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Abstract—Affect Control Theory is a mathematical representa-
tion of the interactions between two persons, in which it is posited
that people behave in a way so as to minimize the amount of
deflection between their cultural emotional sentiments and the
transient emotional sentiments that are created by each situation.
Affect Control Theory presents a maximum likelihood solution in
which optimal behaviours or identities can be predicted based on
past interactions. Here, we formulate a probabilistic and decision
theoretic model of the same underlying principles, and show this
to be a generalisation of the basic theory. The model is more
expressive than the original theory, as it can maintain multiple
hypotheses about behaviours and identities simultaneously as
a probability distribution. This allows the model to generate
affectively believable interactions with people by learning about
their identity and predicting their behaviours. We demonstrate
this generalisation with a set of simulations. We then show how
our model can be used as an emotional “plug-in” for systems
that interact with humans. We demonstrate human-interactive
capability by building a simple intelligent tutoring application
and pilot-testing it in an experiment with 20 participants.

I. INTRODUCTION

Designers of intelligent systems have increasingly attended
to theories of human emotion, in order to build software
interfaces that allow users to experience naturalistic flows of
communication with the computer. This endeavour requires
a comprehensive mathematical representation of the relations
between affective states and actions that captures, ideally, the
subtle cultural rules underlying human communication and
emotional experience. In this paper, we show that Affect
Control Theory (ACT), a mathematically formalized theory
of the interplays between cultural representations, interactants’
identities, and affective experience [1], is a suitable framework
for developing emotionally intelligent agents. To accomplish
this, we propose a probabilistic and decision theoretic gener-
alisation of ACT, called BayesAct, which we argue is more
flexible than the original statement of the theory for the
purpose of modelling human-computer interaction. The key
contributions of this theory are: (1) to represent emotions
as probability distributions over a continuous space; (2) to
allow affective identities to be dynamic and uncertain; (3) to
endow agents with the ability to learn affective identities of
their interactants; and (4) to introduce explicit utility functions
that parsimoniously tradeoff emotional and propositional goals
for a human-interactive agent. This final contribution is what
allows BayesAct to be used in human-computer interaction: it
provides the computerised agent with a mechanism for pre-
dicting how the affective state of an interaction will progress

(based on Affect Control Theory) and how this will affect the
object of the interaction (e.g. the software application being
used). The agent can then select its strategy of action in order
to maximize the expected values of the outcomes based both
on the application state and on its emotional alignment with the
human. The main contribution of this paper is of a theoretical
nature, demonstrated in simulation. We have also implemented
the theory in a simple tutoring system, and we report the
results of an empirical survey and pilot study with humans.

II. BASIC MODELS

A. Affect Control Theory
Affect Control Theory (ACT) is a comprehensive social

psychological theory of human social interaction [1], propos-
ing that peoples’ social perceptions, actions, and emotional
experiences are governed by a psychological need to minimize
deflections between culturally shared fundamental sentiments
about social situations and transient impressions resulting from
the dynamic behaviours of interactants in those situations.

Fundamental sentiments f are representations of social ob-
jects, such as interactants’ identities and behaviours, as vectors
in a three-dimensional affective space, hypothesised to be a
universal organising principle of human socio-emotional expe-
rience [2]. The basis vectors of affective space are called Eval-
uation/valence, Potency/control, and Activity/arousal (EPA).
EPA profiles of concepts can be measured with the semantic
differential, a survey technique where respondents rate affec-
tive meanings of concepts on numerical scales with opposing
adjectives at each end (e.g., good, nice vs. bad, awful for E,
weak, little vs. strong, big for P, and calm, passive vs. exciting,
active for A). Affect control theorists have compiled databases
of a few thousand words along with average EPA ratings
obtained from survey participants who are knowledgeable
about their culture [3]. For example, most English speakers
agree that professors are about as nice as students (E), however
more powerful (P) and less active (A). The corresponding EPA
profiles are [1.7, 1.8, 0.5] for professor and [1.8, 0.7, 1.2] for
student (values range by convention from −4.3 to +4.3 [3]).
In general, within-cultural agreement about EPA meanings of
social concepts is high even across subgroups of society, and
cultural-average EPA ratings from as little as a few dozen
survey participants have been shown to be extremely stable
over extended periods of time [3].

