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Abstract

Expressing and recognizing affective states with respect
to facial expressions is an important aspect in perceiving
virtual humans as more natural and believable. Based on
the results of an empirical study a system for simulating
emotional facial expressions for a virtual human has been
evolved. This system consists of two parts: (1) a control ar-
chitecture for simulating emotional facial expressions with
respect to Pleasure, Arousal, and Dominance (PAD) val-
ues, (2) an expressive output component for animating the
virtual human’s facial muscle actions called Action Units
(AUs), modeled following the Facial Action Coding Sys-
tem (FACS). A large face repertoire of about 6000 faces
arranged in PAD-space with respect to two dominance val-
ues (dominant vs. submissive) is obtained as a result of the
empirical study. Using the face repertoire an approach to-
wards realizing facial mimicry for a virtual human based
on backward mapping AUs displaying an emotional facial
expression on PAD-values is outlined. A preliminary evalu-
ation of this first approach is realized with AUs correspond-
ing to the basic emotions Happy and Angry.

1. Introduction

In his book The Expression of the Emotions in Man and
Animals Darwin focuses on a more detailed and first scien-
tific description of the meaning of different facial expres-
sions as well as the facial muscles accompanying them. He
also underlines the specific and functional role of facial ex-
pressions in expressing and communicating emotions [13].
Thus facial expressions play an important role in social in-
teractions since detecting and understanding the facial ex-
pressions displayed by others allow an access to their inten-
tional and affective states.

Nowadays the eventuality of being confronted with vir-
tual characters embedded in computer related applications
such as teaching or therapy applications [8], interactive

museum guide applications [23], and movie-video applica-
tions, is increasing. Therefore features of human face-to-
face interactions should be applied when designing human-
computer interfaces, e.g., features underlying kinds of facial
displays which play an essential role as a nonverbal com-
munication channel [7]. Facial expressions are crucial not
only in expressing and communicating emotions but also in
mimicking the facial expressions of others. In social be-
havior mimicry has a necessary role in contributing to build
bondings between humans. Mimicry acts as a ’social glue
that binds humans together’ since it contributes empathy,
liking, rapport, and affiliation [9]. Bavelas et al. [2] argue
for the role of mimicry as a communicative function in so-
cial interaction:

By immediately displaying a reaction appro-
priate to the other’s situation (e.g., a wince for the
other’s pain), the observer conveys, precisely and
eloquently, both awareness of and involvement
with the other’s situation. (p. 278)

In human-computer interaction Brave et al. [4] and
Prendinger et al. [32] found that agents showing involve-
ment with their partner’s situation through behaving em-
pathically are judged by humans as more likeable, trust-
worthy and caring. In our work the definition of mimicry
as empathy arousing mode introduced by Hoffman [21] is
followed. He defines mimicry as the process involving the
imitation of another’s facial expression, voice, and posture,
which triggers an afferent feedback eliciting the same feel-
ings in oneself as those of the others.

In this paper the methods and results of an empirical
study consisting of rating randomly generated facial ex-
pressions of the virtual human Emma, which is the female
’counterpart’ to the virtual human Max [24] as well as an
approach towards realizing facial mimicry using the face
repertoire resulting from the empirical study are presented.
In the next section previous works on generating a control
architecture for simulating a virtual human’s facial expres-
sions as well as extending a virtual human’s or robot’s be-
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havior to mimicking human’s facial or multimodal expres-
sions are outlined. Description of the used methods and re-
sults of the empirical study, the modeling of the virtual hu-
man Emma’s face inline with Ekman et al. FACS [16], and
the linkage between the obtained faces and the virtual hu-
man Emma’s emotion dynamics are topics of Section 3. In
Section 4 a first approach towards realizing facial mimicry
following the definition of mimicry introduced by Hoffman
is presented. That is, based on the face repertoire result-
ing from the empirical study, we are mainly interested in
exploring how the changes in the facial musculature of the
virtual human Emma while imitating a facial expression can
induce changes in her emotional state. Finally a summary
of the main conclusions and an outlook to future work are
given.

