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ABSTRACT Effectively learning and extracting the feature representations of 3D point clouds is an
important yet challenging task. Most of existing works achieve reasonable performance in 3D vision tasks by
modeling the relationships among points appropriately. However, the feature representations are only learned
with a specific transform through these methods, which are easy to overlap and thus limit the representation
ability of the model. To address these issues, we propose a novel Multi-Transform Learning framework for
point clouds (PointMTL), which can extract diverse features from multiple mapping transform to obtain
richer representations. Specifically, we build a module named Multi-Transform Encoder (MTE), which
encodes and aggregates local features from multiple non-linear transforms. To further explore global context
representations, a module named Global Spatial Fusion (GSF) is proposed to capture global information
and selectively fuse with local representations. Moreover, to guarantee the richness and diversity of learned
representations, we further propose a Spatial Independence Criterion (SIC) strategy to enlarge the differences
between the transforms and reduce information redundancies. In contrast to previous works, our approach
fully exploits representations from multiple transforms, thus having strong expressiveness and good robust-
ness for point clouds related tasks. The experiments on three typical tasks (i.e., semantic segmentation on
S3DIS and ScanNet, part segmentation on ShapeNet and shape classification on ModelNet40) demonstrates
the effectiveness of our method.

INDEX TERMS 3D point clouds, feature representations, multi-transform learning, semantic segmentation.

I. INTRODUCTION
The rapid development of sensor technology enables a more
convenient way to obtain 3D point clouds data, which
boosts the research for many intelligent systems, such
as autonomous driving [1]–[3], robotics [4], [5] and vir-
tual/augmented reality [6]–[8]. However, a major challenge
is that the raw point clouds are typically unstructured (i.e.,
irregular, disordered and uneven density as shown in Fig. 1).
Therefore, the recent success of deep Convolutional Neural
Networks (CNNs) developed for the structured 2D data can-
not be applied directly for the analysis of unstructured 3D
point clouds. This makes the typical tasks of point clouds
analysis, e.g., semantic segmentation, part segmentation and
shape classification, still remain challenging.

To tackle with such type of unstructured data, some
early works [9]–[15] have transformed the point clouds to
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FIGURE 1. Typical properties of 3D point clouds.

regular multi-view images or voxels for a direct application of
deep CNNs. Nevertheless, bothmulti-view images and voxels
usually cause the loss of the inherent geometric informa-
tion of point clouds. Moreover, such transformations require
a high computational complexity, which is infeasible for
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real-world applications. In contrast, some works have
emerged to directly process point clouds. The pioneer-
ing PointNet [16] first learns the point-wise features using
shared Multi-Layer Perceptrons (MLPs) with the consider-
ation of permutation invariance. And then gathers such fea-
tures to obtain a compact representation via a max-pooling
operation. However, PointNet extracts a global representa-
tion without considering any fine-grained local information,
which is proven to be effective for capturing the details
of point clouds. To overcome such drawback, some other
works [17]–[22] further explore the local relations by parti-
tioning the raw point clouds into a set of local subsets and
then hierarchically aggregating them into a high-level con-
textual representation. Another category of works [23]–[30]
represent point clouds by constructing graph structures, and
perform a convolution-like operation on the spatially close
nodes for aggregating the information along the neighbor
nodes in a sub-graph. Based on the nature of point clouds,
the receptive field of such convolution-like operation in a
graph structure can dynamically accommodate to the shape
of the objects for encoding the local contextual information.

Most of aforementioned methods appropriately capture the
contextual representations of the point clouds with a spe-
cific transform. However, due to the close distance between
different objects, they may result in feature overlap (as
shown in the dotted circle from Fig. 2). Representative
works [31]–[35] in other fields have demonstrated that more
powerful models can be built by learning diversified repre-
sentations of multiple transforms.

Inspired by the multi-transform approaches, we propose
a novel Multi-Transform Learning framework for 3D Point
Cloud (PointMTL), which can effectively learn and fuse
different feature representations from the embedding trans-
forms. Specifically, the point clouds first go through the
Multi-Transform Encoder (MTE), which transforms the orig-
inal point clouds separately to obtain the representation
of different transforms. Then, local receptive fields are
dynamically constructed by K -Nearest Neighbors (KNN)
algorithm [36] and aggregated by attention mechanism.
In addition, the Global Spatial Fusion (GSF) module is
introduced to extract the global contextual representations.
Finally, to guarantee more diverse feature representations,
Spatial Independence Criterion (SIC) module is proposed
as a constraint for feature learning. All the modules consti-
tute the MTL units, which are added between the encoding
layers, and the decoding layers are optional for different
tasks. Our proposed method has been evaluated on three
different tasks (four benchmarks), i.e., semantic segmenta-
tion on S3DIS [37] and ScanNet [38], part segmentation
on ShapeNet [39], shape classification on ModelNet40 [11].
Experimental results have demonstrated the effectiveness of
our model.

