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Abstract

Pain is generally measured by patient self-report, normally via verbal communication. However, if

the patient is a child or has limited ability to communicate (i.e. the mute, mentally impaired, or

patients having assisted breathing) self-report may not be a viable measurement. In addition, these

self-report measures only relate to the maximum pain level experienced during a sequence so a

frame-by-frame measure is currently not obtainable. Using image data from patients with rotator-

cuff injuries, in this paper we describe an AAM-based automatic system which can detect pain on

a frame-by-frame level. We do this two ways: directly (straight from the facial features); and

indirectly (through the fusion of individual AU detectors). From our results, we show that the

latter method achieves the optimal results as most discriminant features from each AU detector

(i.e. shape or appearance) are used.

1. Introduction

In clinical settings pain is difficult to assess and manage. There is a long history of

researchers pursuing the goal of obtaining an objective measure of pain through analyzes of

tissue pathology, neurological ”signatures,” imaging procedures testing of muscle strength

and so on. These approaches have been fraught with difficulty because they are often

inconsistent with other evidence of pain [19], in addition to being highly invasive and

constraining to the patient. Because it is convenient, does not require advanced technology
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or special skills and can provide information, patient self-report has become the most widely

used technique to measure pain.

While useful, self-report measures have significant limitations [6, 9]. These include

inconsistent metric properties across scale dimensions, reactivity to suggestion, efforts at

impression management or deception, and differences between clinician’s and sufferers’

conceptualization of pain [20]. Moreover, self report cannot be used in important

populations, such as young children, patients who have limited abilities to communicate, the

mentally impaired, and patients who require assisted breathing. In addition to this, self-

report measures only coincide in the instant when the patient is at their emotional apex (e.g.

highest pain intensity in this case) and do not provide information on the patient’s emotional

state other than these peak periods. In short recordings of duration of a couple of seconds

this information is ideal, however, if such a system is to be used for monitoring purposes

which could extend to minutes, hours or even days (e.g. monitoring a patient in the ICU

ward, or a person sitting at a computer desk), such self-reporting measures are of little use.

Significant efforts have been made to identify reliable and valid facial indicators of pain [7].

Most of these efforts have involved methods that require manual labelling of facial action

units (AUs) defined by the Facial Action Coding System (FACS) [8], which must be

performed offline by highly trained observers [4, 8] making them ill-suited for real-time

application in clinical settings. However, a major benefit of using facial expressions is that a

measure of pain can be gained at each time step (i.e. each video frame). And by training up a

classifier to recognize the facial expressions associated with pain, a computer vision system

can be developed to carry out this task in an automatic and real-time (or close to) manner.

In terms of FACS, pain has been associated with many AUs. Prkachin [15] found that four

actions - brow lowering (AU4), orbital tightening (AU6 and AU7), levator contraction (AU9

and AU10) and eye closure (AU43) - carried the bulk of information about pain. In a recent

follow up to this work, Prkachin and Solomon [16] found that these four “core” accounted

for most of the variance in pain expression. They proposed summing the intensity of these

facial actions to define pain intensity (see Section 2.1 for overview). In this paper we used

this FACS pain intensity scale to define pain at each frame.

1.1. Related Work

There have been many recent attempts to detect emotions directly from the face, mostly

using FACS [8]. Comprehensive reviews can be found in [17, 18]. In terms of automatically

detecting pain, there have only been a few recent works. Littlewort et al. [11] used their AU

recognizer based on Gabor filters, Adaboost and support vector machines (SVMs) to

differentiate between genuine and fake pain. In this work no actual pain/no-pain detection

was performed as differentiation between genuine, fake and baseline sequences was done

via analyzing the various detected AUs. The classification for this work was done at the

sequence level.

In terms of pain/no-pain detection, Ashraf et al. [1] used the UNBC-McMaster Shoulder

Pain Archive to classify video sequences as pain/no-pain. Active appearance models

(AAMs) were used to decouple the face into rigid and non-rigid shape and appearance
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parameters and a SVM was used to classify the video sequences. In this work, they found

that by decoupling the face into separate non-rigid shape and appearance components

significant performance improvement can be gained over just normalizing the rigid variation

in the appearance. Ashraf et al. [2] then extended this work to the frame-level to see how

much benefit would be gained at labeling at the frame-level over the sequence-level. Even

though they found that it was advantageous to have the pain data labeled at the frame-level,

they proposed that this benefit would be largely diminished when encountering large

amounts of training data.