2. Related Work
There are various attempts to create a control architec-

ture for animating a virtual human’s facial features. Lee
et al. [26] proposed a facial expression animation system
based on nonlinear deformations provided by learning a de-
composable generative model. Stylized facial expressions
with expressiveness control are synthesized and used to ex-
tract MPEG-4 facial animation parameters (FAPs) to ani-
mate a synthetic agent’s face. Therefore it is not clear how
the generated faces are linked to a dynamic control architec-
ture that can be embedded into a virtual human’s behavior
system. Stoiber et al. [34] generate a control interface for
animating synthetic faces by analyzing physical deforma-
tions of a human face displaying emotions. This is based on
detecting principal geometrical and textural variation pat-
terns and their reorganisation in a low-dimensional space.
The resulting control space is very similar to Plutchik’s
emotion wheel [31].

The above described models all use image processing
and tracking algorithms for animating synthetic faces. In
this paper an approach based on empirical statistical and
reverse engineering methods to generate a control architec-
ture for a virtual human’s emotional facial expressions, as
introduced by [20], is applied. Following the theoretical
emotion model of [33] a 3 dimensional space of pleasure,
arousal, and dominance values is chosen as the facial ex-
pressions’ control space. Theoretical models of emotions,
such as categorical emotion models, are based on classify-
ing facial expressions onto different simple or mixed basic
emotions, e.g., the six basic emotions as a result of a cross-
cultural study by Ekman [15]. This discrete approach suf-
fers from the fact that each basic emotion can be linked to
more than one facial expression, thus it is unclear on which
specific facial expression the result of an appraisal should be
mapped. Dimensional emotion models indicate that emo-
tional facial expressions can be collocated in a 2 or 3 di-
mensional space, e.g., the pleasure, arousal, and dominance

space of semantic affective dimensions [33]. Compared to
the categorical emotion model, the dimensional model is
more convenient when dealing with research on facial ex-
pressions since blended facial expressions as well as facial
expressions’ intensities can be better represented.

With regard to mimicry there are various attempts in ex-
tending an agent’s or robot’s behavior to mimicking hu-
man’s facial or multimodal expressions. The works of Cari-
dakis et al. [6] and Courgeon et al. [12] consist of perceiv-
ing, interpreting, planning, and then animating the multi-
modal expression of the human. In [6] video recorded hu-
man’s facial expressions and gestures are processed and
analyzed. From an expression recognition module, Facial
Animation Parameters (FAPs) are derived and expressed by
the agent’s face (the gesture’s symbolic name is not being
derived from the expression recognition module thus the
gesture is manually communicated to the agent). Five ex-
pressivity parameters related to the movement’s spatial vol-
ume, speed, energy, fluidity, and repetitivity are extracted
from analyzing the image data and used to affect the quality
of the agent’s expressive behavior. In [12] from user’s ac-
tion on a 3D device (Joystick), a modulated target in PAD-
space is computed and integrated with the output of a fa-
cial expression recognition module. The facial expression
mirrored by the agent correspond to a blend of emotions
derived from a modulated target in PAD-space and from
combining facial expression recognition rates of seven ba-
sic emotions. Breazeal et al. [5] primarily concentrate on
the imitation task related to mimicry. They explore how im-
itation as a social learning and teaching process contributes
to building socially intelligent robots. The robot identifies
one of the basic emotions as emotion related to the imitated
facial expression and uses this information to link new fa-
cial expressions with emotion labels.

A common characteristic among these works is that they
mainly investigate the function of how the agent or robot
is better enabled to learn reproducing or mirroring humans’
facial expressions. In contrast, in our work we aim at prin-
cipally exploring how the changes in the facial musculature
of the agent while imitating a facial expression can induce
changes in its emotional state. That is, based on the rich face
repertoire provided by the empirical study, we aim at devel-
oping a system of backward mapping AUs displaying an
emotional facial expression on PAD-values since the inten-
sity of an emotion as well as comparing different emotions
is better measured by real numbers.

3. Pleasure-Arousal-Dominance Driven Facial
Expression Simulation

In this section the expressive output component for ani-
mating the virtual human’s facial actions modeled following
FACS [16] and the control architecture for simulating emo-



tional facial expressions with PAD-values are presented.