Our contributions can be summarized as follows:
• We propose a PointMTL framework that projects the
original point clouds data with multiple feature trans-
forms. This framework partly solves the feature overlap

FIGURE 2. Illustration of the feature representations from multiple
transforms. The crosses and triangles represent different classes, and the
selected classes are highlighted in red. Learning feature representations
from a specific transform can result in different degrees of feature
overlap.

problem in a specific transform, and obtains richer infor-
mation from multiple transforms.

• We introduce theMTE andGSFmodule, that can encode
local and global feature representations from multiple
transforms respectively.

• We propose a novel SIC strategy to enlarge the dif-
ferences between multiple features. By minimizing the
similarity of features, SIC can effectively guarantee
information diversity and help the network to capture
more meaningful representations.

• Our model performs better than other methods on
various tasks and benchmarks, which demonstrate its
effectiveness.

II. RELATED WORKS
A. INDIRECT METHODS FOR POINT CLOUDS
With the success of deep CNNs in 2D images, one kind
of indirect methods usually transform point clouds into a
set of images rendered from different views and utilize
deep CNNs to process the rendered view images [9], [12],
[14], [40]. However, the view-based methods usually lead
to the loss of the inherent geometric relationship during the
view rendering. Therefore, the view-based methods tend to
fail when dealing with the dense labeling tasks which requires
rich structural and contextual information associated with the
point clouds.

Another kind of indirect methods transform point
clouds into the regular volumetric occupancy grids [10],
[11], [35]. Then, 3D deep CNNs are used to extract
features from the corresponding 3D voxel structures.
However, the volumetric-based methods usually need high
computational complexity, which leads the 3D voxel struc-
tures to a very low spatial resolution (e.g., typically
64 × 64 × 64). To address this issue, some improved
methods (e.g., KD-Net [41] and OctNet [42]) only consider
the occupied voxels. Nevertheless, the low-resolution voxel
operation inevitably involves lots of geometric information
loss, decreasing the effectiveness of the extracted features.

B. DIRECT METHODS FOR POINT CLOUDS
To overcome the problems encountered by the view-based
and volumetric-based methods, recent methods usually
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process 3D point clouds directly. The pioneering work
is PointNet [16], which extracts point-wise features by
using shared Multiple Layer Perceptions (MLPs). However,
PointNet results in global representations which loses the
fine-grained local information. Some extended works, such
as PointNet++ [17] and PointWeb [21], further exploit the
local information by partitioning the point clouds into local
sub-regions. Meanwhile, some other works modify the tradi-
tional convolution to adapt the unstructured 3D point clouds.
For example, Atzmon et al. [43] propose parametric con-
tinuous convolutions which are performed on the raw point
clouds. Li et al. [19] first use a χ -transformation to capture
a potentially canonical order of the point clouds, and then
apply typical convolutions on them. Feng et al. [44] propose
a local attention-edge convolution operation to learn rich
contextual correlations on the point clouds. To achieve the
translation and permutation invariance, Wu et al. [22] extend
the 3D continuous convolution operation for point clouds.
Komarichev et al. [45] design a ring convolution operator to
capture contextual signatures for each point.

Recently, graph structures are considered [46]–[48] which
can naturally preserve the geometrical cues of point clouds.
For example, Landrieu and Simonovsky [23] first construct
super-graphs on large-scale point clouds, then graph con-
volutions are applied to learn the super-point signatures.
Wang et al. [24] construct a local neighbor graph on point
clouds, and then edge convolutions are performed on the
neighbor graph. Wang et al. [26] propose a graph attention
convolution to weight the neighbor points, helping to capture
the local structured features. With Graph Convolution Net-
works (GCNs), Liu et al. [27] propose a dynamic agglomera-
tion operation for point clouds. Wang et al. [49] utilize graph
attention blocks to exploit the local and global structural
information of point clouds. Technically, Han et al. [29] and
Yan et al. [50] both propose to dynamically capture the self,
local and non-local correlations among points, and effectively
integrate the learned features. In addition, Hu et al. [30]
propose a lightweight network and a random sampling mech-
anism for efficient point cloud processing. Our method
also directly processes the point clouds by constructing the
graph structure, fully considering local and global contex-
tual information. However, unlike the aforementioned meth-
ods, we adopt a multi-transform strategy to extract diverse
features.

C. MULTI-TRANSFORM FEATURE LEARNING
Due to the close distance between different categories of
points, feature learning with a specific transform (like the
aforementioned methods) often results in feature overlap and
performance decrease. Instead of single-transform feature
learning, multi-transform feature learning has been widely
used in many research fields [32], [33], [51]–[53]. It demon-
strates a powerful ability to acquire diverse features. For
example, the works in [31]–[34] have demonstrated that
multi-head attention, compared with single attention, can
enrich different aspects of features. To explore the differences

between features learned in multiple embedding transforms,
Clark et al. [54] examine the performance of different trans-
forms in the same layer and the effect of the transforms in the
different layers. They observe that the transforms in the same
layer often exhibit similar behaviors. Thus, for better feature
learning, some additional supervision information [55] needs
to be added to the network. Therefore, some works [32], [56],
[57] introduce extra penalty items to enlarge the differences
between learned features from multiple transforms.

