrinsic error of the sensors and the perturbation
caused by adverse environmental conditions. According to
E. T. Jaynes [23], when there is not sufficient data to estimate
the noise distribution, then a Gaussian form is a good fit for
such distribution. Figure 7 illustrates a few examples of the
effect of the addition of noise to data. To apply this method
of data augmentation, three Gaussian noise setups were con-
sidered. The model was trained individually for each of the
three setups, resulting in three distinct networks, as depicted
in table 1. In the first scenario, no noise was applied to
the data (Low-level Robustness Network - LRN). The second
setup, denominated Mid-level Robustness Network - MRN,
corresponds to significant but not extreme values of standard
deviation of the Gaussian noise, whereas the third and last
one, called High-level Robustness Network - HRN, involves
severe noise degrees.

2) LIGHTWEIGHT VOLUMETRIC CNN ARCHITECTURE
The dock classification module is composed of a volumetric
Convolutional Neural Network. Taking into consideration
the research conducted on related works, a model based on
the VoxNet [9], which was pre-trained on the ModelNet
dataset [24], achieving an accuracy of 81%, was utilized
as the basis of the training process. Figure 8 illustrates the
architecture of the network that constitutes the classifier. This
network takes as input a voxel grid of size 32× 32× 32 and
includes two convolution stages, each composed of a Con-
volutional, a ReLU, and a Dropout layer. The second stage
also contains a Maxpool layer which downsamples the data
by a factor of 2. Two Fully Connected (FC) layers follow
these stages and flatten the data, resulting in a number of
output neurons equal to the number of classes, which is 7 in
this case. The output of the final layer is utilized to calculate
the softmax probabilities [25] for each of the seven classes
(‘Y’, ‘U’, ‘T’, ‘L’, ‘S’, ‘N’, ‘O’). Each of these probabilities
represents the certainty of the model concerning the corre-
sponding prediction.

The Cross-Entropy Loss, also referred to as Logarithmic
Loss, is the most suitable for both binary and multi-class
classification problems [26] and, thus, it was selected for the
optimization process. For the training of the network of the
classifier, several optimizers that are used in state-of-the-art
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methods [12] were experimented with, and those which
achieved the best results, depicted in the following section,
were the following: Adadelta, Adam, RMSprop, and SGD
(Stochastic Gradient Descent).

To prevent the weights of a neural network from overfit-
ting the training data, a strategy called layer freezing was
adopted, thus avoiding a significant decline of performance
between the training and testing phases. With this approach,
one freezes the parameters of any chosen layer of the net-
work, thus preventing them from being updated during the
optimization stage. These layers are then gradually unfrozen
during the training process. Another advantage of this strat-
egy is the preservation of the ability of the pre-trained model
to capture low-level features. Layers which are closer to the
input of the model extract these lower-level features, while
those which are farther extract higher-level ones, that is,
features which are specific for the context of the task [27].
Therefore, a layer freezing strategy intends to apply a more
intensive retraining to the latter layers. In this case, the two
convolutional layers and the first fully connected one, as illus-
trated in figure 8, were the selected layers for implementing
this approach.

3) MODEL SELECTION
A few initial tests were performed to select the optimal values
for the hyperparameters. To minimize the duration of this
initial process, these tests were conducted on a fraction of
the training data, selected in a way to thoroughly repre-
sent the entire dataset. All training instances considered the
Cross-Entropy as loss function, and a batch size of 1. The
best learning rates obtained for each optimizer are presented
in table 2.

TABLE 2. Best learning rates for each optimizer.

Figure 9 presents the results of the training instances
conducted with the layer freezing strategy (9b) and without
it (9a). The layer freezing approach is indeed able to reduce
overfitting. Overall, the optimizer Adam presents the highest
accuracy, while SGD obtains a comparable performance with
more stable results. Both optimizers where considered in
further tests, in which the batch sized was varied within
the set {1;2;4;8;16;32;64;128}. When trained with Adam,
the network’s accuracy obtained a maximum increase of 5%
for a batch size of 16, whereas SGD presented a downward
behaviour, showing no improvement when compared to the
previous tests. Considering all the tests conducted up to this
point, the training of the network of the classifier was carried
out according to the following parameters:
• Optimizer: Adam (learning rate = 0.001);
• Loss function: Cross-Entropy;
• Batch size: 16;
• Layer freezing: Yes.

FIGURE 9. Train and validation accuracy obtained with (b) and without (a)
a layer freezing strategy, using different optimizers. The training process
was conducted for 10 epochs, with a batch size of 1 and the
Cross-Entropy loss.