3.1. Implementing the Facial Action Coding System
in a Virtual Human’s Face

Since every facial movement emerges from contract-
ing different facial muscles, Ekman and Friesen [14] ar-
gue that a comprehensive expression coding system could
be obtained by discovering the impact of muscle contrac-
tion on changing the visible appearance of the face. Thus
based on an anatomical analysis of the facial behavior they
introduced a method called Facial Action Coding System
(FACS) to describe any facial movement with anatomically
based Action Units (AUs). AUs are the core elements of
FACS describing the contraction of single or multiple fa-
cial muscles (46 AUs) as well as eye and head movements
(12AUs).

FACS is the most commonly used expression coding
system in the behavioral sciences since it allows human
observers measuring facial behavior in terms of visually
observable facial muscle actions. Furthermore, new ap-
proaches to automated facial expression analysis attempt at
recognizing AUs from a human face since detection of AUs
allows a more flexible and versatile interpretation of facial
expressions. That is, the interpretation is not restricted to
recognizing the emotional states related to a facial expres-
sion, but also the related mental cognitive states can be rec-
ognized [1] [17] [28] [35].

Hence the virtual human Emma’s face is modeled fol-
lowing FACS [16]. The implementation of AUs in Emma’s
face was performed at the Department of Anthropology at
the University of Vienna with the help of experienced FACS
coders [22]. Emma’s face replicates 44 AUs including 34
AUs representing 9 upper face units and 25 lower face units.
The remaining AUs represent head and eye units. The AUs
are implemented directly on the head mesh at their maxi-
mum contraction. The appearance of Emma’s face (see Fig-
ure 1) was designed by using front and side photographs of
a real woman’s face.

AU4+AU15+AU17+AU43AU6+AU12+AU25

Figure 1. Emma’s face with two example facial expressions:
Happy and Sad.

3.2. Reconstructing Facial Expressions in Pleasure-
Arousal-Dominance Space

The following empirical study [22] consists of human
participants rating randomly generated facial expressions of
the virtual human Emma with the bipolar adjectives from
the ”Semantic Differential Measures of Emotional State or
Characteristic (Trait) Emotions” [29] (translated into Ger-
man). As result a face repertoire of about 6000 faces ar-
ranged in PAD-space with respect to two dominance values
(dominant vs. submissive) was obtained. In the following
sections the methods for generating the face repertoire are
reported.

3.2.1 Empirical Study

The empirical study took place at the Biozentrum of the Uni-
versity of Vienna in Austria. A total of 3517 randomly gen-
erated facial expressions were rated by 353 adults ranging
between 18 and 65 years of age. 1418 (40.3%) of the faces
were rated by 142 male subjects and 2099 (59.7%) of the
faces were rated by 211 female subjects. Each of the sub-
jects rated respectively 10 facial expressions with a German
translation of bipolar adjectives from the ”Semantic Differ-
ential Measures of Emotional State or Characteristic (Trait)
Emotions” [29]. Each facial expression was rated with 18
bipolar adjectives on a 1 to 7 Likert-Scale. Following [30]
each group of 6 bipolar adjectives is used to represent one
of the dimensions of pleasure, arousal, or dominance.

A face randomizer program allowed randomly altering
the intensities of the activations of single AUs. For gener-
ating random facial expressions the following rule was ap-
plied: Among 44 AUs chose randomly 10 AUs with random
intensities between 0% and 50% from overall intensity. By
this rule the generation of unnatural exaggerated faces is
avoided. Furthermore constraint-based blending rules fol-
lowing Wojdel et al. [36] were applied in order to avoid
generating anatomically impossible faces. These rules in-
clude dominance, exclusion, and opposition rules first intro-
duced by Ekman and Friesen in [14] and implemented later
by Wojdel et al. [36]. The faces were visualized and pre-
sented to subjects in POSER 6 (Curious Labs, Santa Cruz,
CA). As reference face the neutral face was blended as tran-
sition between two presented faces.

