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ABSTRACT Approaches for predicting financial markets, including conventional statistical methods and
recent deep learning methods, have been investigated in many studies. However, financial time series
data (e.g., daily stock market index) contain noises that prevent stable predictive model learning. Using
these noised data in predictions results in performance deterioration and time lag. This study proposes
padding-based Fourier transform denoising (P-FTD) that eliminates the noise waveform in the frequency
domain of financial time series data and solves the problem of data divergence at both ends when restoring
to the original time series. Experiments were conducted to predict the closing prices of S&P500, SSE, and
KOSPI by applying data, from which noise was removed by P-FTD, to different deep learning models based
on time series. Results show that the combination of the deep learning models and the proposed denoising
technique not only outperforms the basic models in terms of predictive performance but also mitigates the
time lag problem.

INDEX TERMS Deep learning, denoising framework, Fourier transform, stock index prediction, time series.

I. INTRODUCTION
For decades, stock market prediction has been receiving
steady attention from researchers and investors as an attrac-
tive field. Nonetheless, accurately predicting the future of
the stock market has remained an open question because
stock markets are dynamic and possess several unpredictable
factors. According to the Efficient Market Theory proposed
by Fama [1], financial markets are unpredictable because all
new information is already reflected on the price. Contrary
to this view, numerous studies have predicted stock mar-
kets by taking diverse approaches, starting from conventional
statistical models to machine learning and deep learning
models in accordance with advancements in computational
performance [2]–[7].

Banerjee [8] forecasted the stock index for a day using
an autoregressive integrated moving average, whereas Liu
and Hung [9] studied the stock index volatility through
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a generalized autoregressive conditional heteroskedasticity
model. These econometric models are employed under the
assumption that the time series data are linear. Because of
linearity assumption, conventional approaches demonstrate
limited performances when predicting the financial time
series, which aremostly nonlinear and nonstationary. Accord-
ingly, machine learning models, such as the support vector
machine and artificial neural network (ANN) models, have
been applied to forecast the value or direction of the stock
market index to overcome the shortcomings of linear models
[10]–[12]. Recently, deep learning models, including long
short-term memory (LSTM) [13]–[18], and their variants
[19]–[25] have been popularly proposed for stock prediction.

A major problem in stock prediction using deep learning
methods is that the financial time series contains considerable
noise [26]. When predicting using noise-included data, learn-
ing becomes unstable because of the unwanted fitting data
generated despite using machine learning and deep learning
models [27]. This could result in overfitting or underfitting
problems [28], [29]. Moreover, a time lag occurs, wherein the
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predicted value lags in the direction and size of the actual data
values in the past.

In view of these limitations, studies to eliminate noises in
financial data have emerged. Raudys et al. [30] compared
different moving averages and verified the exponential mov-
ing average to achieve the best smoothing performance. Babu
and Reddy [31] proposed moving average (MA) to smoothen
time series data and explore their trend component before
applying the ANNmodel. However, noise removal using MA
techniques is accompanied by the time lag problem caused
by the reflection of the historical data. The smoothness of the
MA approach is inversely proportional to the time lag [30].
Several studies using denoising techniques other than MA
have been conducted to reduce the effect of noise in the
financial time series data and enhance the capability of pre-
dictionmodels. Lu [32] proposed a denoising technique based
on independent component analysis integrated with a back-
propagation neural network for stock price prediction. Awa-
jan et al. [33] used empirical mode decomposition (EMD)
along with a bagging method to predict the daily stock market
prices of six countries.