4) ROBUSTNESS EVALUATION
A classificationmodel, be it a binary or a multi-class one such
as the case studied in this work, can be evaluated by several
metrics [28]. Usually these measures are computed from the
confusion matrix, which is a table that presents the number of
data instances for each combination of predicted and actual
class. The matrix has a dimension of K rows per K columns,
in which K is the number of classes, which is 7 in this case.
The accuracy of the model corresponds to the percentage of
correctly predicted instances and can be calculated as a per-
class average, according to (1). The precision corresponds
to the percentage of instances classified as belonging to a
certain class which were effectively of that class, as demon-
strated in (2). Equation (3) shows that the recall represents
the fraction of the instances of a certain class which were
correctly classified. This measure can be described as the
‘‘effectiveness of a classifier to identify positive labels’’ [28].
In the expressions below, TP refers to True Positive instances,
TN to True Negative, FP to False Positive, and FN to False
Negative.

Accuracy =

∑K
i=1

TPi+TNi
TPi+FPi+TNi+FNi

K
(1)
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Precision =

∑K
i=1

TPi
TPi+FPi

K
(2)

Recall =

∑K
i=1

TPi
TPi+FNi

K
(3)

The classification model was trained on the full dataset
according to the parameters defined in the previous section.
As explained before, three noise setups were considered dur-
ing this training process. Therefore, the training of the model
resulted in three distinct networks: Low-level Robustness
Network (LRN), Mid-level Robustness Network (MRN), and
High-level Robustness Network (HRN), which were initially
evaluated on the test fraction of the dataset, without the
addition of noise. The validation and test accuracy obtained
by the models are represented in table 3. The LRN achieved
an accuracy of nearly 87%, whereas the other two models
obtained slightly poorer results: 86.16% for the MRN and
85.86% for the HRN.

TABLE 3. Validation and Test accuracy for the three networks trained on
different noise setups.

To ascertain the effective level of robustness of each net-
work to different conditions which may affect the quality
of the input point clouds, a number of tests of increas-
ing noise intensity were conducted for the three models.
The test dataset was subject to the addition of Gaussian
Noise of standard deviation that varied within the set:
{0.05;0.1;0.2;0.3;0.5;0.7;1.0}. Figure 10 presents the test
accuracy achieved by the LRN, the MRN, and the HRN. As a
term of comparison, the red horizontal line in each chart
corresponds to the test accuracy the network obtained when
tested on noiseless data. As depicted in figure 10a, which
corresponds to the LRN model, the test accuracy remains
above 80% only for tests with a noise degree up to 0.1m.
The performance declines severely for higher values of the
standard deviation, reaching a minimum of 18.58%. On the
other hand, the MRN, represented in figure 10b, shows an
improved robustness, given that the average accuracy across
all tests increases from 48.25% to 76.28%, relative to the pre-
viously described model. Considering that this network was
trained on data with noise up to 0.5m of standard deviation,
the average accuracy becomes 84.31% if computed only on
the tests up to this noise degree. Finally, the chart of figure 10c
depicts the results of the HRN, the one trained with the most
severe noise. An even greater improvement can be perceived,
with an average accuracy of nearly 81% and a minimum
one of 70.68% for the worst case. Naturally, exposing this
network to data with such extreme perturbation levels dur-
ing the training process has been proved efficient in avoid-
ing a substantial decline for tests with high noise degrees.

However, it can also be verified that there is some perfor-
mance loss on the lower end of noise intensity, which rep-
resents the most probable perturbation range that may affect
input data. In fact, the LiDAR sensor has a typical accuracy of
± 2cm.3 Considering the circumstances, the selected model
was the MRN, given that it is robust to noise to a significant
extent without compromising performance when tested on
data without noise.

The accuracy gives insight on the overall performance
of the model, but analysing the confusion matrix enables
one to study the behaviour of the network regarding each
class. Figure 11 presents the confusion matrices obtained
when testing the model on three different noise degrees.
The values are presented as a percentage of the total
amount of instances of the corresponding predicted class
(all values were rounded), which means that the diagonal
cells represent the precision value for the respective class.
Figure 11a depicts the results of the test in which no noise
was added to the input data. Class precision is above 90%
for all dock types, except for the ‘S’ class. The geometry
of this layout is the least characteristic one of all the dock
models, which might explain the lower precision. Class ‘N’
also presents a poorer result (67%), which indicates that
the network is often assigning this label to instances that
belong to other classes. Considering that this class’ instances
are characterized by partially represented platforms, it is
expected that the boundary between labeling a dock as a
specific layout and labeling it as undefined may not be very
clear. Figures 11b and 11c depict the confusion matrices of
tests that involved the addition of noise to the input data.
For a standard deviation of 0.5m, represented in figure 11b,
the precision of the model is not highly affected. As previ-
ously stated, classes ‘S’ and ‘N’ remain as those with a poorer
performance, with a precision of 73% and 52%, respectively,
versus a precision of above 90% for the other dock layouts.
Class ‘O’ sees a decline in performance, achieving a precision
of 75%. As noise increases, the features of a docking structure
become more difficult to recognize and, thus, the structure
may be mistaken for a different object. The confusion matrix
corresponding to the test with the most extreme noise degree
is shown in figure 11c. A significant decrease of the precision
is verified on a general basis. Specifically, one of the greatest
sources of error is the attribution of label ‘T’ to instances
belonging to class ‘Y’. The cause of this misclassification is
likely the fact that the two dock types are the only layouts
made up of three branches. Classes ‘S’, ‘N’, and ‘O’ follow
the already discussed downward trend, reaching a precision
as low as 30%. Nonetheless, three of the dock types (‘Y’, ‘U’,
and ‘L’) remain above 80%, meaning that, despite the noise,
when the network assigns one of these three labels it is correct
most of the time.