3.2.2 Methods and Results

A principal component analysis with varimax-rotation was
conducted on the rating adjectives (N = 3482) and yielded
as expected a three factor solution. The first factor is the
dominance factor, which explains 25.0% of variance, the
second factor is the pleasure factor, which explains 22.5%
of variance, and the third factor is arousal with 19.2% of
variance. Further analysis of the data was restricted to con-



sidering these three factors and their correlation with AUs’
activation. A multiple multivariate linear regression was
performed on all AUs with each of the three factors. The
multiple linear regression shows that most of the AUs (26
AUs) correlate (r = 0.505, N = 3482, p < 0.01) with either
negative or positive pleasure. AU25, AU12, AU13, AU14,
AU34, AU55, AU24, AU26, AU22, AU30 left, AU27,
AU51 and AU18 correlate with positive pleasure. AU4,
AU64, AU15, AU43, AU1, AU10, AU63, AU17, AU54,
AU9 and AU33 correlate with negative pleasure. 18 AUs
correlate (r = 0.387, N = 3482, p < 0.01) with either nega-
tive or positive dominance. AU4, AU9, AU43, AU2, AU27,
AU31, AU53, AU24, AU54, AU38, AU55, AU23 and AU29
correlate with positive dominance. AU1, AU61 and AU62
correlate with negative dominance. 10 AUs correlate (r
= 0.557, N = 3482, p < 0.01) with either high or low
arousal. AU64, AU27, AU25, AU2, AU61, AU62, AU5,
AU16 and AU31 correlate with high arousal. AU43, AU63,
AU56, AU55, AU18, AU34 and AU54 correlate with low
arousal. Furthermore a two dimensional regression analy-
sis of AU activation with two of the three factors was per-
formed with a LOESS-regression (cf. [10], [11]). As re-
sult 3 dimensional non linear regression planes for each AU
in the pleasure-arousal, pleasure-dominance, and arousal-
dominance space were obtained. Furthermore regression of
pleasure and arousal was calculated for those faces that had
been rated positive concerning dominance and those that
had been rated as showing negative dominance (e.g., see
Figure 2 ). Since the PA-space is a continuous space, the AU
intensity values of new faces can be interpolated in the re-
gression planes, e.g., using splines. By combining all planes
for all AUs’ activations the facial expression corresponding
to each point in the space can be recomposed and a facial
expressions’ control space is reconstructed (see Figure 3).

Figure 2. The regression plane of AU12 in PA-space for high domi-
nance. The maximum intensity of AU12 correlates with high plea-
sure.

Arousal

Pl
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Figure 3. The resulting face repertoire in PA-control space for high
dominance. In the middle is the neutral face. At the corners
the faces corresponding resp. to high-low and negative-positive
arousal and pleasure are shown (head and eye units are not in-
cluded here).

3.2.3 Discussion

The visualization of the resulting face repertoire shows
quite accurate facial expressions (e.g., see Figure 3) since
AUs occuring in expressions of positive emotion charac-
terize positive pleasure, e.g., AU12 and AU25. Negative
pleasure is expressed essentially through AU4, AU15, AU1,
AU17, and AU10 which occur mostly in faces expressing
negative emotions. High arousal is characterized by AU25,
AU27, and AU5. Low arousal is primarily expressed by
AU43. High dominance is expressed essentially by AU4
and AU9 and negative dominance is characterized by AU1.
AU25 and AU27 characterize both high and low dominance.
Lance and Marsella [25] found that during gaze shifts head
pitch is significantly related to dominance. That is, head
turns upwards indicate high dominance and head turns
downwards indicate low dominance. Compared to this, the
multiple linear regression shows that in our data head pitch
(AU53/AU54) correlates with high dominance. This might
be explained by lacking motion (dynamics) while display-
ing static facial expressions to the subjects. Another argu-
ment might be the occurence of AU54 with AUs showing
high dominance (e.g., AUs showing anger). In their anal-
yses Lance and Marsella [25] only concentrate on the re-
lationship of dominance and arousal with head movement
during gaze shifts, thus it would be interesting to find out if
including pleasure would influence the rating of head pitch
with respect to dominance.