Social events can cause transient impressions τ of iden-
tities and behaviours that deviate from their corresponding



fundamental sentiments f . ACT models this formation of
impressions from events with a minimalist grammar of the
form actor-behaviour-object. Consider for example a professor
(actor) who yells (behaviour) at a student (object). Most
observers would agree that this professor appears considerably
less nice (E), a bit less potent (P), and certainly more aroused
(A) than the cultural average of a professor. Such transient
shifts in affective meaning caused by specific events can be
described with models of the form τ = M f , where M
is a matrix of statistically estimated prediction coefficients
from empirical impression-formation studies. In these studies,
survey respondents rated EPA affective meanings of concepts
embedded in a few hundred sample event descriptions such
as the example above [1]. In ACT, the weighted sum of
squared Euclidean distances between fundamental sentiments
and transient impressions is called deflection (weights: wi):

D =
∑
i

wi(fi − τi)2, (1)

Affective Deflection is hypothesised to correspond to an
aversive state of mind that humans seek to avoid. ACT is
thus a variant of psychological consistency theories, which
posit in general that humans strive for balanced mental rep-
resentations whose elements form a coherent Gestalt [4],
[5]. In cybernetic terminology, deflection is a control signal
used for aligning everyday social interactions with implicit
cultural rules and expectations [1]. For example, advising a
student corresponds much better to the cultural expectation
of a professor’s behaviour than yelling at a student. Corre-
spondingly, the deflection for the former event as computed
with the ACT equations is much lower than the deflection for
the latter event. Many experimental and observational studies
have shown that deflection is indeed inversely related to the
likelihood of humans to engage in the corresponding social
actions. For example, the deflection-minimization mechanism
explains verbal behaviours of mock leaders in a computer-
simulated business game [6] and non-verbal displays in dyadic
interactions [7], among others.

B. Partially Observable Markov Decision Processes

A partially observable Markov decision process
(POMDP) [8] is a general model of stochastic control
that has been extensively studied in operations research and
in artificial intelligence. A POMDP consists of a finite set
X of states; a finite set A of actions; a stochastic transition
model Pr : X × A → ∆(X), with Pr(x′|x, a) denoting the
probability of moving from state x to x′ when action a is
taken, and ∆(X) is a distribution over X ; a finite observation
set Ω ; a stochastic observation model with Pr(ω|x) denoting
the probability of making observation ω while the system
is in state x; and a reward assigning R(a, x′) to a state
transition to x′ induced by action a. A generic POMDP is
shown as a decision network in Figure 1(a) (solid lines).

The POMDP can be used to monitor beliefs about the state
using standard inference algorithms [9]. Finally, a policy can
be computed that maps belief states (i.e., distributions over
X ) into choices of actions, such that the expected discounted
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Fig. 1. Two time slices of (a) a general POMDP (solid lines) and a POMDP
augmented with affective states (dotted lines); (b) a factored POMDP for
Bayesian Affect Control Theory.

sum of rewards is (approximately) maximised. An interesting
property of POMDP policies is that they may use “information
gathering” actions. In the context of Affect Control Theory, an
agent can take actions that temporarily increase deflection in
order to discover something about the interactant, for example.

In this paper, we will be dealing with factored POMDPs in
which the state is represented by the cross-product of a set of
variables or features. Assignment of a value to each variable
thus constitutes a state. Factored models allow for conditional
independence to be explicitly stated in the model. POMDPs
have been used as models for many human-interactive do-
mains, including for intelligent tutoring systems [10], [11],
and for human assistance systems [12].

C. Basic Formulation

Bayesian Affect Control Theory (BayesAct for short) gives
us a principled way to add the emotional content to a human
interactive system by making four key additions to the basic
POMDP model, as shown by the dashed lines in Figure 1(a).
(1) An unobservable variable, Y, describes sentiments of the
agent about identities and behaviours. The dynamics of Y
is given by empirical measurements in ACT (see below).
(2) Observations Ωb give evidence about the part of the
sentiments Y encoding behaviours of the interactant. (3) The
actions of the agent are now expanded to be B = {A,Ba}.
The normal state transition dynamics can still occur based
only on A, but now the action space also must include an
affective “how” for the delivery “what” of an action. (4)
The application-specific dynamics of X now depends on
sentiments, Pr(X′|X,Y′, A), and will generally follow the
original distribution Pr(X′|X, A), but now moderated by
deflection. For example, X may move towards a goal, but
less quickly when deflection is high. We assume that time is
discrete, and agents take turns acting (so the “turn” is one
element of X). This assumption does not limit the generality
of the approach, as anything beyond simple turn-taking (e.g.
backchannel responses, interruptions) could be included in X,
and time steps are defined by the transitions therein. BayesAct
is shown as a graphical model in Figure 1(b). A fully detailed
derivation is in [13].

