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Abstract—This work compares the performance of software
implementations of different Gabidulin decoders. The parameter
sets used within the comparison stem from their applications
in recently proposed cryptographic schemes. The complexity
analysis of the decoders is recalled, counting the occurrence
of each operation within the respective decoders. It is shown
that knowing the number of operations may be misleading
when comparing different algorithms as the run-time of the
implementation depends on the instruction set of the device on
which the algorithm is executed.
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I. INTRODUCTION

In this work we are considering different decoding ap-

proaches for Gabidulin codes. These codes are of special

interest since they belong to the class of maximum rank

distance (MRD) codes. This work considers the specific pa-

rameter sets used within the cryptosystem RQC [1]. This

cryptographic scheme is a Round 2 candidate in the NIST-

PQC competition, which standardizes post-quantum secure

cryptographic algorithms. Apart from the desired security

level, the performance of the algorithms plays an important

role in the standardization process. The Gabidulin decoder is

a major part of the decryption process of the RQC algorithm,

hence, it is of particular relevance.

In this work we review the complexity analysis of different

decoding algorithms, which is based on counting the number

of operations. By implementing the decoders in C, we show

that counting the number of theoretically required operations

does not give the full picture as the mapping of operations

onto the instruction set of the microprocessor by the compiler

may significantly change the performance evaluation. In fact

operations which are seemingly negligible regarding their

complexity within the decoder can play an important role for

the performance of the decoding algorithms.

The decoding algorithms discussed within this work are the

Welch-Berlekamp Algorithm (WBA) that is currently imple-

mented in RQC [2] and the Transform Domain Decoder (TDD)

[3] by D. Silva and F. R. Kschischang. The two decoders use

different basis representations for elements in the finite exten-

sion field. While the cryptosystem RQC performs operations

in a polynomial basis, we implement a low-complexity normal
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basis for the TDD. Both implementations are written in C and

are compiled using gcc for the x86-64 instruction set.

II. PRELIMINARIES

A. Notation

For the sake of clarity we define the following notation:

Lower-case and upper-case symbols in bold font, e.g. a and

A denote vectors and matrices, respectively. The subscripts ai

or Ai,j are used to indicate the ith element of the vector or

matrix element at row i and column j, accordingly. We denote

the finite field of characteristic q by Fq and its extension of

degree m by Fqm . Powers of the characteristic (q-powers) are

abbreviated by [i] := qi. The symbol Fq[x] is the polynomial

ring over Fq and 〈Π〉 is the ideal generated by the polynomial

Π. The operator Tr(x) =
∑m−1

k=0 x[k] is the trace and δ denotes

the Kronecker delta.

For describing operations in the finite field of characteristic

2, we introduce the binary operators &, |, and ⊕ on vectors,

which denote the element-wise AND, OR, and XOR operation,

respectively. The left-shift operator ≪ and the right-shift

operator ≫ perform non-cyclic shifts filling with zeros while

removing entries on the other side of the vector. In case of

64bit vectors, these five operators correspond to the bit-wise

operators in C. Conversely, the operators → and ← denote

cyclic shift to left and the right, respectively.

B. Operations in Finite Extension Fields

The extension field Fqm is a vector space over Fq that is

spanned by the basis A = {α0, . . . , αm−1}. Any element a ∈
Fqm can be represented as a vector a ∈ F

1×m
q . Let α =

[α0, . . . , αm−1] be a row vector containing the basis elements.

It holds that a = aαT .

In practice, operations on finite extension field elements are

performed on the vector representation, e.g. on a. Depending

on the choice of A these operations differ. In the following,

we will discuss the properties of operations in polynomial and

normal bases and assert their complexity.

1) Polynomial Bases: Let Π ∈ Fq[x] be an irreducible

polynomial of degree m and Fqm := Fq[x]/〈Π〉. A polynomial

basis is of the form {α0, . . . , αm−1}, where α is a root

of the irreducible polynomial Π ∈ Fq[x] [4]. An element

a ∈ Fqm can be interpreted as a polynomial of degree smaller

than m, where a is the coefficient vector of the polynomial

representation.

http://arxiv.org/abs/2009.09668v1


Let a and b denote two elements of Fqm . Those elements

can be added by element-wise addition of their vector repre-

sentation a and b. This requires m additions in Fq.