Learning features from multiple transforms can help the
model obtain richer representations, but these representations
need to be fused efficiently to overcome the adverse effects of
unnecessary information. The gating strategy [58]–[62] can
suit this requirement. Since the gating strategy can fully fuse
multi-level features, Wang et al. [49] introduce it to integrate
the information of each point with the surrounding points.
Meanwhile, with the gating strategy, Han et al. [29] aggregate
various levels of correlation representations in a non-linear
and data-adaptive way.

Different from the above methods, our network introduces
multiple transforms for feature learning. In addition, we use
an novel gating strategy to effectively enhance the flow of
useful information and suppress useless information. We also
propose the SIC strategy to ensure the feature diversity of
transforms.

III. OUR METHODOLOGY
A. ARCHITECTURE OVERVIEW
Fig. 3 shows the overall structure of our framework.
The framework adopts an encoder-decoder structure, which
aggregates point clouds layer-by-layer. More specifically,
the framework first takes 3D point clouds as input, and applies
Multi-Transform Encoder (MTE) to extract diverse features.
The MTE utilizes multiple MLPs to transform points for
different features, and then encodes the local information
with the attention mechanism. Afterwards, the Global Spatial
Fusion (GSF) module is applied to the original features and
other transforms for capturing the global information. Finally,
the framework introduces the Spatial Independence Crite-
rion (SIC) to enlarge the differences between transforms and
reduce information redundancies. The above three modules
(MTE, GSF and SIC) constitute the multi-transform learn-
ing (MTL) units, which are introduced into encoding layers to
capture diverse feature representations. The decoding layers
are optional for different tasks. In the following section,
we will elaborate the key components.

B. MULTI-TRANSFORM ENCODER
In the point cloud feature representation, it is a common
practice to build local regions within specific radius to aggre-
gate neighbor points. However, due to the uniqueness and
encoding limitations, some implicit features of points cannot
be well explored. At the same time, the aggregation of neigh-
bors’ information is based on a fixed radius, which weakens
the network’s ability to dynamically explore a larger range of
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FIGURE 3. The overall architecture of the PointMTL. The MTE module is used to transform the original feature into multiple feature
representations, and aggregates the local features. The GSF module aims to extract global information from various transforms. The SIC module
is introduced to enlarge the differences between transforms to obtain richer representations. All the above-mentioned modules constitute
multi-transform learning (MTL) units, which are added to encoding layers. The decoding layers are optional for different tasks.

point sets. Based on the above facts, we propose the Multi-
Transform Encoder (MTE) to better encode and fuse point
features. The structure of the MTE is shown in Fig. 4. This
module mainly consists of two parts, i.e., Spatial Mapping
Encoder and Spatial Feature Aggregation.

1) SPATIAL MAPPING ENCODER
The spatial mapping encoder is proposed to obtain diverse
representations from multiple transforms. Specifically, given
a point cloud P0 = {p01, p

0
2, · · · , p

0
N }∈ R3+F , where

P0 represents the point clouds without any transformation,
and N is the number of points. Each point in P0 contains
3-dimensional xyz coordinates and F-dimensional feature
representations. To obtain the point cloud representations of
multiple transforms, we apply multiple independent MLPs to
P0, which can be defined as follows:

Pi = MLPi
(
P0
)
, i = 1, . . . ,M (1)

where Pi denotes the point cloud with the i-th transform,
M is the number of transforms. In this paper, we use a MLP
to instantiate the transform. Through such MLPs structure,
high-dimensional implicit features can be extracted by trans-
forms. In addition, the parameters of MLPs are not shared,
so the feature representations with multiple transforms are
diversified.

To achieve above goals, we construct attentive graphs
with multiple transforms. Consider a graph Gj(V ,E) derived

FIGURE 4. Illustration of the MTE and GSF. The MTE is divided into two
parts, Spatial Mapping Encoder and Spatial Feature Aggregation. The GSF
is used to obtain global information from multiple transforms.

from Pj, j = 0, . . . ,M . V and E define the set of points
and edges, respectively. In addition, we denote N j(c) =
{k : (c, k) ∈ E}∪{c} as the neighbor set of center point
c. c and N j(c) are obtained by the Farthest Point Sam-
pling (FPS) [17] and the K -Nearest Neighbors (KNN) algo-
rithm [36] respectively. In this way, the local receptive fields
are dynamically explored due to the diverse representations
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with multiple transforms. However, the neighbor points in
N j(c) may contain feature of other classes. Therefore, they
should be selectively aggregated in a local region. To this end,
we adopt the attention mechanism [26] to effectively han-
dle the size-varying neighbors. Specifically, defining H j