Let F = {Fij} denote the set of fundamental agent senti-
ments about itself where each feature Fij , i ∈ {a, b, c}, j ∈
{e, p, a} denotes the jth fundamental sentiment (evaluation,



potency or activity) about the ith interaction object: actor
(agent), behaviour, or object (client). Let T = {Tij} be
similarly defined and denote the set of transient agent sen-
timents. Variables Fij and Tij are continuous-valued. Affect
Control Theory encodes the identities as being for “actor” (A,
the person acting) and “object” (O, the person being acted
upon). In our formulation, we encode identities as being for
“agent” and “client” (regardless of who is currently acting),
and encode who is acting in X. The affective action Ba =
{Bae,Bap,Baa} is continuous-valued and three dimensional:
the agent sets an EPA value for the affective action compo-
nent, not a propositional action label. The client behaviour is
implicitly represented in the fundamental sentiment variables
Fb, and these are observed through an observations variable,
Ωb. We denote Y={F,T}, S={Y,X} and Ω={Ωb,Ωx}.

The deflection in ACT is a nine-dimensional weighted Eu-
clidean distance measure between fundamental sentiments F
and transient impressions T (Section II-A). Here, we propose
that this distance measure is the logarithm of a probabilistic
potential ϕ(f ′, τ ′) ∝ e−(f ′−τ ′)T Σ−1(f ′−τ ′). The covariance
Σ is a generalisation of the “weights” in the definition of
deflection, Equation (1) [1]. The empirically derived prediction
equations of ACT can be written as τ ′ = MG (f ′, τ ,x)
where G is a non-linear operator that combines τ , f ′, and
x, and M is the prediction matrix (see Section II-A and
[1]). Thus, we write ϕ(f ′, τ ′) ∝ e−ψ(f ′,τ ,x), where ψ is
the deflection between fundamental and transient sentiments:
ψ(f ′, τ ,x) = (f ′ −MG (f ′, τ ,x))TΣ−1(f ′ −MG (f ′, τ ,x)).

The probability distribution over fundamental sentiments,
θf (f ′; f , τ ,x,ba) = Pr(f ′|f , τ ,x,ba,θf ), can be derived
using the ϕ potential1:

Pr(f ′|f , τ ,x,ba, ϕ) ∝
∫
θf ,τ ′

Pr(θf , f
′, f , τ ′, τ ,x,ba, ϕ)

= e−ψ(f ′,τ ,x)
[
EPr(θf |x)(θf )

]
(2)

The first term is a distribution over f ′ that represents our
assumption of minimal deflection, while the second is the
expected value of the parameter θf given the prior. This
expectation will give us the most likely value of θf given only
the system state x. We know two things about the transition
dynamics (θf ) that we can encode in the prior. First, we know
that the behaviour will be set equal to the agent’s action if it is
the agent’s turn (hence the dependence on x, which encodes
the turn). Second, we know that identities are not expected to
change very quickly. Therefore, we have that

EPr(θf |x)(θf ) ∝ e−ξ(f
′,f ,ba,x) (3)

where ξ(f ′, f ,ba,x) ≡ (f ′ − 〈f ,ba〉)TΣ−1
f (x)(f ′ − 〈f ,ba〉),

〈f ,ba〉 is f for the identities and ba for the behaviours and
Σf (x) is the covariance matrix for the inertia of the funda-
mentals, and including the setting of behaviour fundamentals

1We are actually postulating an undirected link in the graph between τ
and f . An easy way to handle this undirected link properly is to replace it with
an equivalent set of directed links by adding a new Boolean variable, D, that is
conditioned by both T and F, and such that Pr(D = True|τ , f) ∝ ϕ(τ , f).
We then set D = True if we have the knowledge that T and F are close
together according to ϕ(F,T), see [13]

by the agent action, and is a set of parameters governing the
strength of our prior beliefs that the identities of client and
agent will remain constant over time. Thus, Σf is a 9 × 9
block matrix with diagonal elements [I3β

2
a, I3β

2
b (x), I3β

2
c ],

where β2
a and β2

c are the variances of agent and client identity
fundamentals (i.e. how much we expect agent and client to
change their identities over time), and β2

b (x) is infinite for a
client turn and is zero for an agent turn. We therefore have:

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−ψ(f ′,τ ,x)−ξ(f ′,f ,ba,x) (4)

which is a set of multivariate Gaussians indexed by x that are
non-linearly dependent on f ,ba and τ through the matrices
K , C (refactorizations of M , G , see Appendix A):