There exist different algorithms for the multiplication in

Fqm . We choose an algorithm that is efficient in case Π is

sparse. The multiplication is divided into two steps. First,

we compute the unreduced product of the two polynomials

a and b, which has at most degree 2m − 2. This takes m2

multiplications and (m− 1)2 additions in Fq [5]. Second, we

reduce the product modulo the irreducible polynomial Π. In

case Π is a trinomial, i.e. of the form xm+xk+1, 0 < k < m,

the reduction requires 2m− 2 coefficient additions in Fq [5].

In case q = 2, computing the square of a field element can

be done more efficient compared to multiplying the element

with itself. Squaring is achieved by inserting zeros in between

every two bits of the input coefficient vector. The resulting

zero-interleaved coefficient vector is then reduced by the

irreducible polynomial [6]. In theory, zero-interleaving does

not afford any computation, hence, the total cost of 2m − 2
additions in F2 is due to the reduction.

As we are dealing with polynomials, inversion can be

performed using the extended euclidean algorithm (EEA). The

complexity of the EEA depends on the input polynomial, see

[7], Section 2.3.6. Thus, we will simply denote the average

required number of additions in Fq as Cinv.

2) Normal Bases: A normal basis is defined by A =
{α[0], . . . , α[m−1]}. Every normal basis has its unique dual

basis Ā = {ᾱ0 . . . ᾱm−1} satisfying Tr(αiᾱj) = δij .

Computing the q-power of a ∈ Fqm corresponds to a cyclic

shift of a, i.e. a[i] = a←iαT . As no arithmetic operations are

performed, the cost of taking the q-power is assumed to be

negligible [3].

The multiplication of a and b is given by

c =

m−1
∑

i=0

bi(Ma←i)→i. (1)

The matrix M ∈ F
m×m
q is called multiplication table and is

sparse in the ideal case. The number of non-zero entries CM

of M is the complexity of the basis and is lower bound by

CM ≥ 2m − 1. In case CM = 2m − 1, A is called optimal

[3], [8]. Depending on m there may not exist an optimal basis.

In this case one can use a low-complexity normal basis, see

[8], [9]. Consequentially, the complexity of multiplication in

normal bases varies with CM and requires m2 multiplications

and m(CM − 1) additions in Fq.

In one of the decoding algorithms, we frequently perform

the multiplication of a field element a with a q-power of the

normal element α, i.e. c = aα[i]. As the representation vector

of α[i] contains a single non-zero element at the position i,
Equation (1) simplifies to c = (Ma←i)→i requiring only

CM −m additions in Fq.

Finally, multiplicative inverses can be obtained in multiple

ways. There are methods based on Fermat’s little theorem

a−1 = aq
m−2, see [10], and algorithms based on the extended

euclidean algorithm [11]. Our algorithm is inspired by [10]

and decomposes the power aq
m−2 similarly to [12]. It is

presented in detail for m = 127 in Section III-B requiring

nine multiplications in Fqm .

C. Linearized Polynomials

A linearized polynomial (q-polynomial) is defined as [13]

A(x) =

n
∑

i=0

aix
[i],

where n = degq(A) denotes the q-degree of A and ai ∈ Fqm .

Let a denote the coefficient vector of A, degq(A) < m zero

padded to length m, i.e., a = [a0, . . . ,an,an+1, . . . ,am−1],
an+1, . . . ,am−1 = 0. We define a cyclic indexing for the

vector elements, i.e., ai mod m = ai.

We define the q-transform Ã of a linearized polynomial with

respect to the normal element α by the transformation of the

coefficient vector elements, i.e., ãi =
∑m−1

j=0 ajα
[i+j], i =

0 . . .m− 1. The q-transform is a linear bijection between the

time domain and the transform domain. It can be reversed by

performing the q-transform with respect to the dual element

ᾱ of α. In case the normal element is self-dual, the inverse

q-transform simply is the forward q-transform.

D. Gabidulin Codes

A Gabidulin code C is a (n, k) block code with a generator

matrix G = [g
[i]
j ] ∈ F

k×n
qm , 0 ≤ i < k, 0 < j ≤ n, where the

generating elements gj ∈ Fqm have to be linearly independent

over Fq. Gabidulin codes satisfy the Singleton bound with

rank distance d = n − k + 1. Thus, they can correct up to

τmax = ⌊n−k2 ⌋ errors [14]. The parity check matrix has the

structure H = [h
[i]
j ] ∈ F

n−k×n
qm , 0 ≤ i < n − k, 0 ≤ j < n,

where hi are linearly independent over Fq [15].