The study outlined in this paper has a general caveat. In
the case of randomly generated faces no rule as to which
AUs can really occur together in spontaneous human facial



expressions is followed. Furthermore the facial expressions
were displayed statically with lacking contextual informa-
tion. This makes the rating process more difficult and some-
times conflicting. Moreover the neutral face was also rated
by 10 subjects. Most of them perceived the neutral face as
aroused and negatively pleased (this was taken into account
in the statistical analysis of the data).

3.3. Facial Expression Simulation through a Virtual
Human’s Emotion Dynamics

As mentioned in the introduction (see Section 1) the vir-
tual human Emma is the female ’counterpart’ to the virtual
human Max [24]. As Max, Emma also has a cognitive ar-
chitecture composed of an emotion simulation module [3]
and a Belief-Desire-Intention (BDI) module [27]. The emo-
tion simulation module has as inputs values of emotional
valences. These values are either positive or negative and
originate from perceiving, through sensory input, positive
or negative stimulus, or from the deliberative component of
the BDI module, e.g., achieving a desired goal is rewarded
with positive values of valence. These values drive the emo-
tion dynamics of the virtual human over time. At each point
in time, the emotion simulation system outputs values of
pleasure, arousal, and one of two possible values of domi-
nance (dominant vs. submissive). Using the face repertoire
resulting from the empirical study each PAD-value output
by the emotion simulation system over time is expressed by
its corresponding face in the face repertoire thus relating the
facial expression dynamically to a virtual human’s emotion
dynamics.

4. Towards Facial Mimicry for a Virtual
Human

As previously mentioned in Section 3.1 approaches in
facial expression analysis [1] [17] [28] [35] attempt at
recognizing AUs from a human face to obtain a more flex-
ible and versatile interpretation function of facial expres-
sion. By these approaches laborious facial expression imi-
tation learning methods for reproducing and mirroring hu-
mans’ facial expressions can be avoided when the agent’s
or robot’s face is modeled following FACS.

[1] and [19] are developing a system of facial expression
analysis with AU recognition in spontaneous expressions
since spontaneous expressions occur more frequently in
everyday interaction. Following neuropsychological studies
(cf. [18]) Bartlett et al. [1] state the importance of analyzing
spontaneous facial expressions as they differ from posed fa-
cial expressions in their dynamics and in which muscles
are moved. Spontaneous (involuntary) facial expressions
are initiated subcortically and are characterized by fast and
smooth onsets with different facial muscles (AUs) peaking
simultaneously, while posed (voluntary) facial expressions

are initiated cortically and are characterized by slow and
jerky onsets with different facial muscles more often not
peaking simultaneously.

Because currently we do not have data at hand from a
system of facial expression analysis as described above, the
starting point of our conception to realize facial mimicry is
a vector of AUs’ intensities available from simulating AUs
expressing emotion with the virtual human Emma’s face.
In a first investigation of the idea of developing a system of
backward mapping AUs displaying an emotional facial ex-
pression on PAD-values, we start up with some assumptions
in order to reduce the complexity of this task. First we as-
sume that the simulated facial expression has the same char-
acteristics as a spontaneous facial expression. That is, the
facial expression has a fast and smooth onset with different
AUs peaking simultaneously. And second, PA-courses re-
lated to facial expression onset are output by the system. In
this paper only PA-courses for different patterns (AU com-
binations) of the basic emotions Happy and Angry are pre-
sented.

In this first investigation, the task of deriving the
PA-courses related to onset of simulated AUs expressing
emotion is modeled as a coarse nearest neighbor search
problem in multiple dimensions. Since each face in the
face repertoire is a combination of different AUs with
different intensities, each face can be represented as
a multidimensional vector of AUs’ intensities. Using
a Euclidean metrical distance function the face vector
including the most similar AUs’ intensities to given
AUs’ intensities is extracted and the PA-values related to
this face vector are returned as the predicted PA-values.
That is, given a vector of intensities of simulated AUs,
fsim =< isim(AUi1), isim(AUi2), ..., isim(AUik