3https://autonomoustuff.com/wp-content/uploads/2019/05/HDL-
64E_S3_whitelabel.pdf
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FIGURE 10. Robustness Evaluation of the networks: LRN (a), MRN (b), and HRN (c).

FIGURE 11. Confusion Matrices for tests of three different noise degrees: σ = 0.0m (a), σ = 0.5m (b) and σ = 1.0m (c). The values are presented as a
percentage of the total amount of instances which were assigned the corresponding column class (all values were rounded). The diagonal cells
represent the precision of the respective class. The colouring of the cells of each matrix was defined in such a way that a darker colour corresponds to
a higher value.

FIGURE 12. Confusion Matrices for tests of three different noise degrees: σ = 0.0m (a), σ = 0.5m (b) and σ = 1.0m (c). The values are presented as a
percentage of the total amount of instances of the corresponding actual class (all values were rounded). The diagonal cells represent the recall of the
respective class. The colouring of the cells of each matrix was defined in such a way that a darker colour corresponds to a higher value.

Precision is a measure that does not take into account the
False Negatives of each class and, thus, it may provide an
overly optimistic view of the network’s behaviour. To assess

how reliable this analysis is, one should take into account
other measures, such as the recall. Figure 12 illustrates the
confusion matrices of the same tests presented in figure 11,
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FIGURE 13. Orientation Scheme (a). Maximum distance at which the ASV can detect the type of dock with a minimum
of 50% certainty from a front-facing approach (0◦) (b) and sideways approach (90◦) (c).

but the normalization of the values took into account the
total of instances of each actual class. Therefore, the diag-
onal cells represent the recall of the corresponding class.
Figure 12a presents the confusion matrix of the noiseless
test. The class with the highest recall corresponds to the dock
type ‘Y’, while the lowest is that of type ‘S’. These results can
be explained by the fact that the geometry of the platforms
of these two classes are the most and the least characteristic
ones, respectively. As a matter of fact, the greatest cause of
error corresponds to the case in which instances belonging
to type ‘S’ are instead classified as ‘N’. When the sys-
tem cannot perceive the entirety of the structure’s base and,
therefore, cannot determine its type, such instance should be
classified as ‘N’. Nonetheless, a few visible points of the
platform may induce a prediction of type ‘S’. Regarding the
identification of the False Positive instances which may be
produced by the detectionmodule, the classifier shows a great
performance, with a recall of about 97% for the ‘O’ class.
Figures 12b and 12c illustrate the confusion matrices of two
noise tests (0.5m and 1.0m). Overall, there is an increase of
incorrect predictions, such as instances belonging to type ‘Y’
being classified as type ‘T’, as explained during the precision
analysis, and the class ‘S’ being assigned to instances of other
types, which is also likely due to partial observations of the
horizontal platform. Another significant variation is the shift
of incorrect predictions towards the False Positive class (‘O’),
especially for the test with higher noise. This analysis showed
that, regarding the relationship between the instance distri-
bution among the layouts and the correct label assignments,
the precision assessment was indeed providing an optimistic
perspective of the network’s performance. On the other hand,
the percentage of instances belonging to the classes ‘S’, ‘N’,
and ‘O’ which are correctly classified is shown to be higher
than presumed in the previous analysis. These conclusions
show that it is important to consider several measures when
evaluating a model.

5) INTEGRATION AND TESTING IN A
SIMULATED ENVIRONMENT
Thus far, the classifier was evaluated on the test fraction
of the dataset. To test the system in a simulated maritime

environment, with all the integrated components, that is,
detection and classification, is to provide a more realistic
perspective of its behaviour in a dynamic setup. The present
section will disclose the results of the tests conducted in the
simulator Gazebo, which were performed on a device with
the following specifications:
• CPU - Intel R© CoreTM i7-5500U Quad-core 2.40GHz;
• GPU - NVIDIA GeForce 920M 2GB DDR3;
• RAM - 8GB.
For an intermediate assessment of the potential of the

synthetic-to-real domain adaptation methodology, it is nec-
essary to replicate the conditions of an authentic maritime
environment. Table 4 presents the simulated environmental
conditions (waves) under which the following tests were
conducted. Figure 4 illustrates an example of the simulated
scenario in Gazebo.