III. IMPLEMENTATION OF FINITE EXTENSION FIELD

OPERATIONS IN C

In this section, we describe the software implementation

of the finite extension field arithmetic with polynomial and

normal bases in C. We consider m = 127, which is the

specified extension degree for the 128 bit security equivalent

in the RQC cryptosystem. The size of the base field is 2.

A. Implementation of Polynomial Basis Operations in C

For the polynomial basis, we reference the implementation

that is currently used in the RQC implementation [1]. Accord-

ing to the authors it is based on the C++ library NTL.

The reference implementation uses two unsigned 64-bit

integers to store a coefficient vector, one storing the lower

64 bits and the other the upper 63 bits padded with a zero bit.

The authors of RQC also provide an optimized implementation

using the x86 SSE instruction set, which we will not consider

in this paper.

The sum of two coefficient vectors is performed with two

bit-wise XOR operations, adding the lower and upper integers

of the coefficient vectors, respectively.

As described in Section II, computing the multiplication of

two finite extension field elements a and b is divided into



two steps. The first step computes the unreduced product of

the two binary polynomials. It is efficiently implemented by

an algorithm based on the right-to-left comb method (see [7]

Algorithm 2.36). For all 16 polynomials u of degree smaller

than four, the partial results a ·u are pre-computed and stored

in a lookup table with three 64bit integers per coefficient

vector. This takes 28 XOR and 35 shift operations in C. The

unreduced polynomial c = a · b is then computed using the

partial results; consider [7], [16] for details. This takes another

29 shift operations, 24 XOR and 17 AND operations in C.

The resulting coefficient vector is stored in four unsigned 64-

bit integers. The second step performs the modular reduction

by the irreducible polynomial Π. As Π = x127 + x + 1 is

a trinomial, the reduction only needs few operations. This

particular trinomial has the property

x127+i ≡ xi+1 + xi mod Π, i = 0, . . . , 125.

Additionally, the distributive property (xi+xj) mod Π ≡ xi

mod Π+xj mod Π holds. Thus, all higher order coefficients

ci, i = 127, . . . , 252 have to be shifted to the positions i −
126 and i − 127, respectively, and have to be added to the

lower order coefficients. As the unreduced coefficient vector

is stored in 64bit segments, the computation requires slicing,

concatenating and adding of segments. This is accomplished

with six shift operations, six XOR operations, and one AND

operation in C.

For squaring, the coefficient vector is zero-interleaved by

a pre-computed look-up table that maps 8-bit integers to

interleaved 16-bit integers. Hence, the input coefficient vector

is sliced into 8-bit segments and the corresponding 16-bit

fragments are concatenated. This takes 16 AND operations, 13

shift operations, and 6 XOR operations in C. The interleaved

vector is then reduced using the same function as for the

multiplication.

Elements are inverted using the extended euclidean algo-

rithm (EEA), see [7]. As shown later, the EEA is rarely needed

in the decoder and we can neglect its complexity.

B. Implementation of Normal Basis Operations in C

For the extension degree m = 127 and q = 2 there exists no

optimal normal basis, hence, we construct a low-weight normal

element using the algorithm described in [9]. Our normal basis

has the complexity CM = 501 and is self-dual.

Similarly to the polynomial basis implementation, the vector

representation a of a ∈ Fqm can be conveniently stored in

two unsigned 64-bit integers that we denote by al and au,

containing the lower 64 entries and the upper 63 entries of a,

respectively. We set the MSB of au to zero.

In this data representation the sum c of two vectors a and

b is split into two XOR operations in C, that is cl = al ⊕ bl

and cu = au ⊕ bu.

The ith q-power of an element a is given by cyclically

shifting a. As bits need to shift from al to au and vice versa,

the shifting requires multiple operations. For 0 ≤ j ≤ 63 we

compute

bl = (al ≪ j)|(au ≫ 63− j)

bu = ((au ≪ j)|(al ≫ 64− j))&(263 − 1).