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−(f ′−µn)T Σ−1
n (f ′−µn) (5)

where:
µn = ΣnK T (τ ,x)Σ−1C (τ ,x) + ΣnΣ−1

f (x)〈f ,ba〉

Σn = (K T (τ ,x)Σ−1K (τ ,x) + Σ−1
f (x))−1

We can now estimate what the most likely value of F′ by
computing F′∗ = arg maxf ′ Pr(f

′|f , τ ,x,ba, ϕ). Intuitively,
this expression will be maximized for exactly the behaviour
that minimizes the deflection as given by ψ, tempered by the
inertia of changing identities given by ξ (see [13]).

Identities are treated as constants when optimising the
behaviour in [1] (and similarly for identities: behaviours are
held constant). However, ACT hypothesises that the overall
deflection will be minimised. Therefore, our equations are the
exact version of the approximations in [1].

The probability distribution over transient sentiments in
BayesAct arises directly from the deterministic dynamics of
ACT, written P (τ ′|τ , f ′,x) = δ(τ ′ −MG (f ′, τ ,x)), where
δ(z) is 1 if z = 0 and is 1 otherwise. Observation functions for
the client behaviour sentiment and system state are Pr(ωb|f)
and Pr(ωx|x), respectively. They are stochastic in general, but
may be deterministic for the system state (so that X is fully
observable). The application dynamics is Pr(x′|x, f ′, τ ′, a)
as discussed above. Finally, R(f , τ ,x) is a reward function
giving the immediate reward given to the agent. We assume
an additive function R(f , τ ,x) = Rx(x) + Rs(f , τ ), where
Rx encodes the application goals (e.g. to get a student to pass
a test), and Rs ∝ −(f − τ )2 depends on the deflection.

The probability distribution over the sentiments and system
state given the history of actions and observations is computed
from the observations, agent action, and state at time t,
Ωt,Bt,St:

b(st) ≡ Pr(st|ω0, . . . ,ωt,b0, . . . ,bt)

=

∫
st−1

Pr(st, st−1|ω0, . . . ,ωt,b0, . . . ,bt)

∝ Pr(ωt|st)Eb(st−1) [Pr(st|st−1,bt)] (6)

where Pr(st|st−1,bt) factored according to Figure 1(b):
Pr(st|...) = Pr(x′|x, f ′, τ ′, a)Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba) (7)

This gives us a recursive formula for computing the distribu-
tion over the state at time t as an expectation of the transition
dynamics taken with respect to the distribution at time t− 1.



D. Computing Policies

Policies for POMDPs in general can be computed using
a number of methods, but recent progress in using Monte-
Carlo (sampling) based methods has shown that very large
POMDPs can be solved tractably, and that this works equally
well for continuous state and observation spaces [14], [15].
POMCP [15] is a Monte-Carlo based method for computing
policies in POMDPs with discrete action spaces. POMCP can
be generalised to a mixed continuous-discrete action space
for BayesAct by leveraging the fact the we can predict what
an agent would “normally” do in any state according to
the underlying Affect Control Theory: it is the action that
minimises the deflection. This normative prediction constrains
the space of actions over which the agent must plan, and
drastically reduces the branching factor of the search space.

To compute the policy, we denote the “normal” action
distribution as π†(s):

π†(s′) =

∫
f ′a,f
′
c,s

Pr(f ′|f , τ ,x, ϕ)b(s)

=

∫
f ′a,f
′
c,s

e−(f ′−µ†
n)T (Σ†n)−1(f ′−µ†

n)b(s) (8)

where µ†
n and Σ†n are the same as Equation (5) except that Σf

has β2
b (x) set to infinity (instead of zero) so the behaviour sen-

timents are unconstrained. Equation (8) computes the expected
distribution over f ′ given b(s) and then marginalises (sums)
out the identity components to get the distribution over fb. We
can make a further approximation that b(s) = δ(s∗−s) where
s∗ = {f∗, τ ∗,x∗} = Eb(s)[s] =

∫
s
sb(s) is the expected state

(or one could use s∗ = arg maxs b(s) as the most likely state).
We will denote the resulting action distribution as π†∗(s′). In
this paper, we don’t use the full POMCP solution, instead only
taking a “greedy” action that looks one step into the future
by drawing samples from the “normal” action distribution in
Equation (8) using these to compute the expected next reward,
and selecting the (sampled) action ba

†∗ that maximizes this.

ba
†∗=argmax

ba

∫
s′
Pr(s′|s∗,ba)R(s′)ds′, ba ∼ π†∗(s′) (9)

In practice we make two further simplifications: we avoid the
integration over fa and fc in Equation (8) by drawing samples
from the distribution over f ′ and selecting the f ′b components,
and we compute the integration in Equation (9) by sampling
from the integrand and averaging.

