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Abstract—Timely mental stress detection can help to prevent
stress-related health problems. The aim of this study was to
identify those physiological signals and features suitable for de-
tecting mental stress in office-like situations. Electrocardiogram
(ECG), respiration, skin conductance and surface electromyo-
gram (sEMG) of the upper trapezius muscle were measured
with a wearable system during three distinctive stress tests. The
protocol contained stress tests that were designed to represent
office-like situations. Generalized Estimating Equations were
used to classify the data into rest and stress conditions. We
reached an average classification rate of 74.5%. This approach
may be used for continuous stress measurement in daily office
life to detect mental stress at an early stage.

I. INTRODUCTION

Stress is a major and increasing problem in today’s society.

Stress, depression and anxiety together are the second most

frequently occurring work-related health problems in Europe.

Of sickness absences of one month or more, 25% is caused

by stress, depression or anxiety [1]. In the US, 30-40% of

employees report their job as stressful and the number of lost

work days due to anxiety, stress, and neurotic disorders is four

times higher than other nonfatal injuries and illnesses [2].

Stress activates the Sympathetic Nervous System (SNS) [3].

Activation of the SNS induces various reactions in the body,

including increases of sweat production, heart rate and muscle

activation [4], [5]. Chronic mental stress results in chronic

SNS activation and this can cause health problems such as

hypertension, cardiovascular diseases, increased likelihood of

infections and depression [3], [6], [7].

Stress-related health problems could be prevented by de-

tecting stress at an early stage, but stress needs to be assessed

in an objective and quantitative way. One approach to detect

mental stress is by measuring relevant physiological parame-

ters, such as muscle tone, heart rate, heart rate variability, skin

conductance and eye pupil diameter; see for example [8]–[11].

Combinations of several features from these physiological

parameters differentiate between stressful and non-stressful sit-

uations; see for example [11]–[16]. These studies all measure

signals in ‘stressful’ situations such as the Stroop test, mental

arithmetic, movie and sound fragments, and car driving. We

think daily office work stress often involves solving problems

under time pressure and working in a team, trying to beat

competitors. We tried to mimic these stressors with our newly

developed test protocol that consists of problem solving puzzle

tasks and a memory task done in team effort.

Previously, we reported on the reaction of the trapezius

muscle surface electromyography (sEMG) signal, from now on

referred to as electromyography (EMG), on our protocol [17].

In our study, we collected four physiological signals that can

be measured noninvasively and with small, wearable sensors:

electrocardiogram (ECG), skin conductance (SC), respiration

and EMG of the trapezius muscles. The goal of the current

study was to identify those physiological signals and features

that show the most distinct reaction to the various mental stress

situations in our protocol.

Many studies apply statistics to their data to investigate

significant differences between the various conditions of their

protocols. However, we use classification to actually classify

the data points into one of the conditions. This approach is

more relevant for stress detection on an individual basis in the

future. It is relevant to know if an individual using a stress

detection system is stressed, rather than knowing if there are

differences between a group of stressed persons and a group

of non-stressed persons.

The main contributions of this paper are as follows: (i) we

propose a set of nine physiological features, from four differ-

ent physiological signals, contributing to the stress response;

(ii) we demonstrate the possibility to classify mental stress

from rest conditions using these features; and (iii) we show

evidences that the four physiological signals all contribute to

the identification of stress in a robust manner.

II. METHODS

A. Experimental protocol

The experimental protocol is only discussed briefly here.

For a detailed description of the protocol, and a validation that
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Fig. 1. Experiment room

stress was actually induced, based on questionnaire answers,

the reader is referred to [17].

A total number of 30 subjects were recruited for the

experiment. Subjects had to be aged 18 or older and English-

speaking. Subjects with muscle disease, cardiac problems or

mental disorders such as depression or anxiety were excluded.

The ages of the subjects ranged from 19 to 53 (mean =

33.1; SD = 7.9); 25 subjects were male and 5 were female.

All subjects were right-handed. Although there are some

indications that women and men react differently to stress

(e.g. [18]), the subject group was too small to investigate the

differences between men and women. Therefore the subject

group was analyzed as a whole.

The test was performed via a PC in a quiet room with as

few distractions as possible (Fig. 1). The subject had a mouse

and keyboard available for completing the questions and tests

involved in the protocol. The sounds involved in the protocol

were played through headphones. A video camera was set up

in the room to suggest that the subject would be videotaped

during the protocol.