In the works performed by Ashraf et al. [1, 2], the pain detection system was ‘direct” (i.e.

using the extracted features to train up the pain/no-pain SVM classifier). This approach has

the disadvantage of using all the facial information, a lot of it not being related to pain. A

more prudent strategy maybe just to use the information associated with the four core

actions related to pain [15, 16]. A means of achieving this could be via an “indirect”

approach (i.e. detecting pain as a series of recognized AUs) as only the AUs related to pain

are used in detection. This indirect approach has the added advantage of using particular

feature sets (i.e. non-rigid shape or appearance) which best detect a certain facial action

which was shown in Lucey et al. [12]. For example, brow lowering (AU4) is best recognized

by the shape features as these features produce strong changes, whilst the appearance

changes around this area is hard to decipher as facial furrows and wrinkles vary across

individuals.

Using this as our motivation, in this paper we describe an AAM/SVM based automatic

system which can detect pain indirectly from a fused set of individual AU detectors which

are known to correlate with pain at a frame-by-frame level. We show that this indirect

system achieves better performance over a direct system, as we use an optimal feature set

which better describe each facial action, which greatly differs from the approach of Ashraf

et al. [1, 2].

The rest of the paper is organized as follows. In the next section we define a frame-level

pain intensity metric derived by Prkachin and Solomon [16], as well as a description of the

database that we used for our work. We then describe our automatic system which we use to

directly detect pain and individual AUs followed by the associated results. We then describe

our indirect automatic pain detection system which fuses individual AU detectors through

output score fusion. We conclude with these results as well as some concluding remarks.

2. Detecting Pain from Facial Actions

2.1. Defining Pain in terms of AU

Much is known about how humans facially express pain from studies in behavioral science.

Most of these studies encode pain from the movement of facial muscles into a series of AUs,

based on the FACS. An example of the facial actions of a person in pain is given in Figure 1.

In 1992, Prkachin[15] conducted a study on facial expressions and found that four actions -

brow lowering (AU4), orbital tightening (AU6 and AU7), levator contraction (AU9 and

AU10) and eye closure (AU43) - carried the bulk of information about pain. In a recent

Lucey et al. Page 3

Int Conf Affect Comput Intell Interact Workshops. Author manuscript; available in PMC 2012 March 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



follow up to this work, Prkachin and Solomon [16] indeed found that these four “core”

actions contained the majority of pain information As such they defined pain as the sum of

intensities of brow lowering, orbital tightening, levator contraction and eye closure. The

Prkachin and Solomon pain scale is defined as:

(1)

That is, the sum of AU4, AU6 or AU7(whichever is higher), AU9 or AU10(whichever is

higher) and AU43 to yield a 16-point scale 1. Frames that have an intensity of 1 and higher

are defined as pain. For the example in Figure 2, which has been coded as AU4B + AU6E +

AU7E + AU9E + AU10D + AU12D + AU25E + AU43A, the resulting pain intensity would

be 2 + 5 + 5 + 1 = 13. This is because AU4 has an intensity of 2, AU6 and AU7 are both of

intensity 5 so just the maximum is taken, AU9 is of intensity 5 and AU10 is of intensity 4 so

again the maximum is taken which is 5, and AU43 is of intensity 1 (eyes are shut).

2.2. UNBC-McMaster Shoulder Pain Expression Archive Database

The UNBC-McMaster Shoulder Pain Expression Archive database was used for this work. It

contains video of the faces of adult subjects (129 subjects - 63 male, 66 female) with rotator

cuff and other shoulder injuries. Subjects were recorded during movement of their affected

and unaffected shoulder during active and passive conditions. In the active condition,

subjects initiated shoulder rotation on their own. In the passive condition, a physiotherapist

was responsible for the movement. In the experiments conducted in this paper, only the

active condition was used. Within the active condition, tests were performed on both the

affected and the unaffected shoulder to provide a within subject control. The camera angle

for these tests were approximately frontal to start. Moderate head motion was common.

Video of each trial was rated offline by a FACS certified coder. To assess inter-observer

agreement, 1738 frames selected from one affected-side trial and one unaffected-side trial of

20 participants were randomly sampled and independently coded. Intercoder percent

agreement as calculated by the Ekman-Friesen formula [8] was 95%, which compares

favorably with other research in the FACS literature. For more information on the database,

please refer to [16].