TABLE 4. Environmental Constraints considered for the testing of the
system.

The objective of the first test was to measure the range
in which the system was capable of correctly identifying the
type of the detected docking platform, as well as analysing the
effect of distinct perspectives by conducting trajectories from
different approach angles. Each of the five dock models was
placed in the simulated maritime scenario, in Gazebo, and the
ASV moved towards the structure from a distance of 100m.
Two different directions were considered for the trajectory:
a front-facing approach (angle of 0◦) and a sideways one
(angle of 90◦), as depicted in figure 13a. Figures 13b and 13c
depict for each dock type the distance at which the system
can correctly classify the structure with a minimum certainty
of 50%. Overall, this distance is nearly 24m for a front-facing
approach, and slightly above 22m for a sideways trajectory.
On average, the results presented here are consistent with
those previously discussed, in particular, the ones suggesting
the type ‘Y’ to be the easiest layout to identify and the type ‘S’
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the most difficult one. When analysing the results of each
of the two subfigures (13b and 13c), one finds differences
within the outcomes of each class. Classes ‘U’, ‘T’, and ‘L’
present a decrease of the detection distance between the 0◦

and 90◦ tests. This tendency might be explained by the fact
that the three layouts look quite identical at great distance
from a side-view. On the other hand, types ‘Y’ and ‘S’
can be correctly classified farther for an angle of approach
of 90◦ than for one of 0◦, with a range increase of 7m
and 2m, respectively. This variation is also easily justifiable.
If observed from a side perspective, all of the branches of
the base of a ‘Y’ dock can be visible, which does not apply
to a front-facing view. When a dock of type ‘S’ is perceived
from the side, one may confirm that the platform has only
one branch. Class ‘S’ presents a considerably lower detecting
distance when compared to the other classes. As previously
mentioned, this layout is the less characteristic one, which
might explain this result. Taking into account these simula-
tion outcomes, other conclusions can be made. The average
distance at which the classifier can correctly identify the type
of dock is approximately 24m. However, the collected dataset
contains instances featuring structures that distance up to
40m from the vehicle. In the farther range, any horizontal
platform might not be entirely visible and may resemble
the ‘S’ type, even if belonging to other classes. Through
such learning process, the network may mistake docks of
type ‘S’, even at a short distance, for structures of other
layouts.

FIGURE 14. Display of the output of the system: the certainty of the
detection of the dock, the distance between the structure and the ASV,
the identified class, and corresponding probability.

The classificationmodule was integrated in the recognition
system along with the detection component. A dynamic test
was carried out in a simulated scenario. The ASV moved
along a straightforward path, passing by different types of
docking platforms from those considered in the develop-
ment of the classifier. Other types of objects were also
scattered through the scenario, such as floating buoys and
other boats. The system continuously searched through the
surrounding environment and labeled any detected dock,
as illustrated in figure 14. The results were recorded in
video.4

4https://bit.ly/2B13G14

FIGURE 15. Zarco ASV developed by INESC TEC [29], operating in the Port
of Leixões (Porto, Portugal).

B. REAL DOMAIN ADAPTATION
A perception system developed on a basis of syntheti-
cally generated data is often not prepared to function in
a real environment with all of its added constraints and
challenges. As described before, decreasing domain bias
during the training process was a top priority in this
research work. Several techniques were adopted to imple-
ment this strategy, such as transforming the input data
through scaling, down-sampling, and adding Gaussian noise.
Therefore, the cost of the adaptation process of the sys-
tem for an authentic maritime environment was greatly
reduced, both in data acquisition expenses and in additional
computational effort required to fine-tune the network. The
present section depicts the process of domain adaptation and
evaluation.

1) DATA ACQUISITION IN SEAPORT
To collect data for the fine-tuning and testing of the network,
the team went to the Port of Leixões (Porto, Portugal), which
is depicted in figure 15. This commercial harbour provided
an appropriate setup, given that it covered the main chal-
lenges commonly posed by real maritime environments: high
density and diversity of objects, and lack of control over
weather conditions. At the time of the operation, the seaport
was under a clear sky, but there was moderate wind which
caused some wavelets. The conducted tests made use of the
Zarco ASV developed by INESC TEC [29], also illustrated
in figure 15. This vehicle is equipped with a VLP-16 LiDAR
and a stereo camera, as well as other sensors. As already
mentioned, the wavelength of the selected LiDAR sensor is
905 nm. A study by Wojtanowski et al. [30] found that this
type of sensor suffers a performance degradation significantly
lower than a 1550 nm sensor in case of harsh environmental
conditions such as heavy rain and fog. The utilization of hard-
ware with these characteristics contributes to an increased
robustness of the system.