In recent years, denoising algorithms based on transform
methods have gained preference for outperforming many tra-
ditional methods such as the MA filter and simple nonlinear
noise reduction [34]. For example, Yu et al. [35] pro-
posed a hybrid model comprising of empirical wavelet trans-
form (EWT) and optimized extreme learning machine (ELM)
to present a stable and precise prediction of financial time
series. Chan Phooi M’ng and Mehralizadeh [34] proposed
Wavelet-PCA denoising (WPCA), a hybrid model using
wavelet transform (WT) and principal component analysis.
They applied their denoising method with ANN to analyze
and forecast the financial future markets. Meanwhile, Li and
Tam [36] combined the real-time wavelet denoising (RTWD)
with LSTM, a time series-based learning model, to predict
East Asian stock market indexes. Bao et al. [37] combined
wavelet transforms with stacked autoencoders (WSAEs) and
LSTM to predict the closing price of six different mar-
ket indices with corresponding index futures. Their model
outperformed other models in the predictive performances.
However, these wavelet denoising methods have limitations
in terms of retrieving weak signals with magnitudes close
to the noise [38]. Fourier transform (FT) is another method
that can be applied to various fields for denoising differ-
ent types of discrete and continuous data including image
data [39]–[41]. FT has also been shown to be effective in
denoising time series data. Chen and Chen [42] proposed
a fuzzy time series forecasting model by combining the
entropy discretization technique and fast FT (FFT) algorithm.
Despite FT methods being strong denoising methods, they
have diverging issues when applied to financial time series
due to information lost in the removal process.

This study proposes a denoising technique using FFT with
padding to remove the noises of financial time series data
without leading to divergence and time lag. We verify the
performance by conducting experiments to predict the stock

indices of the next day using different time series-based deep
learning models and comparing to models from previous
research. The remainder of this paper is organized as follows:
Section 2 explains the methods used herein, including the
proposed methodology; Section 3 presents the details of the
experimental procedures; Section 4 summarizes the exper-
imental results and discussion; and Section 5 provides the
conclusions of this study.

II. RELATED WORK
A. FOURIER TRANSFORM
FT is a mathematical tool used to convert a finite sequence of
waveform data in the time domain into equally spaced data
in the frequency domain [43]. The original data are restored
through an additional Fourier analysis using FT samples as
the coefficients of complex sinusoids at the corresponding
FT frequencies. This process is known as the inverse FT.
Therefore, a classical FT and its inverse are said to be in a
one-to-one relationship between the time [x(t)] and frequency
[X (ω)] domains.
Discrete FT (DFT) is the most common type of Fourier

analysis applied to a discrete complex-valued series. DFT
breaks down a waveform in a time domain into a series of
sinusoidal terms, each with a unique magnitude, frequency,
and phase. The DFT process converts the time-based wave-
form expressed in complex functions into clearer sinusoidal
functions, which when combined, can exactly replicate the
original waveform. DFT transforming a sequence of N
complex numbers {xn} into {Xk} is presented below:

Xk =
N−1∑
n=0

xn · e−i2πkn/N (1)

Its inverse is given by

xn =
1
N

N−1∑
k=0

Xk · ei2πkn/N (2)

where log expression e±i2πkn/N can be expressed as a combi-
nation of sines and cosines according to Euler’s formula

eiω = cosω + i sinω (3)

Hence, equations (1) and (2) can be expressed as
equations (4) and (5), respectively:

Xk =
N−1∑
n=0

xn · [cos
2πkn
N
−i · sin

2πkn
N

] (4)

xn =
1
N

N−1∑
k=0

Xk · [cos
2πkn
N
+ i · sin

2πkn
N

] (5)

DFT shows advantages in many fields, but computing
it directly is often computationally too expensive to be
practical. FFT was introduced by Cooley and Tukey [44]
in 1965. It is an optimized approach for implementing FT.
The computation complexity of FT can be reduced from
O(N 2) to O(N logN ). FFT is widely used in many practical
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FIGURE 1. Cell diagram of each time series-based deep learning model.

applications because it is believed to be an effective method
for disturbed signal denoising.

B. RECURRENT NEURAL NETWORK
A recurrent neural network (RNN) is a type of ANN with a
‘‘memory’’ that captures past information, making it suitable
for arbitrarily long sequence data [45]. This ‘‘memory’’ is
known as the hidden state, which is the main and most
important feature of an RNN. An RNN comprises an input
layer, a hidden layer, and an output layer. The hidden states
ht and the output of a single hidden layer ot given an input
sequence at time step t xt can be derived as follows:

ht = H (Wxhxt +Whhhh−1 + bh) (6)

ot = O(Whoht + bo) (7)

where W denotes the connection weights between the layers
shared across all steps and b represents the bias vectors.
Equations (6) and (7) and Fig. 1(a) show that the hidden state
ht is calculated based on the previous hidden state ht−1 and
the input at the current step xt .H (·) andO(·) are the activation
functions, which, in most cases, are expressed as tanh.