The AND operation applies a bit mask setting the MSB of bu

to zero. We set j = i mod m, as a[i] = a[i mod m]. We can

only shift by a maximum of 63 Bits, thus in case j > 63 we

calculate b = a[j] = a[j−m] as

bl = (al ≫ k)|(au ≪ 64− k)

bu = ((au ≫ k)|(al ≪ 63− k))&(263 − 1),

where k = 127− j. In total, raising an element to a q-power

requires four shift operations, two OR operations, and one

AND operation.

The multiplication of two field elements is given in Equation

(1). We use a performance optimized method developed by

Ning and Yin [17]. In a first step, the shift tables Ta and Tb

are computed for each operand, which are arrays storing m
elements in Fqm . The shift table Ta contains the q-powers of a,

i.e. the ith array element Ta[i] of Ta stores the representation

vector of a[−i] = a[m−i] for i = 0 . . . (m− 1). Similarly, the

table Tb contains the q-powers of b. Then, the product c is

given by multiplying the shift tables [17]

c =

m−1
∑

i=0



Ta[i]&
∑

Mij=1

Tb[j]



 . (2)

To save extra computational cost, we omit the masking with

263−1 when computing the q-powers and instead set the MSB

of the end result c to zero. Hence, the computation of a shift

table takes 4m shift operations and 2m OR operations in C. In

general, a multiplication requires the computation of two shift

tables. If we multiply several times with the same operand,

we can store its shift table for reuse. Equation (2) takes 2m
AND operations and 2(CM − 1) XOR operations in C. To

avoid additional overhead, we fix the indices i and j of the

two summation operators.

For a multiplication with a q-power of the normal element

α, we provided the simplified formula b = M(a←i)→i.

The multiplication table M is CM -sparse, hence, it is most

efficient to add only non-zero indices

b =





m−1
∑

j=0





∑

Mkj=1

a′k



 2j





→i

,

where a′ = a←i. We efficiently extract and add the indices a′k
using conditional boolean expressions in C. The entry a′k is

one if a′lk&2k = 2k, k < 64 and a′uk−64&2k−64 = 2k−64, k ≥
64, respectively. The powers of two and the indices i and

j are hard-coded as immediate operand values. The boolean

assertions are combined with boolean XOR operators and the

index bi is set to one in case the if-statement’s expression

evaluates as true. In total, this requires two q-power operations,

CM AND operations and comparisons, and CM −m boolean

XOR operations in C.



For the computation of the multiplicative inverse we use an

approach similar to [12]. The inverse of a is given by Fermat’s

little theorem, i.e., a−1 = a2
m−2 yielding

a2
m−2 = (a2

m−1−1)[1] =

(

m−2
∏

i=0

a[i]

)[1]

. (3)

For m = 127, we decompose m− 1 = 126 = 2 · 3 · (1 + 2 ·
2 · (1 + 2 · 2)) and simplify the product as

m−2
∏

i=0

a[i] = a5 · a
[63]
5 , a5 = a4 · a

[21]
4 · a

[42]
4

a4 = a · a3 · a
[10]
3 , a3 = a2 · a

[5]
2

a2 = a[1] · a
[2]
1 · a

[4]
1 , a1 = a · a[1].

Thus, an inversion consists of nine multiplications and ten

q-powers in Fqm . We store shift tables of partial results

that are needed more than once. This reduces costs by nine

computations of shift tables.

IV. THE WELCH-BERLEKAMP ALGORITHM

The Welch-Berlekamp like Algorithm (WBA) for decoding

Gabidulin codes was first presented by Pierre Loidreau in 2006

[18]. It was further improved by D. Augot et al [2]. The

WBA is currently used in the RQC implementation. In the

following, we will summarize the algorithm that is optimized

by Loidreau’s improvement for polynomials of small degree.

We will present the theoretical computational complexity and

highlight differences to the RQC implementation.