) >∈ Rk,
{i1, i2, ..., ik} = ID ⊆ AI , AI is the set of over-
all AU Identifiers and a repertoire of faces ar-
ranged in PA-space, FR = {f1f2...fm} with
ffr =< ifr(AUj1), ifr(AUj2), ..., ifr(AUjl

) >∈ Rl,
1 ≤ fr ≤ m, {j1, j2, ..., jl} = AI , then the function of
returning the face from face repertoire (FR) including the
most similar AUs’ intensities to the given AUs’ intensities
can be described as

argminffr∈FR{dist(fsim, ffr)} = fmin (1)

with fmin ∈ FR and fmin including the most similar AUs’
intensities to the given AUs’ intensities. The function dist
is defined as follows

dist(fsim, ffr) =
∑

e∈ID

√
(isim(AUe)− ifr(AUe))2 (2)

During activation of the AUs simulated with the virtual
human Emma’s face the values of increasing AUs’ inten-
sities are sequentially processed with the function argmin



(1) thus getting the PA-courses related to facial expression
onset.

In order to reduce the dimension of the search space,
only faces from face repertoire arranged in PA-space of
highest dominance with values of positive pleasure and high
arousal, and negative pleasure and high arousal are consid-
ered to respectively calculate the PA-courses related to the
onsets of the facial expressions Happy and Angry. This is
since the emotions Happy and Angry correlate with respec-
tively positive and negative pleasure values, high arousal
values, and positive dominance values (cf. [33]).

The PA-regression planes of each AU are freeforms
showing a nonlinear course with different local maxima and
minima of AUs’ intensities within the PA-space, e.g., see
Figure 2. This makes the task of backward mapping AUs
displaying an emotional facial expression on PA-values am-
biguous in that given AUs’ intensities can be mapped on
multiple PA-values. Nevertheless, in this first investigation
with the coarse nearest neighbor search function, an overall
increase in the values of pleasure and arousal is recorded
from onsets of different patterns (cf. [16]) of the facial ex-
pression Happy, (AU6, AU12), (AU6, AU12, AU25), and
(AU12, AU25). An overall decrease in pleasure and in-
crease in arousal is recorded from onsets of different pat-
terns (cf. [16]) of the facial expression Angry, (AU4, AU5,
AU7, AU10) and (AU4, AU5, AU7, AU10, AU27), (e.g.,
see Figure 4). The PA-courses show more jerky patterns in
the interval [0, 0.3] of increasing intensities. This is due
to the coarse nearest neighbor classification that returns ex-
actly one nearest neighbor and thus, currently, can not han-
dle the ambiguity decribed above. A smoother course of
PA-values can be recorded by searching for the k-nearest
neighbor with more adequate PA-values.

5. Conclusion and Future Work
Based on statistical and reverse engineering methods a

control architecture for simulating a virtual human’s facial
expressions with PAD-values was devised. As result of an
empirical study with 353 adult human participants rating
randomly generated facial expressions modeled following
FACS [16], a repertoire of faces arranged in PAD-space
was obtained and integrated in the virtual human’s cognitive
architecture. Based on the face repertoire resulting from
combining the regression planes of all AUs, a first inves-
tigation of backward mapping AUs displaying emotion to
PAD-values using a nearest neighbor search function was
introduced. Since the AUs in each considered facial expres-
sion of the emotions Happy and Angry are activated with
the same intensity values thus having the same values of
apex, as a next step we aim at altering these values of apex
in order to better investigate the impact of each AU on the
PA-courses. Furthermore the PA-courses of different AU
combinations of additional basic emotions such as Sad and

Figure 4. Plots of Pleasure and Arousal (PA) courses, showing
pleasure over AU intensity (left) and Arousal over AU inten-
sity (right). The upper plots show PA-courses corresponding to
AU6+AU12. The lower plots show PA-courses corresponding to
AU4+AU5+AU7+AU10. The AUs of each facial expression are
activated with the same intensity values.

Fearful will be investigated. In future work we aim at inves-
tigating the impact of Emma’s simulated facial expressions
while interacting with a human partner. Our long term ob-
jective is to enable our virtual human Emma to predict PAD-
values while mimicking perceived facial expressions and to
use these values to adjust her subsequent behavior during
interaction.
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