Due to logistic reasons, only two of the five dock models
were built for this process. The selected layouts were types
‘U’ and ‘T’. The intermediate layout complexity of these two
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FIGURE 16. Docking structures of type ‘U’ (a) and ‘T’ (b), built from extruded polystyrene foam (XPS). Images were taken in the wave tank of the Civil
Engineering Department of the Faculty of Engineering of the University of Porto.

FIGURE 17. Real commercial harbour (Port of Leixões in Porto, Portugal),
featuring a floating docking platform and the Zarco ASV.

models ensures they generally represent the most common
dock layouts, unlike the type ‘S’, for example, which is too
simple, but it also introduces an increase in the difficulty
level of the recognition process, given that they’re not as
characteristic as layout ‘Y’, for example, and are, there-
fore, harder to recognize. The two docking structures were
built from extruded polystyrene foam (XPS) with maximum
dimensions 2.6mx3.3mx1.5m and a 15cm high platform,
as illustrated in figures 16a and 16b. The images were cap-
tured in the wave tank of the Civil Engineering Depart-
ment of the Faculty of Engineering of the University of
Porto. Each of the docking structures was placed in the port,
as depicted in figure 17, and the ASV moved through the
surroundings, gathering data. Unlike the tests conducted in
simulation, in which the vehicle moved through a deter-
ministic trajectory, the path performed during this task was
arbitrary.

2) LOW-COST NETWORK FINE-TUNING
The fine-tuning of a neural network should be conducted
on a different dataset from the one utilized during the main
training process, but usually the new data belongs to the
same domain. In this research work, however, the objective
was to apply this technique between two different domains:
synthetic and real. As observed in figure 18, an authentic
maritime environment does differ quite a lot from a simu-
lated one. Dissimilarities observed in the real scene include a
very high cluster density, no laser reflection from the water
surface, and a few sparser areas due to the utilization of
a lower resolution LiDAR (VLP-16 vs. HDL-64E). Some
of these differences pose great challenges for perception
systems. In this work, the main training process took into
account strategies to approximate features between domains
and thus overcome these challenges. Due to the high cluster
density, only the classification module of the system was
subject to this adaptation process. The fine-tuning of the
network followed a very identical process to the main training
instance, but on a reduced scale. From the data acquisition
described above, a small set of training data was selected for
this process, of which 36 point clouds were utilized for the
actual training of the network and 12 for validation purposes.
Similarly to the core training method, the layer freezing strat-
egy was employed during this domain adaptation to preserve
the already acquired predicting abilities of the network. The
fine-tuning is intended to ensure the network is able to process
features from a different domain, not to rebuild its recognition
abilities from scratch, hence, the importance of an appropriate
strategy to freeze layers and adjust the parameters’ update.
The network was then retrained for 5 epochs, a procedure
of 12 seconds on a device with the previously described
characteristics, which represents a very low computational
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FIGURE 18. Recognition of dock of type ‘U’. The structure is represented by blue points and surrounded by a red bounding box. The result of the
classification process is presented in the coloured text and includes the certainty of the prediction. A third-person view is presented in (a) and a
top-down view in (b).

FIGURE 19. Recognition of dock of type ‘T’. The structure is represented by blue points and surrounded by a red bounding box. The result of the
classification process is presented in the coloured text and includes the certainty of the prediction. A third-person view is presented in (a) and a
top-down view in (b).

expense. The train and validation accuracies achieved by
the model were both equal to 91.67%, which is higher than
the average accuracy of 86.16% obtained during the main
training process. The utilization of only two docks out of the
five models may be an influencing factor, but the increase of
the accuracy may also indicate that, despite the dissimilarities
between the domains from which data was gathered in either
situation, the model was able to improve its prediction ability
on top of that previously acquired. Given the small scale of
the validation set, however, the tests depicted in the follow-
ing section constitute a more appropriate assessment of the
refined model.

3) PERCEPTION TESTS IN A REAL COMMERCIAL SEAPORT
To validate the success of the adaptation process, a dynamic
test was conducted for each of the two docks, in which a
subtrajectory of approximately 45 seconds of the vehicle’s
pathwas supplied to themodel frame-by-frame and the output
predictions were computed in real time. Figures 18 and 19
show examples of the results of the conducted evaluation on
the gathered LiDAR point clouds. The docking platform is
represented in each image by blue points and surrounded
by a red bounding box. Figures 18a and 19a represent a
third-person view, whereas figures 18b and 19b depict a
top-down view of the scene.
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TABLE 5. Percentage of instances predicted as each column’s corresponding class, per actual type of structure.