Out of the database, we used 203 sequences from 25 different subjects. Of these 203

sequences: 111 were on the affected shoulder and 92 on the unaffected shoulder; 101

contained pain (at least one frame in the video sequence had frames which had a pain

intensity of 1 or greater) and 102 without pain. An example of a patient in pain is given in

Figure 2(a). As can be seen in this example, considerable head movement occurs during the

sequence. This highlights the challenge of this problem, as registering the patient’s face can

become difficult due to these added variabilities. The data is also different from a lot of

currently available datasets as the video sequences have various durations, with sequences

1Action units are scored on a 6-point intensity scale that ranges from 0 (absent) to 5 (maximum intensity). Eye closing (AU43) binary
(0 = absent, 1 = present). In FACS terminology, ordinal intensity is denoted by letters rather than numeric weights, i.e., 1 = A, 2 = B,
… 5 = E.
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last from 90 to 700 frames. Within these sequences, the patient may display various

expressions multiple times.

3. Description of Pain Detection Modules

Our automatic pain detection system consists of firstly tracking a patient’s face throughout a

sequence. We do this using active appearance models (AAMs). Once the face is tracked, we

use the information from the AAMs to extract both shape and appearance features. We then

use these features as an input into a support vector machine (SVM), which we use for

classification. We explain each of these modules in the following subsections.

3.1. Active Appearance Models (AAMs)

Active appearance models (AAMs) have been shown to be an accurate method of aligning a

pre-defined linear shape modle that also has linear appearance variation, to a previously

unseen source image containing the object of interest. In general, AAMs fit their shape and

appearance components through a gradient-descent search, although other optimization

methods have been employed with similar results [5].

The shape s of an AAM [5] is described by a 2D triangulated mesh. In particular, the

coordinates of the mesh vertices define the shape s. These vertex locations correspond to a

source appearance image, from which the shape was aligned. Since AAMs allow linear

shape variation, the shape s can be expressed as a base shape s0 plus a linear combination of

m shape vectors si:

(2)

where the coefficients p = (p1, …, pm)T are the shape parameters. These shape parameters

can typically be divided into similarity parameters ps and object specific parameters po, such

that . Similarity parameters are associated with geometric similarity transform

(i.e. translation, rotation and scale). The object-specific parameters, are the residual

parameters representing geometric variations associated with the actual object shape (e.g.,

mouth opening, eyes shutting, etc.). Procrustes alignment [5] is employed to estimate the

base shape s0.

Keyframes within each video sequence were manually labelled, while the remaining frames

were automatically aligned using a gradient descent AAM fit described in [14]. Figure 2(a)

and (b) shows the AAM in action, with the 68 point mesh being fitted to the patient’s face in

every frame.

3.2. Feature Extraction

Once we have tracked the patient’s face using the AAM by estimating the base shape and

appearance parameters, we can use this information to derive features from the face. From

the initial work conducted in [1, 13], we extracted the following features:
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• PTS: similarity normalized shape, sn, refers to the 68 vertex points in sn for both

the x- and y- coordinates, resulting in a raw 136 dimensional feature vector. These

points are the vertex locations after all the rigid geometric variation (translation,

rotation and scale), relative to the base shape, has been removed. The similarity

normalized shape sn can be obtained by synthesizing a shape instance of s, using

Equation 2, that ignores the similarity parameters p. An example of the normalized

shape features, PTS, is given in Figure 2(c).

• APP: canonical normalized appearance a0 refers to where all the non-rigid shape

variation has been normalized with respect to the base shape s0. This is

accomplished by applying a piece-wise affine warp on each triangle patch

appearance in the source image so that it aligns with the base face shape. If we can

remove all shape variation from an appearance, we’ll get a representation that can

be called as shape normalized appearance, a0. The canonical normalized

appearance a0 is different to the similarity normalized appearance an as it removes

the non-rigid shape variation and not the rigid shape variation. The resulting

features yield an approximately 27,000 dimensional raw feature vector. A mask is

applied to each image so that the same amount of pixels are used. To reduce the

dimensionality of the features, we used a 2D discrete cosine transform (DCT).

Lucey et al. [12] found that using M = 500 gave the best results. Examples of the

reconstructed images with M = 500 is shown in Figures 2(d). It is worth noting that

regardless of the head pose and orientation, the appearance features are projected

back onto the normalized base shape, so as to make these features more robust to

these visual variabilities.