A. Summary of the Steps

The Welch-Berlekamp algorithm decodes by interpolating

two pairs of polynomials (P0, Q0) and (P1, Q1).
In the initialization step two polynomials A and I are

computed that evaluate to zero and interpolate r at the

positions gi, i = 0, . . . , (k − 1), respectively. The two pairs

are initialized as (P0, Q0) = (X, 0) and (P1, Q1) = (0, X).
The discrepancy vectors u0 and u1 describe the error of the

interpolation. They initially evaluate as u0,i = A(gi) and

u1,i = I(gi)−ri, i = 0, . . . , (n−1), where the first k entries

are zero and do not need to be computed explicitly.
After initialization, the polynomials are interpolated in a for-

loop with indices l = k, . . . , (n−1). In every iteration, the next

index l ≤ d < n is searched such that u1,d 6= 0∨u0,d = 0. If

no such index exists, the loop is terminated early. Otherwise,

the two indices l and d are swapped for both discrepancy

vectors and the polynomials are updated. In particular, if

u1,l 6= 0, a nominal interpolation step

P ′1 ←− P 2
1 −

u
2

1,l

u1,l
P1

Q′1 ←− Q2
1 −

u
2

1,l

u1,l
Q1

P ′0 ←− P0 −
u0,l

u1,l
P1

Q′0 ←− Q0 −
u0,l

u1,l
Q1

and if u0,l = 0 ∧ u1,l = 0, a dummy interpolation step

(P ′0, Q
′
0)←− (P0, Q0)

(P ′1, Q
′
1)←− (P 2

1 , Q
2
1)

is performed. After the interpolation step, the indices of the

pairs of polynomials are swapped, i.e. (P0, Q0) ← (P ′1, Q
′
1)

and (P1, Q1)← (P ′0, Q
′
0).

Next, the indices i = l + 1, . . . , (n− 1) of the discrepancy

vectors are updated. In case of nominal updates, it holds that

u0,i ←− u2
1,i +

u
2

1,l

u1,l
u1,i

u1,i ←− u0,i +
u0,l

u1,l
u1,i,

else, for dummy updates u′1 = u0 and u′0,i = u2
1,i.

After interpolation, the decoded message m can be retrieved

as the first k coefficients of the polynomial F which is

obtained by the left Euclidean division F = Q1\ (P1 · A)+I.

B. Implementation in RQC

In its core, the decoder implemented in RQC is presented

by Augot et al. in [2, Algorithm 5]. The implementation uses

the optimization for polynomials of lower degree and the

optimized update rule for the discrepancies as shown in [2,

Section 4.3.2]. The parameters are set to n = 113 and k = 3.

Additionally, it has been modified to decode in constant time

irrespective of the error weight. This is achieved by eliminating

the early termination and dummy updates. Instead, random

values are used for continuing the interpolation once the

discrepancy vector u1 is all zero. The dummy interpolations

are replaced by nominal interpolations.

The implementation uses the polynomial basis implementa-

tion of Fqm presented in Section III-A. It stores q-polynomials

and vectors in C arrays, thus, as contiguous blocks of memory.

C. Theoretical Complexity Analysis

The implementation in RQC always performs nominal

updates. Thus, the upper bound of the complexity given in

[2] assuming only nominal updates reflects the theoretical

complexity of the constant time implementation. A summary

of the complexity involved in every step is given in Table I,

which is based on the analysis in [2].

TABLE I
THEORETICAL COST ANALYSIS OF THE WBA

Additions in Fq Mult. in Fq

Init. A, I m(2k2 − 2k) + 2kCinv (2k2 + k)m2

+(2k2 + k)(m2 − 1)
+(1.5k2 − 0.5k)(2m− 2)

Init. u0/1 m(2k − 1)(n− k) (2k + 1)(n − k)
+(2k + 1)(n − k)(m2 − 1) ·m2

+(k − 1)(n− k)(2m − 2)
Up. u (n2 − 2kn− n+ k2 + k)m m2(n2 − 2kn

+(n2 − 2kn− n+ k2 + k) −n+ k2 + k)
·(m2 − 1)
+(n2 − 2kn+ n+ k2 − k)/2
·(2m− 2)

Up. Poly. m(n2 − kn) + 2Cinv(n− k) m2(n2 − kn
+(n2 − kn+ 2(n− k))(m2 − 1) +2(n− k))
+(k2 − 2nk + 3k + n2 + 2n)/2
·(2m− 2)

Left div. (k − 1)n−k
2

m m2(k − 1)n−k
2

+(k − 1)n−k
2

(m2 − 1)
+(n− k)(k − 1)(2m − 2)

Comp. m (k + 1)m



V. THE TRANSFORM DOMAIN DECODER

The transform domain decoder was first presented by D.