Videos of each test were recorded (’U’ 5 and ‘T’ 6). Table 5
presents for each of the two dock types the percentage of
iterations predicted as the column’s corresponding class. For
the test conducted on the ‘U’ structure, the system cor-
rectly predicted the type of dock 84.47% of the time. This
value represents both the accuracy and recall for this class.
Figure 12a presented a recall of approximately 82% for the
‘U’ type in the simulation tests without noise, which is a bit
lower than the result obtained in the test at hand. Among
the incorrect predictions, class ‘S’ appears to be the most
frequently assigned to the dock. This trend is due to the fact
that if the vehicle is at a short distance from the dock it
does not fully perceive the base of the structure. Therefore,
the extracted cloud resembles the ‘S’ type. Regarding the
test carried out on the ‘T’ docking platform, the obtained
recall was 96.29%, which is a great deal higher than that
obtained for a ‘U’ dock and than the 85% recall depicted
in figure 12a for the simulation tests. The only considerable
source of error corresponds to the assignment of class ‘Y’,
given that the other types present residual error. The platforms
of both layouts ‘T’ and ‘Y’ are composed of three branches,
which may explain this trending misclassification.

There is a considerable difference between the results
achieved for the ‘U’ and the ‘T’ structures. An arbitrary
trajectory implies an unequal acquisition of testing data for
the classes. Thus, the quality with which data represents the
docks is greatly influenced by the path of the vehicle, namely
regarding its orientation and distance to the structure. For
the ‘T’ dock, the data collected during the vehicle’s trajec-
tory represented the structure without occlusions and at a
favourable distance, as illustrated in the video, which explains
the higher accuracy. For either case, the obtained results were
better than those achieved in simulation, with an average
accuracy of approximately 90%, although a straight compar-
ison cannot be made, given the different testing conditions.
The real setting test presented disadvantages, such as the
high cluster density surrounding the vehicle and the structure,
as well as the decreased density of points in the cloud caused
by the utilization of a LiDAR sensor with a lower resolution.
Moreover, the wind and waves caused the platform to move,
thus bringing an instability factor to the perception system.
A high accuracy under these conditions (lower quality sen-
sors and environmental constraints) demonstrates that the
domain adaptation methodology was successful in develop-
ing a system able to perform in harsher environments and
with lower cost hardware. The utilization of a LiDAR sensor

5https://bit.ly/3lRRZMd
6https://bit.ly/2J2DzdW

also enabled the system to be unaffected by the ambient light
variations.

A fundamental characteristic of a perception system devel-
oped for robotics applications is the guarantee of real-time
operation. To verify if this objective was fulfilled, the aver-
age duration of each iteration was calculated throughout
the tests represented in the videos. The recognition system
as a whole accounted for a total of 120ms per iteration,
which corresponds to an operation rate of approximately 8Hz.
Considering the sort of vehicle for which this work was
developed (low speed - maximum of 2m/s7) and the nature of
the task, the system has accomplished the objective of real-
time operation. This speed was achieved without the need
for great computational power due to the many strategies
took into consideration throughout the development of the
system, such as the pre-processing steps and the adoption of
a lightweight network.

To the best of our knowledge, this is the first work
that addresses the classification of docking structures. Even
though a direct comparison cannot bemadewithmethods that
only handle the detection of such platforms, a brief discussion
of related aspects can be presented. In [13], Esposito and
Graves presented a detection method based on point clouds
that took over 10 seconds per iteration, whereas our system
works at a rate of 8Hz as presented above. Moreover, our
method was evaluated on data collected from a moving vehi-
cle and not from fixed sensors. Regarding participations in
the Maritime Robot X Challenge, Lee et al. [14] used a 2D
LiDAR based approach, which meant they had to resort to
previous knowledge of the structures’ geometry to be able
to locate it. This issue demonstrates the relevance of using
a 3D LiDAR in our research, as it enabled us to easily
extract the 3D position of the structure. On the other hand,
Huang et al. [15] adopted a 3D LiDAR approach, but did not
address the problem of sparser data in real environments and,
thus, suffered a considerable decline in performance when
deploying the system from simulated to real scenarios. On the
contrary, our data augmentation techniques were successful
in avoiding this outcome. Finally, Leite et al. [16] proposed a
detection method that required the structure to have a specific
shape and was only evaluated in simulated environments.
Furthermore, it was based on a template matching approach,
which is not suitable for cluttered scenarios.

IV. CONCLUSION
This article proposed a perception system based on a Con-
volutional Neural Network for the recognition of a docking

7http://pisces.inesctec.pt/2017/03/08/zarco-gama-asvs/
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structure from 3D data, thus advancing the docking process
of an ASV. Unlike current methods, this work did not focus
strictly on the detection of a dock, but aimed to provide fur-
ther knowledge about the structure, such as the identification
of its layout. A 3D real-time perception systemwas developed
based on a volumetric Convolutional Neural Network with a
low number of parameters. Different techniques were used
to guarantee system robustness to harsh and fluctuating envi-
ronmental conditions. A synthetic-to-real domain adaptation
methodology was adopted to accelerate the training process
and overcome the unavailability of datasets within this scope.
The network was trained over a large corpus of synthetically
generated data and fine-tuned on a small set of data collected
from a real maritime environment. A few strategies, such as
downsampling and adding Gaussian noise, allowed to repli-
cate constraints found in authentic maritime environments
and thus decrease domain bias.