=

{hj1, h
j
2, · · · , h

j
N }∈ R3 and F j = {f j1, f

j
2 , · · · , f

j
N }∈ RF

as the set of xyz coordinates and corresponding features of
Pj, respectively. Then, relative position 1hjck and relative
features 1f jck are used to measure the spatial relationships
and feature differences between neighbor points and center
points. The formulas are as follows:

1hjck = hjk − h
j
c, k ∈ N j(c) (2)

1f jck = MLPjs
(
f jk
)
−MLPjs

(
f jc
)
, k ∈ N j(c) (3)

where MLPjs : RF
→ RS is a MLP, S denotes the encoded

feature dimension. Combined with the above relative infor-
mation, attention weightsW j

ck are defined as:

W j
ck = softmax

(
MLPjw

(
1hjck ⊕1f

j
ck

))
, (4)

where MLPjw : R3+F
→ RS , ⊕ denotes the concatena-

tion operation. Finally, the features of neighbor points are
weighted and summed as follows:

Fjc =
∑

k∈N (c)

W j
ck �MLP

j
s(f

j
k ), F

j
c ∈ RS (5)

where Fjc denotes the encoded features of central points with
j-th transform, and � represents point-wise product. Since
multiple transforms can extract more implicit features than
a single transform, it helps to solve the problem of feature
overlap. In addition, local information are encoded with each
transform separately, so that the obtained feature represen-
tations can be more diversified. These representations are
beneficial for capturing fine structures.

2) SPATIAL FEATURE AGGREGATION
From the above transforms, the local information Fjc can
be obtained. These diverse local information needs to be
effectively aggregated. Therefore, we use the gated mecha-
nism to adaptively aggregate multiple transformed features.
Specifically, different MLPs are employed to transform Fjc,
aiming to further explore the high-dimensional features. The
gates Gj

c ∈ RS can be obtained by applying a softmax on the
transformed features:

Gj
c = softmax

(
MLPjg

(
Fjc
))
, (6)

where MLPjg is defined as the gated function. Generally,
the result of feature aggregation can be obtained through
Gj
c � Fjc. However, the differences among transforms are not

fully considered. Inspired by [63], we propose to effectively
enhance useful information and suppress useless information.
The final aggregation result is defined as follows:

Fc =
(
1−G0

c

)
�

M∑
j=1

Gj
c � Fjc +

(
1+G0

c

)
� F0

c, (7)

FIGURE 5. The detailed architecture of the GSF module. This module
effectively aggregates global information from multiple transformed
features.

In this way, only when there are useless features at the
current position, the model will receive useful information
derived from other transforms. Therefore, the network can
not only adjust useful information to the suitable position, but
also effectively suppress useless information.

C. GLOBAL SPATIAL FUSION
Local features extracted by multiple transforms have been
effectively explored by the MTE module. However, global
contextual information may be ignored. Therefore, we pro-
pose a Global Spatial Fusion (GSF) module to obtain global
representations, as shown in Fig. 4 and 5.
More specifically, after getting the representations with

multiple transforms, i.e., Pj, we use the same gated strategy
in the previous subsection to directly fuse them:

F =
(
1−G0

)
�

M∑
j=1

Gj
� Pj +

(
1+G0

)
� P0, (8)

where F denotes the global features of points with multiple
transforms, Gj

∈ R3+F represents the gates obtained by the
Pj (i.e., usingPj instead ofFjc). Since the obtainedF is at a low
feature level, we should embed it into high-dimensional fea-
tures and integrate with the local representations Fjc. Specifi-
cally, we first extract the global representations of the center
point c from F, defined as F′c. Then, we use MLPs to embed
F′c into the same dimensions of Fjc, formally as:

Fgc = MLPc
(
F′c
)
, (9)
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FIGURE 6. Illustration of the SIC strategy. The different colored points
come from different transforms.

where Fgc denotes the embedded global features of the center
points, MLPc : R3+F

→ RS is the embedding mapping
for the center point c. Finally, Fgc is fed into the spatial
feature aggregation module as additional global information,
as shown in Fig. 4. Through this way, local features Fjc (j =
0, . . . ,M ) and global features Fgc can be fully integrated to
obtain the final representations.

D. SPATIAL INDEPENDENCE CRITERION
With the MTE and GSF, rich feature representations can be
derived from multiple transforms. However, if no constraints
are imposed on the learned features, the feature representa-
tions will tend to be similar. In order to guarantee diverse
representations, we propose a Spatial Independence Criterion
(SIC) (as shown in Fig. 6) to measure the feature similarity
and enlarge the differences of features between different
transforms.