C. LONG SHORT-TERM MEMORY
Hochreiter and Schmidhuber [46] proposed an RNN varia-
tion, called LSTM, which was designed to circumvent the
long-term dependency problem. A memory block compris-
ing multiple gates and a memory cell is the most important
feature of an LSTM system. Fig. 1(b) represents a memory
block of the LSTM model.

LSTM has three main gates: input gate(it ), forget gate(ft ),
and output gate(ot ). The input gate controls the input signal
that alters the memory cell state. The forget gate regulates the
amount of the previous cell state (ht−1) that can pass through.
The output gate decides whether to allow the state of the
memory cell to influence the other units. The calculations for
each gate and cell state are expressed as follows:

it = σ (Wxixt +Whiht−1 + bi) (8)

ft = σ (Wxf xt +Whf ht−1 + bf ) (9)

ot = σ (Wxoxt +Whoht−1 + bo) (10)

ct = ft � ct−1 + it � c̃t (11)

c̃t = tanh(Wcoxt +Wcoht−1 + bc) (12)

ht = ot � tanh(ct ) (13)

where ct is the memory cell; c̃t is the internal hidden state;
σ (·) is a sigmoid function; tanh(·) is a hyperbolic tangent
function; and � is the elementwise vector product.

D. GATED RECURRENT UNIT
The gated recurrent unit (GRU) was introduced by
Cho et al. [47] to deal with the vanishing gradient problem
of an RNN. GRU is a variation of LSTM because it shows a
similar structure to that of a long short-term memory with the
forget gate. In GRU, the memory cell and the hidden state
are combined into a vector h̃t , while the input and forget
gates are combined into a gate controller known as the reset
gate zt . Despite the simplified parameters, GRU has shown a
performance comparable with that of LSTM [48], [49].

The gated unit has several variations; themost general form
is depicted in Fig. 1(c). The cell states and the output of each
layer can be calculated as follows:

rt = σ (Wxrxt +Whrht−1 + br ) (14)

zt = σ (Wxzxt +Whzht−1 + bz) (15)

h̃t = tanh(Wxgxt +Whg(rt � ht−1 + bz) (16)

ht = (zt � ht + (1− zt )h̃t ) (17)

Equations (14) to (17) and Fig. 1(c) show that the update
gate rt , which is also the gate controller, controls both the
forget and input gates. Although the reset gate zt seems like
the update gate, its weights and usage are different.

III. PROPOSED PADDING-BASED FT
DENOISING METHOD
In the financial market, it is commonly accepted that the
volatility resulting from short-term traders, who tend to exe-
cute relatively high-frequency trades throughout the day with
small assets, can affect the daily price of the stock but has
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FIGURE 2. Illustration of the steps involved in padding-based Fourier transform denoising.

minimal effects on its momentum or major trend. In this
study, such volatility is considered noise. Because of the fre-
quent buying and selling of the short-term traders, this noise
corresponds to a waveform with low amplitude and high fre-
quency in the frequency domain and must be removed for sta-
ble learning of predictive models. Unfortunately, it is difficult
to effectively remove such noise in the time domain. Hence,
using filtering approaches, such as MA, only leads to issues
such as time lagging and unstable learning. FFT was used in
this study to remove the noise in financial time series data
by separating the data into different frequency domain wave-
forms and eliminating the low-amplitude and high-frequency
waveform. Both ends of the time series diverge when the orig-
inal time series is restored with the removed noise waveform,
thereby resulting in a large error from the original data.

In this study, we proposed a method for removing noise
from a frequency domain and restoring it into smoothed data
without significant loss of original information by applying
the padding technique to FT. Fig. 2 presents the overall
process of the proposed method.