• PTS+APP: combination of shape and appearance features sn + a0 refers to the

shape features being concatenated to the appearance features.

3.3. Support Vector Machine Classification

SVMs have been proven useful in a number of pattern recognition tasks including face and

facial action recognition. Because they are binary classifiers they are well suited to the task

of pain and AU recognition (if you consider the problem of pain/AU vs no pain/no AU).

SVMs attempt to find the hyperplane that maximizes the margin between positive and

negative observations for a specified class. A linear SVM classification decision is made for

an unlabelled test observation x* by,

(3)

where w is the vector normal to the separating hyperplane and b is the bias. Both w and b

are estimated so that they minimize the structural risk of a train-set, thus avoiding the

possibility of overfitting to the training data. Typically, w is not defined explicitly, but

through a linear sum of support vectors. As a result SVMs offer additional appeal as they

allow for the employment of non-linear combination functions through the use of kernel

functions, such as the radial basis function (RBF), polynomial and sigmoid kernels. A linear

kernel was used in our experiments due to its ability to generalize well to unseen data in
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many pattern recognition tasks [10]. Please refer to [10] for additional information on SVM

estimation and kernel selection.

4. Direct Vs Indirect Automatic Pain Detection

In comparing the direct vs indirect automatic pain detection systems, we devised two sets of

experiments. In the first experiment, we developed the direct pain detection system which

detected for each frame whether or not the patient was in pain or not (i.e. detect frames with

pain intensity of one or greater).

In the second set of experiments we developed the indirect pain detection system, which

fused the outputs of each AU. Prior to this though, we wanted to see how conducive each

AU was to the automatic detection of pain. This experiment was designed to show how

discriminant each AU was in pain detection. Even though we are working on the assumption

that the 4 core actions, or six AUs (AUs 4, 6, 7, 9, 10 & 43) carry the bulk of the

information relating to pain - some may suffer from poor accuracy in terms of detection.

This could be due possibly due to lack of training data or lack of discriminating features.

Based on this heuristic evidence we will then fuse together the output scores of the various

AUs to detect pain.

For each experiment, we provide results for each particular feature set (see Section 3.2), to

determine if there was any benefit in using one particular set over another. To check for

subject generalization, a leave-one-subject-out strategy was used and each SVM classifier

was trained using positive examples which consisted of the frames that were labeled as pain.

The negative examples consisted of all the other frames that were labeled as no-pain.

In order to predict whether or not a video frame contained pain, the output score from the

SVM was used. As there are many more frames labeled as no-pain then pain, the overall

agreement between correctly classified frames can skew the results somewhat. As such we

used the receiver-operator characteristic (ROC) curve, which is a more reliable performance

measure. This curve is obtained by plotting the hit-rate (true positives) against the false

alarm rate (false positives) as the decision threshold varies. From the ROC curves, we used

the area under the ROC curve (A′), to assess the performance which has been used in similar

studies [11]. The A′ metric ranges from 50 (pure chance) to 100 (ideal classification)2.

4.1. Direct Automatic Pain Detection

The classification performances across the various feature sets for the direct automatic pain

detector are given in Table 1. As can be seen by these results, there is little difference in

performance between the shape, appearance and combined features, with the combined

features yielding the best performance with an A′ rating of 75.08. This results suggest that

when incorporating all the various of parts the face directly, there is little discrepancy

between the two feature sets, with little complimentary information existing. However, as

shown in Lucey et al. [12] this is not the case for AU detection, as there is a large

2In literature, the A′ metric varies from 0.5 to 1, but for this work we have multiplied the metric by 100 for improved readability of
results
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discrepancy between the feature sets for some AUs. The next set of experiments tries to

exploit this by fusing the optimal feature sets together.

4.2. Indirect Automatic Pain Detection

4.2.1 Using AUs to Detect Pain—To see how conducive each AU was in detecting

pain, we trained a SVM for each AU using positive examples which consisted of the frames

that the FACS coder labelled containing that particular AU (regardless of intensity, i.e. A-

E). The negative examples consisted of all the other frames that were not labelled with that

particular AU. We then tested this model by comparing its output to the frames which were

labelled by the FACS coder to have a pain intensity greater or equal than one. The results of

this analysis are shown in Table 2.