Specifically, we choose Hilbert-Schmidt Independence
Criterion (HSIC) as the measurement of feature similar-
ity. HSIC [64] is a kernel-based independent discrimination
method. Since HSIC is based on the kernel function, it is able
to explore more high-dimensional potential associations of
the points. We note that there are several other measurements,
such as Euclidean distance and cosine similarity. However,
Euclidean distance only represents the spatial position rela-
tionships, which is sensitive to outliers. The cosine similarity
is only inclined to measure the differences in the direction.
While HSIC can naturally represent the points in a point
cloud as many samples from a distribution, and thus the HSIC
has the natural interpretation as computing the independence
between two random variables. In addition, HSIC has been
proved to have the advantages of simplicity and fast conver-
gence in theory. Following [64], we can get the expression of
HSIC as follows:

HSIC(X ,Y ) = (N − 1)−2tr (KXJKY J) , (10)

where X and Y represent random variables, and N denotes
the number of points sampled from the joint distribution
of X and Y . tr() is the trace of the matrix. KX ∈ RN×N

and KY ∈ RN×N have entries KXij = k(xi, xj) and
KYij = k(yi, yj), k() is the kernel function. J ∈ RN×N

is the centering matrix, J = IN − 1
N 1N1

T
N . By select-

ing a suitable kernel function such as Gaussian k(x, y) ∼
exp(− 1

2‖ x − y ‖
2/σ 2), HSIC can be zero when X and Y are

independent.
For our network, we introduce HSIC to measure the sim-

ilarity between corresponding points in paired transforms.
We define the spatial independence loss Ls as follows:

Lls =
2

M (M + 1)

M∑
X=1

M∑
Y=1

HSIC(PX ,PY ), (11)

Ls =
1
L

L∑
l=1

Lls, (12)

where both PXand PY∈ {Pi | i = 1, . . .M}, l repre-
sents the feature encoding layer. We use the aforementioned
Gaussian distribution as the kernel function to get KPX and
KPY . Through Equ. 11, we can obtain the mean unbiased
estimate of HSIC in pairwise transforms. We average the
Lls of all encoding layers to get the final loss Ls. Since this
value should be minimized, we add it to the loss function for
network training.

E. NETWORK TRAINING AND TESTING
Given the point cloud training dataset {(Pb,Tb)}Bb=1, where B
denotes the total number of training blocks, Pb = {pbh, h =
1, . . .N } and Tb = {tbh , h = 1, . . .N } are the input point cloud
block and the corresponding ground-truth with N points,
respectively. In addition, N points are sampled from all the
points Q in the block (N ≤ Q). Without loss of generality,
we subsequently drop the superscript b and consider each
block independently.

We adopt the softmax cross-entropy loss function to train
our model, which is proven effective in most existing meth-
ods to accomplish the point cloud recognition task. For the
segmentation (i.e., point-wise classification) tasks, the loss
function can be calculated by:

Lcls = −
1
N

N∑
h=1

C−1∑
j=0

log Pr(th = j|P; θ ), (13)

where C denotes the number of total classes, Pr(th = j|P; θ)
is the probability that measures how likely the point belong
to the j-th class. For the object classification task, the loss
function can be calculated by:

Lcls = −
C−1∑
j=0

log Pr(T = j|P; θ ), (14)

where Pr(T = j|P; θ ) is the probability that measures how
likely the whole point clouds belong to the j-th class. There-
fore, the total loss is defined as follows:

L = Lcls + λLs, (15)
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where λ is a hyper-parameter for balancing the specific loss
terms. The above defined loss is continuous and differen-
tiable, sowe can useAdam algorithm [65] to quickly optimize
network parameters.

In the network inference phase, we take all the test blocks
as input. For the segmentation, we predict the labels of N
points in each block, and obtain the labels of all Q points
through interpolation (N ≤ Q). The interpolated labels are
obtained by the weighted sum of the predicted probabilities
of the three nearest points, and the weight is inversely pro-
portional to the distance. For the classification, we directly
predict which class each test block belongs to.

IV. EXPERIMENTAL SETUPS
To demonstrate the effectiveness of our proposed approach,
we evaluate it on three different tasks: Semantic Segmen-
tation, Part Segmentation and Shape Classification. First,
we introduce details of some publicly available datasets.
Then, the evaluation metrics and implementation details are
given. Afterwards, we compare results of our model with
other methods. Finally, we construct ablation experiments to
analyze the impact of each module.

A. DATASETS DESCRIPTION
The S3DIS dataset [37] includes 3D point clouds from

271 rooms in 6 indoor areas of three different buildings. Each
point labeled with a semantic label in one of the 13 categories
contains xyz coordinates and RGB information.
The ScanNet dataset [38] is an RGB-D video dataset that

contains scanned and reconstructed indoor scenes and rich 3D
semantic annotations, including 1210 training and 312 valida-
tion scans. The latest version (ScanNetv2) provides 100 new
test scans and all semantic labels are publicly unavailable.
Each point in the scene is labeled as one of 21 categories.
We submit our predictions to the official server1 for evalua-
tion.