We developed an experimental protocol to study phys-

iological responses to stress situations similar to stressors

encountered in daily office life. The experimental protocol is

illustrated in Fig. 2.

In the initialization phase of the protocol, the subject

answered some general questions and completed the perceived

stress scale (PSS) questionnaire [19]. Then a rest period

was scheduled and the subject completed the first self-report

questionnaire. In this questionnaire, the subject indicated

his/her emotional state on visual analogue scales (VAS) by

answering 10 questions about 10 different discrete emotions.

The scales ranged from ‘not at all’ to ‘extremely’. One of

the emotions was ‘stressed’. Then the subject performed a

reference contraction of the shoulder muscles, followed by

another rest period and questionnaire.
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Fig. 2. Schematic overview of the procedure of the stress experiment. The
procedure starts with an initialization phase. The stress phase consists of three
different stress conditions, with rest periods and self-report questionnaires
scheduled in between. PSS: Perceived Stress Scale

In the stress phase, every subject was exposed to three

different stress conditions: a calculation task (the Norinder

test [20], 2:30 min), a logical puzzle task (3:00 min) and a

memory task (approximately 5:00 min). All three tasks were

done under time pressure and with distracting news fragments

that were played through headphones. Social pressure was

induced in the memory task by telling the subjects that their

performance would be included in a group result and published

to colleagues afterwards. To invoke extra stress, the subject

was recorded on video during the memory task as well. It was

told that this was done for analysis after the experiment. The

order of the three tests was randomized among the subjects to

minimize crossover effects. Two-minute resting periods were

scheduled in between the stress conditions to let the subject

return to baseline physiological and psychological states. The

subject heard classical music during these periods. There

was some physical activity involved in the rest periods that

consisted of typing numbers on the keyboard. This activity was

similar to the expected activity during the stress conditions.

Self-report questionnaires had to be completed both before and

after each stress and rest condition. The results of these self-

reports were used to validate that we actually induced stress

with our protocol; for details see [17].

The entire experimental protocol was implemented in a

MATLAB interface. Once the interface was started, the whole

experiment proceeded automatically for about 40 minutes, un-

til the subject finished the last questionnaire. Automated event

marking allowed accurate mapping of the various conditions

on the recorded signals.

B. Physiological Recordings

The physiological signals were recorded with a wireless

body sensor network based on the body area network platform

developed within the Human++ program in Holst Centre/imec
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[21]. The body sensor network facilitated synchronization of

all sensors and accurate mapping of the different phases of

the test protocol on the signals. Signals were recorded on a

micro SD card. One-lead ECG and respiration were recorded

at a sampling frequency of 250 Hz using a wireless chest

belt. A wireless hand sensor recorded SC with a sampling

frequency of 100 Hz. Bipolar EMG signals were measured

from the upper trapezius muscles of both shoulders. Two

electrodes were placed on the trapezius muscles in the position

as described by SENIAM [22]. A reference electrode was

placed on the spinous process of vertebra C7. The electrodes

were connected to wireless EMG sensor nodes recording at

1000 Hz. More details about the procedure of EMG recording

can be found in [17].

C. Signal Processing and Feature Extraction

An overview and description of the features that were

calculated from the measured signals is shown in Table I. The

features were chosen based on literature on stress detection

from physiological signals (see for example [11], [13]–[15],

[17]). All signal processing was done using MATLAB.

LF, HF, and LFHF were calculated after applying a Hann

window on the interpolated heart rate signal. For details on

the calculation of SCdiff2 and OPD, see [13]. RespFreq was

determined as the main frequency component of the power

spectral density of the respiration signal. EMG features were

calculated from the signals of the left shoulder. The subject

gave all PC input during the protocol using the right hand.

The left arm did not move at all during the entire protocol

and therefore no movement interference was expected in the

EMG signals from the left side. Details on the calculation of

the EMG related features can be found in [17].

Because large variability in physiology between the subjects

is expected, the feature values were normalized first. The fol-

lowing procedure was followed. All features were calculated

over a sliding window of 120s that moved over the signals.

The length of the window was equal to the length of the

shortest condition: the two-minute rest condition. For most

of the features, the window moved in steps of 1s. We believed

that a smaller step size would not have led to more accurate

results, because we assume that stress levels are not changing

within fractions of seconds. For heart rate (HR) and standard

deviation of interbeat intervals (SDNN) the window moved

from beat to beat. For every position of the window, one value

was calculated for each feature for that particular time window.