In terms of detecting pain, AUs 6 and 43 are clearly the most reliable with AU6 achieving

an A′ rating of 74.64 for the combined features and AU43 getting a rating of 73.56 for the

PTS features. These AUs are almost as discriminating as using the entire face as shown by

the direct pain detection result A′ = 75.08. AU12 was the next best with a rating of 70.91 for

the combined features. AUs 7 and 9 were slightly behind with ratings of around 65. AUs 20,

25 and 26 all poorly corresponded to pain, whilst AU 4 and 10 were not much better.

Considering that AUs 4, 6, 7, 9, 10 and 43 are used in defining the pain metric, it would be

intuitive that the automatic recognition of these AUs would correspond highly with pain as

this metric has been heavily motivated by the work in literature. However, the results

suggest otherwise with only AUs 6, 7, 9 and 43 having reasonably high correspondence,

with AU4 and 10 performing quite poorly. This result may advocate the consideration that

these AUs not be used in the pain metric when training the system for automatic pain

recognition. It may also be prudent to include AU12 into this metric, as it corresponded

quite well to recognizing pain. The experiments in the next subsection explore various

combinations of AUs in an effort to maximize the pain recognition results.

4.2.2 Indirect Pain Detection through AU Output Score Fusion—For these

experiments we combined the various AUs through logistical linear regression (LLR) fusion

[3]. LLR fusion is a method which simultaneously fuses and calibrates scores of multiple

sub-systems together. It is a linear fusion technique, which like the SVM is trained on the

scores with positive labels being those which coincide with the frames that are labelled as

pain greater than two and the others being labelled as negative. Like the previous

experiment, we then tested this fusion model by comparing its output to the frames which

were labelled by the FACS coder to have a pain intensity greater or equal than one. We

again compared these results to the direct pain detector.

The results for the indirect pain detector experiments are shown in Table 3. In this table, it is

worth noting that the last column is denoted as the PTS+APP* features. This is different

from just the PTS+APP features as the ‘*’ denotes the optimal combination of the various

AUs, rather than the combination of all features sets. For example, the best performing

features for AU6 are the APP features and the PTS features for AU7. So the PTS+APP*

features for the orbital tightening (AU6 &7) are the LLR fusion of the output scores for the

APP features for AU6 and the output scores for the PTS features for AU7. This is in contrast
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to just the PTS+APP features which would be just the LLR fusion of the PTS and APP for

both AU6 and AU7.

The pain detection results for the individual four core facial actions (i.e. brow lowering,

orbital tightening, levator contraction and eye closure) are given in the first four rows of

results. This was designed again to show how these certain actions corresponded to the task

of pain detection. As noted in the previous subsection, the brow lowering results are quite

poor, whilst the eye closure action achieves a much better result. The fusion of AU6 and

AU7 for the orbital tightening action seems to have diminished the performance of the AU6,

with the performance dropping slightly (74.94 down to 74.28), suggesting that AU7 is of

little benefit in classifying pain. The same could be said of the levator contraction action,

with AU10 being of little benefit to this task.

The next three rows of results were designed to test our hypothesis that using the best

performing AUs to perform indirect pain detection would yield better performance than the

direct approach. Our results suggest backs up these assertions with the indirect pain

detection system consisting of fusing the best performing together AUs outperforming direct

approach 78.37 to 75.08, using the PTS+APP* features. This result suggests that by using

AU detectors to indirectly detect pain is an more effective method, especially if pain

intensity is defined summation of AU intensities. Interestingly however, this approach was

also better than the indirect system which fused all the AUs together which form the pain

metric (78.37 vs 77.26). This approach was also better than fusing all the AUs together

(78.37 vs 77.26).

An example of the output scores from the direct and indirect pain detectors are given in

Figure 2. At the top of this example are the frames which coincide with the actions of

interest. Below these frames are the 3 plots which coincide direct pain detector described in

Section 4.1. Below this is the indirect pain detector with the LLR output scores from fusing

the best AUs together for the various feature sets. In these curves, the horizontal line denotes

the threshold which the scores must be above for the patient to be deemed to be in pain. The

bottom plot is the actual transcribed pain intensity. As can be seen from this example, the

direction of all these curves correspond with the transcription, particularly with the output

scores coinciding with the pain intensity peaks (i.e. frame 100 to 130). The major benefit of

the indirect method showing with the pain being correctly detected in the frames 260–280.