Fig. 2(a) shows the original time series data X(t) with small
and highly volatile noises. Here, σ1 and σ2, which represents
the recent n sample volatility at both ends of X(t), are derived
as follows:

σ1 =

√∑n
1(Xk−X1)

n
, where X1 =

√∑n
1 Xk
n

(18)

σ2 =

√∑N
N−n(Xk−X2)

n
, where X2 =

√∑N
N−n Xk
n

(19)

Xt−1 = Xt + N1, t = 1,. . . ,1− m (20)

Xt+1 = Xt + N2, t = N , . . . ,N + m (21)

where, N1 and N2 are samples from the normal distribution of
(0, σ1) and that of (0, σ2), respectively. These samples, which
reflected the recent volatility of the original time series, were
attached to both ends of the data. This process was repeated
as many as m times (i.e., size of the padding area). Fig. 2(b)
displays the resulting time series with padding regions.

Fig. 2(c) illustrates the result of decomposing the padded
time series data (padded as above in the time domain) into
different N + 2m frequencies using FFT. The decomposed
frequencies displayed a bilateral symmetry based on the
center. The x-axis in Fig. 2(c) represents the decomposed
frequencies, in which the absolute value increased from the
center to both ends. The y-axis represents the amplitude of
each signal waveform,which also corresponded to the Fourier
coefficient. A large valuemeans awaveform that significantly
affects the original data. In other words, waveforms with
low amplitude and high frequency are considered noise and
should be removed to smoothen the original data because they
generate considerable variation in a short period.

Therefore, the Fourier coefficient for a waveform, in which
the frequency does not exceed ε, is set to 0 to remove the noise
(Fig. 2(d) and (22)).

Ak =

{
Ak if fk < |ε|
0 if fk ≥ |ε|

, k = 1− m, . . . ,N + m, (22)

where Ak is the frequency amplitude at k and ε is the fre-
quency threshold value. After removing the noise waveform
of less than ε, N + 2m waveforms with different frequencies
were multiplied with the corresponding Fourier coefficient
and restored to the original time series through inverse FFT.
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In this process, each frequency has a different periodic
function form. Moreover, divergence occurs at both ends of
the time series as the amplitude of the frequency waveform
below the threshold is converted into zero to eliminate the
noise and then merged into the original data (Fig. 2(e)).
The padded 2m data added to prevent the formation of the
diverging region are removed from the restored time series.
Fig. 2(f) shows the smoothed time series graph obtained from
the P-FTD process on the original time series data.

The noise-removal process in time series through the
padding-based FT denoising is summarized as follows:

Step 1 (A → B): The padding area is created by adding
randomly sampled values from the normal
distributions (0,σ1) and (0,σ2) to the data at
both ends and repeating this m times.

Step 2 (B → C): FFT is used to transform the padded
time series data from the time domain to
the frequency domain and split them into
N + 2m waveforms.

Step 3 (C → D): Among the decomposed waveforms,
the amplitude values of the waveforms with
a frequency value higher than the threshold
(ε) are converted into 0 to remove noise.

Step 4 (D→E): The remainingwaveforms are recombined
with the data from the frequency domain to
the time domain using the inverse FFT.

Step 5 (E→ F): The padding areas containing the diverging
part are removed to restore the denoised
time series data with the same length as that
of the original time series.

IV. EXPERIMENT
This section presents the details of the experiment used
to verify the performance of the stock index prediction
through P-FTD. Fig. 3 shows the overall research process
to which the proposed model was applied. The specific
data, preprocessing, models, hyperparameters, and evaluation
metrics involved in the experiment are explained herein.

A. DATASET
The research datasets used in this study comprised represen-
tative stock market indices from the United States, China, and
Korea. The data comprised of the daily prices and volume
from January 2, 2001 to April 17, 2020. The input features
comprised the daily open (stock price at the start of each
trading day), high (highest price of each trading day), low
(lowest price of each trading day), close (stock price at the end
of each trading day), and volume (number of shares traded
each day) of S&P500, SSE, and KOSPI. An output feature
was set to the closing price of the next day. All data can be
obtained from Yahoo Finance and investing.com.