The obtained feature values were normalized by calculating

the z-score as follows:

z =
(x− x̄)

s
(1)

With x being the original feature value, z the normalized

value, and x̄ and s the mean and standard deviation of the

feature values over the entire recording, respectively.

After this normalization step, we chose to analyze one aver-

age value per rest or stress condition and not to investigate the

variability of the feature values during the various conditions.

For rest conditions, we used the normalized value for the 120s

time window exactly overlapping the rest condition. The stress

conditions all lasted longer than 120s. We assumed that stress

would build up during the stress conditions and therefore used

the normalized feature values calculated over the last 120s of

these conditions for our analysis.

D. Analysis Methods

A total of 19 features were extracted from four physiological

signals. It was expected that some of these features would

show high correlations, since they are based on the same

physiological processes. This introduces redundancy in the

dataset and multicollinearity among the features. A selection

was made based on the correlations and prior knowledge

from a literature study to reduce the number of features and

construct a non-redundant feature set for further analysis.

Selecting this subset of features also reduced the number

of features that needed to be calculated from the data. In a

future application of a stress monitoring system this will save

processing time and power.

Generalized Estimating Equations (GEE) analysis was ap-

plied to the feature subset. We combined the results of the

three different stress conditions and therefore our dependent

variable is binomial; it has only two states: ‘rest’ and ‘stress’.

GEE was chosen because of the repeated measures nature

of our dataset. A GEE model with binomial distribution and

logit link function was chosen. The order of the three stress

tests was randomized, so an exchangeable working correlation

matrix was chosen. The analysis was performed using software

package “IBM SPSS Statistics 20”.

Manual backward feature selection was used to select the

best features for differentiation between the rest and stress

conditions. The selection was based on significance of the

Wald Chi-Square tests of the coefficients. In every step, the

parameter with the largest significance value was removed

from the model. While selecting features, the goodness-of-

fit statistic (Corrected Quasi Likelihood under Independence

Model Criterion) was monitored. This statistic should become

smaller after every step.

As a training set, 80% of the stress cases and 80% of

the rest cases were selected randomly. The other 20% of the

stress and rest cases were used as the test set. This splitting

procedure was done five times to check if the results obtained

with different training and test sets would be consistent.

Using the coefficients obtained by the GEE analysis, the

odds of certain normalized feature values to be measured

during a stress condition were calculated, using:

odds = e

∑
n

k=1
Bk·xk (2)

n is the number of features, Bk is the coefficient for feature

k and xk is the normalized feature value of feature k. The

probability p was then calculated from the odds as follows:

p =
odds

1 + odds
(3)
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TABLE I
OVERVIEW OF FEATURES EXTRACTED FROM THE MEASURED SIGNALS

Number Feature Extracted
from

Abbreviation Meaning

1 Heart rate ECG HR Mean heart rate

2 Standard deviation interbeat intervals ECG SDNN Mean standard deviation of the interbeat intervals

3 Low frequency heart rate variability ECG LF Heart rate variability in the 0.04–0.15 Hz band

4 High frequency heart rate variability ECG HF Heart rate variability in the 0.15–0.4 Hz band

5 LF/HF ratio heart rate variability ECG LFHF Ratio of the low and high frequency of heart rate variability

6 Skin conductance level SC SCL Mean level of skin conductance

7 Skin conductance response rate SC SCRR Mean number of skin conductance responses per second

8 Skin conductance second difference
power

SC SCdiff2 Signal power in the second difference of the skin conductance signal

9 Ohmic perturbation duration skin con-
ductance

SC OPD Relative time of responsiveness of the skin conductance signal

10 Respiration frequency Resp RespFreq Mean respiration frequency

11 RMS of the respiration signal Resp RMSResp Root mean square value of the respiration signal for estimating tidal
volume changes

12 RMS of the EMG signal EMG RMSEMG Normalized root mean square value as percentage of the EMG
reference contraction

13 Static load EMG Static 10th percentile of rank ordered EMG RMS values

14 Median load EMG Median 50th percentile of rank ordered EMG RMS values

15 Peak load EMG Peak 90th percentile of rank ordered EMG RMS values

16 Gaps/min EMG Gaprate Average number of EMG gaps per minute

17 Relative time with gaps EMG Gaptime Percentage of time in which EMG gaps occurred

18 Mean EMG frequency EMG MNF Mean frequency of the magnitude of the EMG frequency spectrum

19 Median EMG frequency EMG MDF Frequency at which the surface on the left side equals that of the
right side of the magnitude of the EMG frequency spectrum

ECG: electrocardiogram, SC: skin conductance, Resp: respiration, EMG: electromyography.