5. Conclusions and Future Work

In this paper, we have looked at automatically detecting pain at a frame-by-frame level via

their facial movements. For this work we used the UNBC-McMaster database which

contains patients with shoulder injuries portraying real or spontaneous emotion. Specifically,

we compared two methods of detecting pain: directly (i.e. using extracted features to directly

detect pain/no-pain); and indirectly (i.e. detecting pain as a series of detected AUs). As pain

can be defined as a combination of AUs, we thought that using the indirect approach would

be an efficient way of detecting pain as only pain related information would be utilized in

the detection process via the detected AUs. From our 2 set of experiments we were able to

show this.
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In addition to this finding, another interesting result we found was that even though it is

relatively well established in psychological research that AUs 4, 6, 7, 9, 10 and 43 are the

core AUs associated with pain, two of these AUs (4 and 10) were poor in detecting pain,

whilst AU12 was quite good. To back this up, in our best performing indirect system we

found that omitting AU4 and AU10 and including AU12 yielded the best performance. We

endeavor to examine this aspect as well as investigating the problem of pain intensity

recognition in our future work. However, incorporating AU12 introduces other complexities.

In [16], Pkachin and Solomon found that AU12 distinguishes pain from nonpain, but loads

on a different factor in principal components analysis. This could mean that, although the

action is correlated with pain, it represents a different kind of process which could be

smiling as AU12 is the principle movement in this facial action. From preliminary

experiments, it is believed that people smile during or after a pain reaction. From

observation it often seems that they are reacting in amusement to their own pain response. If

that’s true, then incorporating it into some kind of pain metric runs the risk of confusing

signals. This is to be investigated further.

In our future research we also plan to examine the dyadic relationship between head

movement and facial actions for pain recognition. We believe that incorporating such a

relationship into the pain detector, as well as other modes such as eye gaze, audio (moaning

and groaning) and body movement (guarding) will improve pain detection performance. We

believe establishing such a framework would be advantageous in detecting other emotions

such as depression.
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Figure 1.
An example of facial actions associated when a person in is pain. In this example, AU’s 4, 6, 7, 9, 10, 12, 25 and 43.
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Figure 2.
Example of the output of the AAM tracking and the associated shape and appearance features: (a) the original sequence, (b) the

AAM tracked sequence, (c) the normalized shape features (PTS), and (d) normalized appearance using 500 DCT coefficients

(APP500).
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Figure 3.
The output scores from the SVM for the various features used. In these curves, the horizontal red lines denotes the threshold

which the scores have to be above for the patient to be deemed to be in pain. The bottom curve is the actual transcribed pain

intensity (as described in Section 2.1). Above the curves are the frames which coincide with actions of interest, namely: (a)

frame 1, (b) frame 101, (c) frame 125, (d) frame 160 and (e) frame 260.
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Table 1

Direct pain detection: Area underneath the ROC curve where each feature set is used to directly classify

whether a frame is pain or no-pain. Results for shape, appearance and combination features are given.

PTS APP PTS+APP

74.25 73.20 75.08
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Table 2

Indirect pain detection results by individual AU: Area underneath the ROC curve whereby separate AU

detectors were used to detect pain for shape, appearance and combination features. These results are compared

to the direct approach given in the last row.

AU PTS APP PTS+APP

4 57.35 60.32 57.93

6 69.91 73.09 74.64

7 64.11 61.47 65.49

9 65.23 58.86 64.48

10 55.05 56.19 56.30

12 68.92 69.31 70.91

20 50.50 50.25 51.34

25 59.13 55.64 57.88

26 55.27 50.16 55.05

43 73.56 64.74 73.28

Direct 74.25 73.20 75.08
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Table 3

Indirect pain detection results through AU fusion: Area underneath the ROC curve whereby separate AU

detectors were fused together using LLR to detect pain. These results are compared to the direct approach

given in the last row.

AU Combination PTS APP PTS+ APP PTS+ APP*

Eyebrow Lowering (4) 57.35 60.32 57.93 —

Orbital Tightening (6 & 7) 69.51 72.95 73.68 74.28

Levator Contraction (9 & 10) 63.92 59.61 64.05 65.68

Eye Closure (43) 73.56 62.98 73.28 —

Best performing AUs (6, 7, 9, 12 & 43) 75.65 74.29 76.44 78.37

Pain Metric (4, 6 &7, 9&10, 43) 74.69 73.09 73.56 77.28

All Aus 73.78 73.02 74.72 77.26

Direct (from Table 1) 74.25 73.20 75.08 —
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