Silva and F. R. Kschischang in 2009 [3]. It is an optimization

for low-rate codes, which is derived from the previously exist-

ing method based on the Berlekamp-Massey algorithm (BMA)

[15]. In the following, we will summarize the steps of the

algorithm, evaluate the theoretical computational complexity,

and describe our implementation.

A. Summary of the Steps

The TDD decodes by determining the unique error word e

of rank τ ≤ τmax such that r = c+e, where r is the received

word and c is the desired code word.

The decoder has a fixed parity-check matrix with Hi,j =
α[i+j], 0 ≤ i < n − k, 0 ≤ j < m which only contains q-

powers of α. For decoding arbitrary Gabidulin codes defined

by the partiy check matrix H ′, we need to apply a transfor-

mation matrix A ∈ F
m×n
q transforming H ′ = HA. Finding

A is not part of the decoding.

The TDD interprets vectors in Fqm as coefficient vectors of

q-polynomials. Specifically, it zero-pads r, c, and e and treats

them as the coefficient vectors of the q-polynomials R, C and

E, respectively.

In the first step, we transform the received word r′ by

calculating r = Ar′ using the pre-computed matrix A.

Then we compute the syndromes si =
∑m−1

j=0 riα
[i+j], for

i = 0, . . . , d − 2. As H contains the q-powers of α, the

coefficients ẽi of the q-transform of E are identical with the

syndromes si, i = 0 . . . d− 2.

Next, we determine the so-called error span polynomial Γ
of q-degree τ . We compute it with the Berlekamp-Massey

algorithm solving the key-equation

τ
∑

i=0

γis
[i]
j−i = 0, j = τ, . . . , d− 2.

With the error span polynomial, the remaining indices ẽj , j =
d− 1 . . .m− 1 are given explicitly by

ẽj = −
τ
∑

i=1

γiẽ
[i]
j−i = 0, j = d− 1, . . . ,m− 1.

The inverse q-transform yields ei =
∑m−1

j=0 ẽjα
[i+j] , for i =

0 . . .m− 1. Note that we choose a self-dual normal element.

The code transform is reversed yielding e′ = A†e where A†

is a left-inverse of A. The retrieved code word c′ = r′ −
e′ is used to calculate the original message m′. As every

square sub-matrix of G′ is invertible, we invert the sub-matrix

consisting of the first k columns of G′. We call this inverse

G′−1sub . Similarly, we denoted the first k entries of c′ as c′sub.

Then, m′ is given by c′subG
′−1
sub .

B. Theoretical Complexity Analysis

To demonstrate the performance of the TDD, Silva and

Kschischang evaluated the cost of the decoder by counting

the number of addition and multiplications in the extension as

well as the base field. In the complexity analysis they neglect

the cost of that shifting operations. Table II is based on their

results and summarizes the number of operations in Fq .

TABLE II
THEORETICAL COST ANALYSIS OF THE TDD

Additions in Fq Multiplications in Fq

Code Trafo (n− 1)m2 nm2

Syndromes (n(CM −m) + (n− 1)m)
·(d− 1)

BMA m(d− 1)(( 1
2
Cinv + d− 2) m2(d− 1)

·(CM − 1) + 1
2
(d− 2)) ·(d − 2 + 1

2
Cinv)

Comp. of ẽ (τ(CM − 1) + τ − 1) m2(m− d+ 1)τ
·m(m− d+ 1)

Inv. q-Trafo nmCM

Trafo. w. A† (n− 1)nm n2m
Comp. of m

′ m(k(k − 1) + (CM − 1)k2) m2k2

C. Implementation in C

We implemented the TDD decoder for the security parame-

ters specified in the RQC security level I, that is n = 113
and k = 3. Our implementation uses the normal basis

implementation presented in Section III-B.

VI. BENCHMARKS AND COMPARISON

In this section, we compare the performance of the Welch-

Berlekamp Algorithm as implemented in RQC and our imple-

mentation of the Transform Domain Decoder. We benchmark

the algorithms for random Gabidulin codes, random messages,

and random error words of rank τmax. The benchmark is

executed on a 2.3 GHz Intel Core i5 processor on a single

core. We use the gcc compiler with a -O3 optimization flag.

Compiling without optimization, i.e. with flag -O0, results in

a longer execution time, while the relative time differences

remain approximately the same.