So the outcome of the GEE procedure was a probability

between 0 and 1 for each case of being a stress condition.

With a cutoff value of 0.5, cases were classified into rest or

stress conditions.

III. RESULTS

A. Population

A number of subjects were excluded from analysis because

of poor signal quality (1 poor respiration signal, 5 poor SC

signals, 5 poor EMG signals; 9 subjects excluded), incomplete

data due to failing sensor nodes (2 subjects), or distractions

due to other people being present in the room during the

experiment (1 subject). Exclusion of these subjects left 18 full

recordings of good quality.

B. Feature Selection

The absolute correlation values among the 19 normalized

features are shown in Fig. 3. High correlations were found

for some features. For example, SDNN, LF, and HF correlate

strongly as do RMSEMG, static, median, and peak load of the

EMG signal. MNF and MDF are also highly correlated.

Based on these correlations and on prior knowledge, a

subset of 9 features was chosen that did not include absolute

correlation values higher than 0.6 between features:

HR Does not correlate strongly to any other feature

and has shown to react to stress in many other

studies (see for example [18]).
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Fig. 3. Absolute correlation values among the features. The feature numbers
correspond to the numbers in Table I.

SDNN Was chosen from the cluster SDNN, LF, HF,

LFHF. SDNN showed promising results in earlier

research [13].

SCL Does not correlate strongly with other features,

so this feature is included by itself.

SCRR Does not correlate strongly with other features,

so this feature is included by itself.
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TABLE II
GEE COEFFICIENTS C1–C5 FOR THE SELECTED FEATURES

Feature C1 C2 C3 C4 C5

HR 0.376 0.277 -0.221* 0.121 0.615

SCL 0.817* 0.871* 0.884* 0.411* 0.959*

SCdiff2 1.391* 1.406* 0.641* 0.638* 1.177*

RespFreq 1.122* 0.813* 0.525* -0.126* 1.360*

Gaptime -1.163* -1.090* -0.086 0.183* -0.895*

Intercept -0.151 -0.021 -0.045 0.082* -0.135

* p<0.05 Wald Chi-Square test

TABLE III
CLASSIFICATION RESULTS FROM GEE ON THE TEST SETS

Set 1 Set 2 Set 3 Set 4 Set 5 Average (%)

Rest 100.0 81.8 63.6 63.6 90.9 80.0

Stress 63.6 81.8 63.6 63.6 72.7 69.1

Overall 81.8 81.8 63.6 63.6 81.8 74.5

SCdiff2 Correlated strongly with OPD; SCdiff2 was cho-

sen arbitrarily from the two.

RespFreq Does not correlate strongly with other features,

and might be indicative of stress.

Peak Was chosen from RMS, Static, Median, Peak;

Peak load gave the best result from this subset

in our earlier analysis on EMG signals [17].

Gaptime Showed promising results in our earlier analysis

[17].

MNF Showed a slightly better result than MDF in our

earlier analysis [17].

C. Generalized Estimating Equations

We used a manual backward feature selection procedure to

select the best features for GEE. Four features (Peak, SCRR,

SDNN, MNF) were removed from the analysis. Removing

the fifth feature (HR), caused the goodness-of-fit statistic

to increase, so we decided to keep HR in the model. The

five selected features and their coefficients for the different

training sets are listed in Table II. The coefficients of SCL

and SCdiff2 are all positive and significant. Also the HR and

RespFreq coefficients are positive for four out of five training

sets. These results confirm the expectations that raised from

literature, suggesting that all four features are positively related

to stress. The coefficients of Gaptime are negative in four out

of five training sets. This indicates that a decrease in Gaptime

corresponds to an increase in stress level, as was expected.

Using the calculated probabilities for each case, each con-

dition was classified in a rest or in a stress condition. The

classification results for the five test sets (22 cases in each

set) are shown in Table III. There were some variations in the

results among the different test sets. On average, 80.0% of

the rest cases and 69.1% of the stress cases were classified

correctly. Overall, 74.5% of the test set cases were classified

in the correct condition.

IV. DISCUSSION

The goal of this study was to identify those physiological

features that show distinct reactions to mental stress in office-

like situations. We measured ECG, respiration, SC and EMG

signals during stress and rest conditions. We selected nine non-

correlating features from these four signals. Using GEE, we

reduced the feature set to five features and on average 74.5%

of the cases of the test set were classified correctly into a

rest or stress condition. We were able to reduce the feature

set to five features, which is an advantage, as especially in

small datasets it is preferred to use as few features as possible

to avoid the curse of dimensionality. Also, calculating fewer

features saves processing time and power, which is relevant

for a future wearable low-power stress management system.