E. Sampling

To compute the belief distribution (Equation (6)), we rep-
resent b(s) using a set of samples [16]. This will allow us to
represent complex belief distributions, including multi-modal
distributions over identities, which can be very useful in cases
where the agent is uncertain about the the client identity. In
such a case, the agent can maintain multiple hypotheses, and
shift its belief to the one that agrees most with evidence from
an interaction. If si = {fi, τi, xi} and wi is the weight of the
ith sample, the belief state is b(s) ∝

∑N
i=1 wiδ(s−si), where

δ(x) =∞ at x = 0 and 0 elsewhere.

Then, we implement Equation (6) using a sequential Monte
Carlo method sampling technique, also known as a particle
filter or bootstrap filter [16], as follows. We start at time
t = 0 with a set of samples and weights {si, wi}i=1...N ,
which together define a belief state b(s0). The agent then
consults the policy to retrieve a new action ba, takes action
ba and receives observation ω, samples (with replacement)
unweighted samples from b(s) (current weights), and then
samples from Equation (7) to get b(s′i). New weights are
then computed for each sample using the observation functions
wi = Pr(ω|s′i). We also add some “roughening” white noise
(in [−σr, σr], σr = N−1/3) to the unweighted samples [16] to
deal with the sparse initial sampling of the identity space (for
unknown indentity) coupled with the underlying assumption
that the identities are very slowly changing.

We can compute expected values of quantities of interest,
such as the deflection, by summing over the weighted set of
samples d(si) =

∑N
i=1 wi(fi − τi)2.

III. EXPERIMENTS AND RESULTS

Our goal in this section is to demonstrate that BayesAct
can discover the affective identities of persons it interacts
with, and that BayesAct can augment practical applications
with affective dynamics. To establish these claims, we do the
following. First, we demonstrate analytically that BayesAct can
reproduce exactly the affective dynamics predicted by Affect
Control Theory’s original mathematical model. The analytical
derivation is done by reducing Equation (4) to the equations
in [1] (see derivation in [13]). Second, we verify that BayesAct
produces comparable simulation outcomes to Interact, the
software that implements Affect Control Theory2. To this
end, we run the BayesAct software alongside Interact and can
show that the identical sentiments and actions are generated
across a range of different agent and client identities. These
analytical and empirical demonstrations show that BayesAct
can be used as a model of human affective dynamics, since it
has been shown empirically that Interact is a close model of
human affective dynamics [6], [7]. Thus, BayesAct, as Interact,
can predict agent-client dynamics when identities are fixed.
Third, we show that if we loosen the constraints on the client
identity being known, BayesAct can go beyond Interact and
“discover” or learn this identity during an interaction with a
BayesAct client that knows the identity of the BayesAct agent.
Fourth, we show that if both agent and client do not know the
identity of their interactant, they can both learn this identity
simultaneously. Finally, we postulate that, since the agent can
learn the affective identity of its client, it can better serve the
client in an effective manner. We provide some insights into
this with a basic experiment with humans in Section III-B.

A. Simulations

We have two conditions: the client knows or doesn’t know
the identity of the agent (denoted “agent id known” and
“agent id hidden”, resp.). In both cases, the agent does not

2see indiana.edu/∼socpsy/ACT. We used the Indiana 02-04
database for identities/behaviours and the USA1978 equations for dynamics.



id-deflection
agent id known agent id hidden

N agent client(×103) agent client
5 3.8± 1.8 0.18± 0.039 4.2± 2.3 3.8± 1.3
10 2± 1.2 0.16± 0.031 2.4± 1.1 2.2± 0.98
50 0.82± 0.48 0.09± 0.033 1± 0.57 0.88± 0.57
100 0.83± 0.6 0.07± 0.039 0.76± 0.39 0.92± 0.72
250 0.61± 0.59 0.055± 0.05 0.63± 0.49 0.5± 0.21
500 0.49± 0.33 0.038± 0.02 0.57± 0.48 0.57± 0.31
1000 0.42± 0.52 0.038± 0.03 0.4± 0.21 0.44± 0.22