A. Operations in the Finite Field

We benchmark the finite field operations presented in Sec-

tion III by measuring the CPU time for executing the respec-

tive function 106 times. We use the C library function clock

and calculate the difference between start and end time. Table

III shows the results. Apparently, the multiplication and inver-
TABLE III

CPU TIME [S] PER 106 FUNCTION CALLS

Polynomial Basis Normal Basis

add < 5 · 10−4 < 5 · 10−4

multiply 0.052 0.41
set shift table - 0.11
multiply shift tables - 0.18

multiply by α[i] - 0.13
q-power - 0.0018
square 0.011 0.0018
invert 0.53 2.9

sion operation is much more efficient in the polynomial basis.

Note that a multiplication in the polynomial basis theoretically

requires m2−1 = 16128 additions and m2 = 16129 multipli-

cations in Fq, thus 32257 operations in total. A multiplication

in the normal basis takes m(Cm − 1) = 63500 additions and

m2 = 16129 multiplications in Fq adding up to 79629 base

field operations, which is about 2.47 times as much as the

polynomial multiplication. However, the processing speed of

the normal basis multiplication compared to polynomial basis

multiplication is 7.9 times lower.



The performance gap between the theoretical complexity

and the run-time is even bigger for the multiplication with

powers of α. Ideally, this operation takes Cm − m = 374
binary additions in Fq using a normal basis, while it remains

a generic multiplication in the polynomial basis. Thus, the nor-

mal basis performs the operation with just 1.2% of the cost of

the polynomial multiplication. Nevertheless, the normal basis

implementation is about 2.5 times slower than the polynomial

one. While the cost of shifting and slicing indices is neglected

in the theoretical analysis, it dominates the performance for

the multiplication by a q-power of α.

B. Performance of the Decoders

We compare the two decoders by measuring the decoding

speed and the number of required operations in the finite

extension field.

1) Decoding Speed: We estimate the total number of theo-

retically required additions and multiplications in Fq for each

of the two decoders by summing the cost of the individual

steps. In total, the WBA requires about 4.18 · 108 binary

additions and 4.11·108 binary multiplications. The TDD needs

almost the equal amount of additions, that is 4.41 · 108, but

only 2.20 · 108 multiplications. (Note that we neglected the

cost of inversion, i.e. Cinv = 0, as there are only few inversion

operations required.) Thus in theory, the TDD should be more

efficient for the given parameters. In case of an optimal basis,

the TDD would perform even better.

The implementation, however, shows quite a different pic-

ture. We measure the decoding time of the two decoders for

103 repetitions. The WBA requires 1.75s, while the TDD takes

7.05s, hence, is about 4 times slower.

2) Required Arithmetic Operations: To provide a more de-

tailed analysis of why the WBA performs better than the TDD,

we count the number of function calls for the basic arithmetic

operations in the finite extension field, see Table IV. The TDD

TABLE IV
AVERAGE NUMBER OF FUNCTION CALLS PER DECODING

WBA TDD
add 47751 49164
multiply 26021 -
set shift table - 12833
multiply shift tables - 8699

multiply by α[i] - 28321
q-power - 3960
square 13547 3080
invert 114 55

requires less generic multiplications, less squares, and less

inversions than the WBA. However, the TDD multiplies by

q-powers of α a lot. As we have seen above, this operation in

particular performs worse than estimated in theory.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have compared two implementations of

finite extension fields, one based on a polynomial basis, the

other on a normal basis representation. Our benchmarks have

shown that the software implementation of the polynomial

basis outperforms the normal basis. The theoretical assump-

tions that shift operations and vector indexing operations are

negligible do not hold for the software implementation. In

particular, the multiplication with q-powers of α performs

much worse than expected. Our benchmarks can be translated

to estimate the time complexity of other algorithms using finite

extension fields.

Based on the two finite extension field implementations, we

have compared the Welch-Berlekamp algorithm and the Trans-

form Domain Decoder. Considering the theoretical complexity,

the TDD outperforms the WBA for the given parameter set.

The benchmarks of our implementation in C, however, show

that the theoretical assumptions are not good enough for

predicting the performance of the implementation. In fact, the

WBA is four times more time efficient than the TDD.

The parameter set given in RQC prevented the usage of

an optimal normal basis. Hence, future research could involve

re-implementing the finite extension field for choices of m,

where an optimal self-dual normal basis exists.
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