The ShapeNet dataset [39] is a large, richly-annotated
part segmentation dataset. This dataset contains 16881 3D
composite models of 16 shape categories and 50 annotated
parts in total. Each shape has 2 to 5 annotated parts.

TheModelNet40 dataset [11] is a standard dataset to eval-
uate the shape classification of point clouds, including 12311
meshed CAD models from 40 man-made object categories.

B. EVALUATION METRICS
To evaluate the performance, we follow other related meth-
ods [21], [29], [30]. Three widely-used metrics [70] are
adopted, i.e., Overall Accuracy (OA), class-wise mean Inter-
section Over Union (mIoU) and mean Accuracy (mAcc). The
formulas of these metrics are as follow:

OA =

∑k
i=0pii∑k

i=0
∑k

j=0pij
(16)

1http://www.scan-net.org/

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0pij +

∑k
j=0pji − pii

(17)

mAcc =
1

k + 1

k∑
i=0

pii∑k
j=0pij

, (18)

where k + 1 denotes the number of classes, pii represents the
number of correctly classified points for which the category
is i, pij and pji are the amount of points of class i or j inferred
to class j or i.

C. IMPLEMENTATION DETAILS
The proposed PointMTL framework is implemented with
Tensorflow 1.12 and one NVIDIA TeslaM40GPU (with 24G
memory). In the following, our data preprocessing strategy
and model parameter settings are described in detail.

1) DATA PREPROCESSING
1) For the S3DIS dataset, we follow the same data pre-

processing method in [26]. Specifically, we split the
dataset room by room and then sample them into 1.2m
× 1.2m blocks with a 0.1 buffer area each side for the
training data. The points in each block are randomly
sampled into a uniform number of 4096. During the
testing phase, we test on all the points in the scene.

2) For the ScanNet dataset, we follow the same experi-
mental setup in [22] for a fair comparison. We ran-
domly sample 3m × 1.5m × 1.5m cubes (each with
8192 points) from the indoor room data to generate the
training samples, and take into account the entire scans
via a sliding window manner for the testing samples.

3) For the ShapeNet dataset, we split all samples into
14007 and 2874 for training and testing respectively.
Each sample contains 2048 points, and a normal vector
is calculated as additional features to better describe the
underlying shape. Moreover, following previous works
[71], [72], we remove the parts that only contain one
single point since it is impossible to distinguish.

4) For the ModelNet40 dataset, we uses the official split
with 9843 shapes for training and 2468 shapes for
testing. We create the point clouds by uniformly sam-
pling 1024 points with computed normal vextors on the
grid surface. Meanwhile, we select a certain ratio of
points in the point clouds to rotate randomly around the
z-axis and jitter the position of these points by a Gaus-
sian noise with zero mean and 0.02 standard deviation.

2) PARAMETER SETTINGS
In all the experiments, we use Adam optimizer [65] with
an initial learning rate of 0.001. After every 300000 steps,
the learning rate decays by 0.5. The number of transforms
(i.e.,M ) is set to 3.

1) For semantic segmentation task, the points are down-
sampled and upsampled with the network (4096-1024-
256-64-32-64-256-1024-4096) on the S3DIS dataset
and (8192-1024-256-64-32-64-256-1024-8192) on the
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TABLE 1. Quantitative results on S3DIS dataset evaluated on Area 5. ’−’ denotes value not available. Best results are in bold.

TABLE 2. Quantitative results on S3DIS dataset with 6-fold cross validation. ’−’ denotes value not available. Best results are in bold.

ScanNet dataset respectively. The loss balancing
hyper-parameter λ is set to 0.6 and 0.4 while the
batch size is set to 8 and 4 for S3DIS and ScanNet
respectively.

2) For part segmentation task, we downsample and
upsample the points 3 times each, and the number
of points increase in the encoder and decrease in
the decoder with (2048-512-128-64-128-512-2048).
The loss balancing hyper-parameter λ is set to 0.4,
and the batch size is set to 8.

3) For shape classification task, the points are downsam-
pled 3 times and the number of points drops double
every time (i.e., 1024-512-256-128). We concatenate
the outputs after max pooling of each layer, and use two
fully connected layers to classify the results. We set the
loss balancing hyper-parameter λ to 0.6 and the batch
size to 8.

V. EXPERIMENTAL RESULTS
A. SEMANTIC SEGMENTATION ON S3DIS DATASET
We construct experiments on two settings, namely test-
ing on Area 5 and 6-fold cross validation. Since the objects
in Area 5 are different from other areas, experiments
on Area 5 can better measure the generalization of the
model.

Tab. 1 shows the quantitative results of different methods
evaluated on Area 5 of S3DIS dataset. Compared with others,
our PointMTL achieves the remarkable performance in all
three metrics of OA, mAcc and mIoU. In particular, the mIoU
has achieved 65.15%, which is 2.19% higher than the second-
rankedmethod. Through the IoU results of various categories,
it can be found that our method reaches competitive results on
objects of different sizes in the scene, especially on window
and board.