Several experiments were conducted in a 3D simulated
environment and in a real commercial seaport (Port of
Leixões in Porto, Portugal). Results showed robustness to
environmental conditions of different degrees, with an aver-
age accuracy of 84.31% obtained in simulation tests. The
classifier was also evaluated in an authentic harbour, achiev-
ing an average classification accuracy above 90% even with
lower resolution sensors. The integration of the detection and
classification modules formed a system that worked at a rate
of 8Hz, thus guaranteeing real-time operation for the tar-
geted type of vehicle. In conclusion, the proposed synthetic-
to-real domain adaptation methodology resulted in a fast,
precise, and robust perception system without requiring the
acquisition of large amounts of data nor the access to great
computational resources.

REFERENCES
[1] A. Leite, A. Pinto, and A. Matos, ‘‘A safety monitoring model for a faulty

mobile robot,’’ Robotics, vol. 7, no. 3, p. 32, Jun. 2018.
[2] A. M. Pinto and A. C. Matos, ‘‘MARESye: A hybrid imaging system

for underwater robotic applications,’’ Inf. Fusion, vol. 55, pp. 16–29,
Mar. 2020.

[3] D. F. Campos, A. Matos, and A. M. Pinto, ‘‘An adaptive velocity obsta-
cle avoidance algorithm for autonomous surface vehicles,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Macau, China, Nov. 2019,
pp. 8089–8096.

[4] R. Silva, P. Leite, D. Campos, and A. M. Pinto, ‘‘Hybrid approach to
estimate a collision-free velocity for autonomous surface vehicles,’’ in
Proc. IEEE Int. Conf. Auto. Robot Syst. Competitions (ICARSC), Porto,
Portugal, Apr. 2019, pp. 1–6.

[5] R.-M. Darbra and J. Casal, ‘‘Historical analysis of accidents in seaports,’’
Saf. Sci., vol. 42, no. 2, pp. 85–98, Feb. 2004.

[6] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Santiago, Chile, Dec. 2015, pp. 1440–1448.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788.

[8] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep
learning on point sets for 3D classification and segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 77–85.

[9] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network
for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Hamburg, Germany, Sep. 2015, pp. 922–928.

[10] S. Zhi, Y. Liu, X. Li, and Y. Guo, ‘‘Toward real-time 3D object recogni-
tion: A lightweight volumetric CNN framework using multitask learning,’’
Comput. Graph., vol. 71, pp. 199–207, Apr. 2018.

[11] G. Riegler, A. O. Ulusoy, and A. Geiger, ‘‘OctNet: Learning deep 3D
representations at high resolutions,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 6620–6629.

[12] S. Bera and V. K. Shrivastava, ‘‘Analysis of various optimizers on deep
convolutional neural network model in the application of hyperspectral
remote sensing image classification,’’ Int. J. Remote Sens., vol. 41, no. 7,
pp. 2664–2683, Apr. 2020.

[13] J. M. Esposito and M. Graves, ‘‘An algorithm to identify docking locations
for autonomous surface vessels from 3-D LiDAR scans,’’ in Proc. IEEE
Int. Conf. Technol. Practical Robot Appl. (TePRA), Woburn, MA, USA,
Apr. 2014, pp. 1–6.

[14] J. Lee, J.Woo, and N. Kim, ‘‘Vision and 2D LiDAR based autonomous sur-
face vehicle docking for identify symbols and dock task in 2016 maritime
RobotX challenge,’’ in Proc. IEEE OES Int. Symp. Underwater Technol.
(UT), Feb. 2017, pp. 1–5.

[15] Y.-W. Huang et al., ‘‘Team NCTU : Toward AI-driving for autonomous
surface vehicles—From Duckietown to RobotX,’’ Oct. 2019
arXiv:1910.14540. [Online]. Available: https://arxiv.org/abs/1910.
14540

[16] P. Leite, R. Silva, A. Matos, and A. M. Pinto, ‘‘An hierarchical architecture
for docking autonomous surface vehicles,’’ in Proc. 19th IEEE Int. Conf.
Auto. Robot Syst. Competitions (ICARSC), Porto, Portugal, Apr. 2019,
pp. 1–6.

[17] M. I. Pereira, P. N. Leite, and A.M. Pinto, ‘‘Detecting docking-based struc-
tures for persistent ASVs using a volumetric neural network,’’ presented at
the MTS/IEEE Global OCEANS, 2020.