Fig. 4 and Table 1 summarize how the extracted data were
divided into three subsets (i.e., training, validation, and test-
ing sets with proportions of 70% training, 10%validation, and
20% testing, respectively). The blue color in Fig. 4 indicates

FIGURE 3. Experimental framework of the proposed model.

TABLE 1. Summary of the training and testing dataset after batch
preprocessing.

the training period, the yellow color indicates the validation
period, and the red color indicates the testing period.

B. PREPROCESSING
Min-max normalization, also known as min-max scaling, was
performed on the input data before being feeding them into
the model for more stable learning of the prediction model.
Large values of the input overwhelm the weight adjustment
during network training even if errors occur owing to other
factors [50]. Moreover, input features can be dominated by a
particular input feature when the magnitudes of each variable
are different. This scaling aims to ensure that larger input
features do not overwhelm smaller input features by rescaling
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FIGURE 4. Daily closing prices from January 02, 2001 to April 17, 2020 for
each stock market index.

the size of each variable between 0 and 1. The min–max
normalization is calculated as follows:

x ′ =
x − xmin

xmax − xmin
(23)

where x is the original value and xmax and xmin are the
maximum and minimum values of each feature, respectively.

C. MODELS AND HYPERPARAMETERS
In this study, we conducted experiments by integrating
the P-FTD process into three different time series-based
deep learning models: RNN, LSTM, and GRU. The
P-FTD-integratedmodels (i.e., P-FTD_RNN, P-FTD_LSTM,

TABLE 2. Hyperparameters of P-FTD.

TABLE 3. Hyperparameters of the time series-based deep learning
models.

and P-FTD_GRU) are categorized as Group 1, and the basic
models (i.e., RNN, LSTM, and GRU) as Group 2.

Hyperparameters of P-FTD (i.e., volatility period, padding
area size, and threshold) and the predictive models (i.e.,
time step, learning rate, hidden dimensions, and early stop)
were optimized using a grid search algorithm. The predictive
models were generated using the hyperparameters obtained
through this process and their performances were then evalu-
ated by feeding the testing data. The value and search space
of the hyperparameters are summarized in Tables 2 and 3.

Volatility period N, padding area size m, and threshold
value ε for the noise removal were set to 40, 40, and 0.2,
respectively. These values can be adjusted by the experi-
menter considering each P-FTD hyperparameter character-
istic. As the volatility period N increases, a padding area
reflecting the recent volatility trend of a longer period is
obtained, whereas as N decreases, a padding area that is
significantly affected by the recent volatility is obtained. The
divergence region can be more stably removed as the padding
area sizem increases; however, a random sample has a greater
effect on the original time series. The smaller the threshold
value ε, the more numbers of high-frequency waveforms are
removed in the P-FTD process and a smoother time series is
restored.

Timestep, learning rate, input dimension, hidden dimen-
sion, and output dimension were set to 20 (trading days in a
month), 0.001, 5 (open, high, low, close, volume), 10, and 1,
respectively. The other parameters, i.e., the optimization algo-
rithm and the loss function, were represented by the Adam
optimizer and the mean squared error, respectively. Early
stopping was employed to prevent the model from overfitting
and terminate model learning when the loss of the validation
data did not decrease by more than 20 epochs. These values
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of the hyperparameters were fixed in every model to validate
the denoising effects of P-FTD on each model.

D. EVALUATION METRICS
The forecasting performance of each model was evaluated
based on the followingmetrics: MAE, RMSE,MAPE, and hit
ratio. Equations (24) to (28) define these metrics as follows:

MAE =
1
n

n∑
i=1

|yi − fi| (24)

RMSE =

√√√√1
n

n∑
i=1

(yi − fi)2 (25)

MAPE(%) =
1
n

n∑
i=1

∣∣∣∣yi − fiyi

∣∣∣∣× 100 (26)

Here, yi is the actual value, while fi is the forecast value.
Variable n represents the number of test samples. A lower
value of these indicators denotes a smaller difference between
the actual and forecasted values, showing better network
performance.