The five features selected for GEE were spread over the

four different signals, which shows that all signals contain

information about stress. This observation points to the benefit

of multi-signal data collection and analysis. Apparently, all

signals contributed to the global stress reaction and together

facilitated robust stress detection.

In Table III, we can see that the rest cases are more often

classified correctly than the stress cases. It seems more difficult

to detect stress from physiological signals than to identify that

someone is at rest. A possible explanation can be found in the

subjective stress levels that subjects indicated during the study.

Subjects reported low stress levels during the rest conditions,

whereas during the stress conditions the reported stress levels

covered a larger range. This means that not all subjects

indicated high stress levels during the stress conditions. So

although on group level, the stress conditions were perceived

more stressful than the rest conditions (see validation of

protocol in [17]), this did not hold for every single case. In

future work, the individual subjective stress levels should be

taken into account in the analysis of the physiological data to

get to more personalized stress estimations.

Compared to other papers on classification of mental stress

situations, our classification results were relatively low. Classi-

fication accuracies of other studies we found range from 80%

[16] to 97.4% [14]. However, most other studies only used one

type of stressor in their protocols and therefore they were able

to tune their algorithms to detect the specific reaction induced

by that stressor. In our study, three different stressors were

used that were all included in the analysis. Still, an accuracy

of 74.5% was achieved in differentiating these three mental

stress conditions from rest conditions. A similar study like

ours was done by Choi et al. [12]. Their protocol consisted of

five different stress conditions, interleaved with deep breathing

relaxation periods. They used four features extracted from skin

conductance, respiration and heart rate in a logistic model

to classify between rest and stress conditions. Choi et al.

obtained a classification accuracy of 81%. We reached similar

classification accuracy for some of our test sets.

The study presented in this paper has the following limita-

tions. Our normalization method worked well for this analysis

and we obtained good classification results. However, this
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method of normalization is not practical for real-time use of

the system, because it needs a signal of several minutes in-

cluding both rest and stress conditions. Clearly, it is preferable

to have only a short calibration measurement that is sufficient

for normalization of all future recordings. A special protocol

could be developed to achieve that. Such a protocol should

include baseline recording and also a stressor to be able to

normalize for the reactivity to stress.

The entire protocol was performed in a controlled environ-

ment. To facilitate future use of a stress measurement system,

recordings should be made in uncontrolled, real-life environ-

ments. In uncontrolled environments, many factors other than

stress influence physiology. This complicates the data analysis.

We need to be able to distinguish between changes in physi-

ology due to stress and changes due to other factors. Creating

context awareness by monitoring environmental factors and

activity will be needed to deal with these factors and to be

able to identify stress levels from the physiological signals.

The classification approach we took fits the context of long-

term, real-time, continuous stress monitoring, which will be

needed for many of the future applications of stress measure-

ment. We want to be able to determine if a person is stressed

or not, at any point in time. This information can be used in

systems giving personal feedback about stress levels. We think

that GEE is a useful method to achieve this goal. It is relatively

straightforward to calculate a probability from a set of feature

values, once the coefficients are determined. In combination

with the sliding window, the calculated probabilities might be

used as a continuous measure of stress level on a scale from 0

to 1. Of course, this hypothesis will need to be validated first.

In the future, we will continue towards developing methods

for long-term physiological monitoring with real-time stress

level calculation. A small and non-obtrusive sensor system

can be used on a regular, or even daily, basis to monitor stress

levels, for example in office environments. When the stress

level can be calculated in real-time, direct feedback can be

given to the user to help him/her regulate his/her stress level

by keeping it in an optimal range.

V. CONCLUSIONS

We recorded ECG, SC, respiration and EMG signals during

a protocol designed to include realistic office-like stress situ-

ations. We used these signals for multimodal stress detection.

We achieved a classification rate of 74.5% using GEE. We

still need to overcome the physiological differences among

users and add context awareness and activity monitoring

to compensate for factors other than stress influencing the

physiology. In the end, this method can be used for long-

term, real-time, continuous stress monitoring on an individual

basis using a small and non-obtrusive sensor system. Such

a system could detect mental stress at an early stage and

therefore contribute to stress prevention at work, for example.
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