Tab. 2 shows the quantitative results of different methods
on S3DIS dataset with 6-fold cross validation. In this setting,
our method achieves the best performance in terms of OA
(0.68% higher than the second-ranked method) and mIoU
(1.09% higher than the second-ranked method) metrics. Our
PointMTL is superior to other approaches on 7 out of 13 cat-
egories, resulting in overall improvement in mIoU. As can
be seen, the mAcc result of our method is only 0.43% lower
than RandLA-Net [30]. However, RandLA-Net improves the
mAcc by taking the entire scene as input for larger shape
representations. In addition, since there exists lots of sim-
ilar appearances between sofa and chair, we observe that
PointMTL confuses them easily, resulting in poor segmen-
tation on the sofa.

The visualization results compared with other methods are
shown in Fig. 7. Our PointMTL can better distinguish the
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FIGURE 7. Visual comparison of different methods on S3DIS dataset. From left to right: point clouds with original colors, ground truth,
PointCNN [19], GACNet [26], ELGS [49], Point2Node [29] and Ours. The regions in red boxes demonstrate the effectiveness of our method.

FIGURE 8. Failure examples on the S3DIS dataset.

edges of some easily ambiguous objects, such as board and
wall. The main reason is that the problem of feature overlap is
overcome and the representations is separable with multiple
transforms. Fig. 8 show three failure examples. Obviously,
in the first row, part of clutter on the wall is misclassified
as board. The bookcase in the second row is completely
recognized as table, while the part of table in the third row

TABLE 3. Quantitative results on the ScanNetv2 dataset. Best result is in
bold.

is mixed with the bookcase. These phenomenon are due to
the similar spatial feature between the clutter on the wall and
the board as well as the bookcase and the table, which the
network cannot completely separate.

B. SEMANTIC SEGMENTATION ON ScanNet DATASET
Tab. 3 shows the quantitative results on ScanNetv2 dataset.
Our method achieves 63.2% mIoU, which is better than
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FIGURE 9. Qualitative results on ScanNetv2 dataset. From left to right: RGB point clouds, ground truth, PointNet++ [17], PointCNN [19],
PointConv [22], PointASNL [50] and Ours. The regions in red boxes demonstrate the effectiveness of our method.

TABLE 4. Quantitative results on ShapeNet dataset. Best results are in bold.

other methods. Fig. 9 shows the qualitative results. It can be
seen that our PointMTL has excellent segmentation perfor-
mance on various objects, especially on door and table, which
demonstrates the effectiveness of our approach for capturing
fine-grained geometric structures. Note that, in the compar-
ison of the last row, our method is not as precise as Point-
Conv [22] in distinguishing between chair and sofa. However,
in the third row of comparison, our method performs better.
The reason is that there exists lots of similar appearances

between chair and sofa, and semantic contextual information
learned by the network in various scenes is different.

C. PART SEGMENTATION ON ShapeNet DATASET
In Tab. 4, we compare our PointMTL with other meth-
ods, using the IoU of each category and the part-averaged
IoU (mIoU) as the metrics. In terms of mIoU, our method
achieves 86.4%, which is better than other approaches.
In addition, 5 of 16 categories show the highest results,
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FIGURE 10. Qualitative results of part segmentation on ShapeNet
dataset. (a) and (c) are ground truth, while (b) and (d) are corresponding
prediction results.

TABLE 5. Quantitative results on ModelNet40 dataset. ’−’ denotes value
not available. Best results are in bold. ‘‘vox’’, ‘‘pnt’’ and ‘‘nor’’ denote
voxel, coordinates of point and normal vector, respectively.

indicating the potential of this method in part segmen-
tation by fully exploring spatial relations. The visualiza-
tion of some segmentation results is shown in Fig. 10.
The results of our method is much close to the ground
truth.

D. SHAPE CLASSIFICATION ON ModelNet40 DATASET
Tab. 5 shows the shape classification results of our model
compared with other competitive methods. Our method per-
forms better than other methods in terms of two metrics.
Although the value is not much higher, the OA of our method
is 0.7% better than that of A-CNN [45], which ranks second in
mAcc. Besides, our method can improve the accuracy of each
class while achieving the highest overall accuracy. It indicates
that our model can effectively capture and accurately classify
various shape information.

TABLE 6. Comparison of time and space complexity of proposed model
on different datasets. ‘‘M’’ stands for million.

TABLE 7. Performance contribution of each proposed module. Best
results are in bold.

E. MODEL COMPLEXITY
In Tab. 6, we show the time and space complexity of
PointMTL on different datasets in terms of the network
parameters and forward time. It should be noted that since the
network removes the decoder in the shape classification on
ModelNet40, the number of parameters and the forward time
are relatively minimum. In addition, the model parameters
on S3DIS and ScanNetv2 datasets are larger than the other
two, which is due to the model has one more layer of encoder
and decoder in the semantic segmentation than in other tasks.
For the ScanNetv2 dataset, the forward speed is slower than
that of the S3DIS dataset because the network has to process
8192 points in one inference.