The performance of predicting the next-day direction is
evaluated using the hit ratio equation:

Hit ratio =
1
n

n∑
i=1

Di(i = 1, 2, . . . , n) (27)

where Di is the directional match result for the i-th trading
day.

Di =

{
1, (yt+1 − yt )(ft+1 − ft ) > 0,
0, Otherwise.

(28)

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we describe experiments, in which P-FTD
was applied on different deep learning models, conducted
to verify the denoising effects in stock market index pre-
diction. Fig. 5 shows April 17, 2019 through April 17,
2020 S&P500 data, P-FTD-denoised data and noise data.

FIGURE 5. S&P500 P-FTD-denoised data and their noise from April 17,
2019 to April 17, 2020.

The denoised data exhibited a smoothed and stable time series
even in the volatile sections of the original data, where the
trend was unstable. Furthermore, the index values at both
ends of the time series stabilized without divergence when the
data were denoised using padding techniques and restored to
their time domain form.

Figs. 6 to 8 show the actual and forecasted values of the
S&P500, SSE, and KOSPI indices in the last two months
from February 21, 2020 to April 17, 2020. The forecasting
performances of the Group 2 models were compared with
those of the Group 1 models, which are P-FTD-integrated
models.

FIGURE 6. Comparison of the predicted values before and after applying
P-FTD for each S&P500 model.

FIGURE 7. Comparison of the predicted values before and after applying
P-FTD for each SSE model.

FIGURE 8. Comparison of the predicted values before and after applying
P-FTD for each KOSPI model.

Table 4 presents the evaluation results for each model.
Among the basic models belonging to Group 2, GRU showed
the best performance in predicting S&P500 and SSE, and
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TABLE 4. Summary of the forecasting evaluation results for each model.

TABLE 5. Comparison of RMSE according to time lag.

LSTM in predicting KOSPI. P-FTD_LSTM exhibited the
best performance among the denoised models in Group 1.
A comparison of the best performing models in each
group illustrated that P-FTD_LSTM outperformed GRU.
S&P500 had 49.04% (MAE), 51.03% (RMSE), and 49.56%
(MAPE); SSE had 55.31% (MAE), 57.60% (RMSE), and
55.17% (MAPE); and KOSPI had 47.16% (MAE), 49.58%
(RMSE), and 47.76% (MAPE).

Table 4 and Figs. 6 to 8 show a slight difference in the pre-
dicting performances within each group but a large difference
in the performances between the groups.

In addition to the abovementioned results, two interesting
aspects were also confirmed from the experimental results.
First, the time lag improved. In Figs. 6 to 8, a time lag is
observed in Group 2 when predicting the next day’s index
with the noised data. This result can be attributed to the
characteristics of the predictive models that learn weights by
minimizing errors and the fact that following the value of
the previous day tends to give a lower prediction error more
than actually predicting the value of the next day. By con-
trast, predictive models integrated with the P-FTD showed
an improved time lag even at the transition points.

To confirm the time lag improvement, a comparison of the
RSME results of each model for the three indexes according
to the time delay was performed (Table 5). The actual index
value was compared with the predicted value of the same day

in Lag 0, one day after in Lag 1, and two days after in Lag 2.
In the table, Group 1 models showed the lowest RMSE values
in Lag 0, whereas Group 2 models showed the lowest RMSE
values in Lag 1. The result indicates that P-FTD models,
unlike basic models optimized to the value of the day before
prediction and predict the following day, make predictions
independent of the values of the previous day.

The second aspect is the formation of a robust model as
a response to minor changes. Models without the P-FTD
process respond significantly to minor changes in the original
data and reduce the prediction performances. The P-FTD
models responded more stably to small volatilities and made
predictions based on the major trends of the financial time
series data because the noises differing from the major trends
were eliminated.