[18] A. Atapour-Abarghouei and T. P. Breckon, ‘‘Real-time monocular depth
estimation using synthetic data with domain adaptation via image style
transfer,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Salt Lake City, UT, USA, Jun. 2018, pp. 2800–2810.

[19] Y. Zhang, P. David, H. Foroosh, and B. Gong, ‘‘A curriculum domain
adaptation approach to the semantic segmentation of urban scenes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 1823–1841,
Aug. 2020.

[20] X. Gu, Y. Guo, F. Deligianni, and G.-Z. Yang, ‘‘Coupled real-synthetic
domain adaptation for real-world deep depth enhancement,’’ IEEE Trans.
Image Process., vol. 29, pp. 6343–6356, 2020.

[21] D. F. Campos, A. Matos, and A. M. Pinto, ‘‘Multi-domain inspection of
offshore wind farms using an autonomous surface vehicle,’’ Social Netw.
Appl. Sci., vol. 3, no. 4, Apr. 2021, Art. no. 455.

[22] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, ‘‘An overview
of clustering methods,’’ Intell. Data Anal., vol. 11, no. 6, pp. 583–605,
Nov. 2007.

[23] E. T. Jaynes, Probability Theory: The Logic of Science,
G. L. Bretthorst, Ed. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[24] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
‘‘3D ShapeNets: A deep representation for volumetric shapes,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA,
Jun. 2015, pp. 1912–1920.

[25] B. Pang, E. Nijkamp, and Y. N. Wu, ‘‘Deep learning with tensorflow:
A review,’’ J. Educ. Behav. Stat., vol. 45, no. 2, pp. 227–248, 2020.

[26] V. Subramanian, Deep Learning With PyTorch : A Practical Approach
to Building Neural Network Models Using PyTorch. Birmingham, U.K.:
Packt Publishing, 2018.

[27] J. Brownlee, Deep Learning for Computer Vision: Image Classifica-
tion, Object Detection, and Face Recognition in Python. Vermont, VIC,
Australia: Machine Learning Mastery, 2019.

[28] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance
measures for classification tasks,’’ Inf. Process. Manage., vol. 45, no. 4,
pp. 427–437, Jul. 2009.

[29] D. F. Campos, A. Matos, and A. M. Pinto, ‘‘Multi-domain mapping for
offshore asset inspection using an autonomous surface vehicle,’’ in Proc.
IEEE Int. Conf. Auto. Robot Syst. Competitions (ICARSC), Apr. 2020,
pp. 221–226.

[30] J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal,
‘‘Comparison of 905 nm and 1550 nm semiconductor laser rangefind-
ers’ performance deterioration due to adverse environmental conditions,’’
Opto-Electron. Rev., vol. 22, no. 3, pp. 183–190, Jan. 2014.

53044 VOLUME 9, 2021



M. I. Pereira et al.: Advancing ASVs: 3D Perception System for the Recognition and Assessment

MARIA INÊS PEREIRA received the M.Sc.
degree in electrical and computer engineering
from the Faculty of Engineering, University of
Porto (FEUP), Portugal, in 2020. She is currently
pursuing the Ph.D. degree in electrical and com-
puter engineering, while conducting research with
the Centre for Robotics and Autonomous Systems,
INESC TEC. Her main research interests include
maritime robotics, deep learning, and perception
systems.

RAFAEL MARQUES CLARO received the M.Sc.
degree in electrical and computer engineering
from the Faculty of Engineering, University of
Porto, Portugal, in 2020. He is currently pursu-
ing the Ph.D. degree in electrical and computer
engineering. He is currently a Researcher with the
Centre for Robotics and Autonomous Systems,
INESC TEC.

PEDRO NUNO LEITE was born in Porto,
Portugal, in 1996. He received the M.Sc. degree in
electrical and computer engineering from the Fac-
ulty of Engineering, University of Porto (FEUP),
in 2019, where he is currently pursuing the Ph.D.
degree. He is currently working with the CRAS,
INESC TEC, as an Assistant Researcher. His cur-
rent research interests include underwater robotics
and perception techniques, computer vision, and
deep learning.

ANDRY MAYKOL PINTO received the Ph.D.
degree in electrical and computer engineering
from the Faculty of Engineering, University of
Porto, Portugal, in 2014. He is currently an Assis-
tant Professor with the Faculty of Engineering,
University of Porto, and a Senior Researcher with
the Centre for Robotics and Autonomous Systems,
INESC TEC. He is the Principal Investigator of
national and international research and develop-
ment projects related to robotic-based operation

and maintenance (O&M) activities for offshore infrastructures. His main
research interests include multi-domain perception, underwater imaging,
artificial intelligence, and mobile robotics.

VOLUME 9, 2021 53045