F. ABLATION STUDY
To demonstrate the impact of the proposed modules, we con-
duct the following ablation studies. All the experiments below
are evaluated on Area 5 of the S3DIS dataset. The results on
other datasets have similar trends.

1) EFFECTS OF MTE AND GSF
To evaluate the benefits of the proposed MTE and GSF,
we conduct the experiments with/without them. The quan-
titative results are shown in Tab. 7. (a)-(c) show the results
of mIoU after adding the MTE and GSF, which increase
by 0.72% and 0.41%, respectively. This illustrates the effec-
tiveness of the modules and demonstrates that MTE and
GSF can fully learn and fuse local and global dependencies
from multiple transforms. In addition, it is noted that the
mIoU of (g) decreased by 0.99% compared to the complete
model. This value is higher than 0.41%, which shows that
GSF can capture richer representations with the help of
SIC.
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TABLE 8. Performance comparison of different sampling and aggregation
strategies. Best results are in bold.

2) EFFECTS OF SIC
The SIC module is designed to enlarge differences of trans-
forms and guarantee more diverse features. To verify the
effectiveness, we either remove it or replace it with Euclidean
distance and Cosine similarity. In Tab. 7, (d) ∼ (f) shows
the corresponding experimental results. It can be seen that
the SIC module has a great contribution to the network per-
formance, with a 1.72% improvement in mIoU. In addition,
the mIoU obtained by HSIC is 1.53% and 1.18% higher than
that obtained by Euclidean distance and Cosine similarity,
respectively. This demonstrates that HSIC can better measure
information differences and overcome the deficiencies of
measuring only in absolute distance (i.e., Euclidean distance)
or direction (i.e., Cosine similarity).

3) EFFECTS OF DIFFERENT SAMPLING STRATEGIES
In order to explore the effect of different sampling strate-
gies on network performance, we compare random sam-
pling (RS) and farthest point sampling (FPS) we used.
In Tab. 8, the results of OA and mIoU in random sampling are
1.16% and 2.14% lower than those of FPS, respectively. The
results demonstrate that compared with the complex uniform
sampling by FPS, RS discards key features in exchange for
computing efficiency.

4) EFFECTS OF DIFFERENT AGGREGATION STRATEGIES
In order to aggregate the features from multiple transforms,
we use an improved gated strategy in the MTE module.
To further explore its effects, we compare it with direct sum-
mation, MLP after concatenating or general gating strategy
(i.e., The results are obtained by the weighted sum of different
gates and corresponding features without adding any other
coefficient constraints). The comparison results are shown in
Tab. 8. It can be seen that the other three methods have better
performance than summing features directly. This indicates
that the linear combination of features can be interfered by
useless information to a large extent. In addition, our method
achieves the best performance, which is 1.03% and 0.39%
higher than the other two non-linear combined methods on
mIoU, respectively. This result effectively proves that our
method can better enhance useful information and suppress
the useless information.

5) EFFECTS OF DIFFERENT NUMBER OF TRANSFORMS
We expect that multiple transforms can learn diverse fea-
tures that are different from the original features. Therefore,

TABLE 9. The results of our model with different numbers of transforms
and nearest neighbors. ‘‘N ’’ denotes the number of neighbors and ‘‘T ’’
denotes the number of transforms. Best results are in bold.

we explore the effects of multiple transforms. As shown in
Tab. 9, the performance of our model is gradually enhanced
as the number of transforms increases. But when it increases
to a certain number (here is 4), the redundancy and overlap of
features appears, resulting in a decrease in the segmentation
performance.

6) EFFECTS OF DIFFERENT NUMBER OF NEIGHBORS
We use the KNN algorithm [36] to search for neighbor points.
We conduct experiments on different numbers of neighbors
to verify the effect, as shown in Tab. 9. Compared with
fewer neighbors, the increase of neighbor points can obtain
larger local receptive field and richer features. However, a
large number of neighbors will decrease the performance.
The main reason is that choosing more neighbor points by
Euclidean distance will destroy the geometric structure of the
object, thus introducing other perturbations.

VI. CONCLUSION
In this paper, we propose a novel Multi-Transform Learning
framework (PointMTL) for feature representation of 3D point
clouds. In order to extract features from multiple transforms,
we introduce a MTE module to encode the information in
local regions. In addition, we propose a GSF module to
further extract global information. To guarantee diverse rep-
resentations, we also introduce a SIC strategy to enlarge the
differences of multiple transforms and reduce the feature
redundancies. Extensive experiments on four datasets from
three different tasks have demonstrated the effectiveness of
our method, achieving a considerable performance over other
methods.
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