In addition to the next-day stock index prediction, the coin-
cidence of the directionality of the stock index was further
verified using the hit ratio, the trials percentage when the pre-
dicted direction is correct. The average hit ratios for Groups 1
and 2 were 72.15% and 49.43%, respectively, and the best hit
ratios were 73.58% and 50.70%, respectively. The average hit
ratio for Group 1 increased by 45.96% compared with that
of Group 2. Fig. 9 also shows that all models in Group 1
were more efficient in predicting the direction of the daily
closing price of all stock indices than the models in Group 2.
The accurate prediction performance of the models with the
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FIGURE 9. Comparison of the hit ratios before and after denoising for each model.

TABLE 6. Performance comparison of previous research works.

P-FTD-denoised data is beneficial to investors and can be a
favorable candidate for predicting the direction of next day’s
closing price.

To further illustrate the denoising effects of P-FTD on
the time-based deep learning models, the performance of
the proposed models was compared with that of the afore-
mentioned studies (Table 6). These studies present differ-
ent denoising methods combined with deep learning models
to predict the next day’s stock index using S&P500, SSE,
and KOSPI data. As the evaluation metric to compare the
prediction performances of the different studies, the error
ratio between predicted and actual value MAPE was selected
because other evaluation metrics mentioned in Section IV.D
are significantly affected by the period and scale of data

observed. The table reveals that time series based deep learn-
ing models integrated with P-FTD outperform other deep
learning models combined with different denoising methods.
The prediction performance of P-FTD_LSTM was higher by
75.3% than RTWD-LSTM, which was the best-performing
model among those in the literature for predicting the KOSPI
index.

VI. CONCLUSION
In this study, we proposed a denoising method based on FFT
with a padding technique to remove noises, which result in
unstable learning of predictive models and time lag, in the
stock market index. The proposed method also presents a
solution to the divergence problem of the time series data
when transformed from the frequency domain to the time
domain using FFT. The divergence, which occurs at both ends
of the time series data owing to the original information being
removed along with the noise waveforms, was prevented
by first adding the padding areas containing the diverging
components and then removing them from the restored time
series. The performance of the proposed denoising technique
was verified through experiments that predicted the next
day’s stock index by applying it to the major indices of dif-
ferent countries and diverse time series-based deep learning
models.

The daily price and the trading volume data of S&P500,
SSE, and KOSPI, which are the representative indices of the
United States, China, and Korea, respectively, were used in
this experiment. As predictive models, the RNN, LSTM, and
GRU deep learning models were used, compared, and ana-
lyzed to investigate the noise-reduction performance through
P-FTD. According to the results, GRU and LSTM showed
the best performance among the basic models, whereas
P-FTD_LSTM showed the best performance among the
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denoised models. Comparing the best-performing models,
the MAE, RMSE, and MAPE values of P-FTD_LSTM
decreased for all indexes. The performances of the basic and
denoised models for predicting the directionality of the stock
index were also compared using the hit ratio. The average
hit ratio for the denoised models was greater than that for
the basic models by 45.96%. These results demonstrate that
the prediction after removing the noise from the input data
using the P-FTD shows better performance in all indices
and models compared with that performed without noise
removal. The results also show an improvement in the time
lag, in which the predicted values follow preceding values
when predicted using noised data, and a robust model that
responds more stably to noises. In addition, the performance
of the proposed models with that of other previous studies
were compared and verified their superiority.

Although only the financial time series data were treated in
this study, the proposed denoising technique could be used to
filter other types of time series data. Moreover, it has strength
in that users can adjust the range of noise values.

This study has a limitation. The padding technique was
used to prevent only the divergence that occurs when restor-
ing the original data after removing the waveforms with
low amplitude and high frequency. The padding values were
randomly sampled from a normal distribution considering the
volatility of the original data. The number of padded values
that is smaller than that of the original data has minor effects
on the restored data after the P-FTD processing. However,
if the number of padded values increases compared with the
number of original data, the restored data can be affected
by another type of noise generated by the padded values.
Therefore, additional studies on methods of finding padding
values that minimize the impact when the original data are
small are needed. In addition, the correlation among individ-
ual parameters and the denoising performance in the P-FTD
process must be investigated.
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