TABLE I
IDENTITY DEFLECTIONS (SIMULATIONS): σe = 1.0, N = NO. SAMPLES.

know the identity of the client. We run 20 trials for each
condition, and in each trial a new identity is chosen for each
of agent and client. These two identities are independently
sampled from the distribution of identities in the Interact
database and are the personal identities for each agent and
client. Then, agent and client BayesAct models are initialised
with Fa set to this personal identity, Fc (identity of the
other, if not known) set to the mean of the identities in the
database, [0.4, 0.4, 0.5], and Fb set to zeros (this is irrelevant).
The simulation runs as defined in Section II-E for 50 steps.
Agents take turns, and actions are conveyed with the addition
of some zero-mean normally distributed “environment” noise,
with standard deviation σe. Agents use Gaussian observation
models with uniform covariances with diagonal variances
γ = max(0.5, σe). To enable comparisons with Interact,
actions are selected by averaging draws of 100 samples from
Equation (8). We perform 10 simulations per trial and average
the results with βa=βc=0.001 for both agent and client.

We use id-deflection to denote the sum of squared dif-
ferences between one agent’s estimate of the other agent’s
identity, and that other agent’s estimate of its’ own identity.
Table I shows the mean (over 20 trials) of the average (over
10 experiments) final (at the end of the last step) id-deflection
for agent and client, for σe = 1.0. We see that about 100
samples is sufficient to get an estimate within about 1 in
identity deflection. Note that we are comparing the expected
values of identities which may be different than any mode.
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Fig. 2. Deflections of identities from simulations with different numbers of
samples (N), and environment noise, σe. Roughening noise: σr = N−1/3,
model noise: γ = max(0.5, σe). (a) id-deflection and (b) mean deflection

Figure 2 shows a plot of how the id-deflection and total
deflection changes with the environment noise, σe and sample
numbers N , for agent id hidden. We see that only about 100
samples are needed to get a solution that is robust to values of

σe = 2.0 in environment noise3. Surprisingly, deflection is not
as strongly affected by environment noise. This is because the
agent has a correct model of the environment noise (γ ≈ σe),
and can average the noisy measurements and come up with
a low deflection solution. The deterministic program Interact
would have more trouble, as it must “believe” exactly what it
gets (it has no model of environment noise).
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Fig. 3. (a) samples (squares) and true identities (triangles) after 7 iterations
for one trial. (b-d) Closer look at five 200 sample experiments showing id-
deflection (solid lines), total deflections (dashed lines) and deflection from
Interact in dotted black (red=agent, blue=client).

Figure 3(a) shows a sample set after 7 iterations of one
experiment, clearly showing the multimodal distributions cen-
tered around the true identities (triangles) of each interactant.
Figures 3(b)-(d) look more closely at three of the trials done
with N = 200 samples and hidden ids for both client and
agent. The red and blue lines show the agent- and client- id-
deflection (solid) and agent and client deflections (dashed),
respectively, while the black line shows the deflections using
Interact (which has the correct and fixed identities for both
agents at all times). BayesAct allows identities to change, and
starts with almost no information about the identity of the
other interactant (for both agent and client). We can see that
our model gets at least as low a deflection as Interact. In
Figure 3(b), the agent had Fa = [2.7, 1.5, 0.9], and the client
had Fa = [−2.1, −1.3, −0.2], and σe = 0 (noise-free commu-
nication). These two identities do not align very well4, and
result in high deflection when identities are known and fixed
in Interact (black line). BayesAct rapidly estimates the correct
identities, and tracks the deflection of Interact. Figure 3(c)
is the same, but with σe = 1.0. We see that BayesAct is
robust to this level of noise. Figure 3(d) shows a simulation
between a “tutor” (Fa = [1.5, 1.5, −0.2]) and a “student”
(Fc = [1.5, 0.3, 0.8]) with σe = 1.0. Here Interact predicts
larger deflections. BayesAct also gets a larger deflection, but
manages to resolve it, and identities are properly learned.

3For example, this corresponds to enough noise to make a behaviour of
“apprehend” be mis-communicated as “confide in”.

4These identities are closest to “lady” and “shoplifter” for agent and client
respectively, but recall that identity labels come from mapping the computed
EPA vectors to concepts in ACT repositories [3] and are not used by BayesAct.



B. Tutoring Application

To demonstrate the capability of BayesAct to control emo-
tionally plausible behaviours of a computer program interact-
ing with a human, we built a simple tutoring application in
which the identities for agent and client are initially set to “tu-
tor” and “student”, respectively, with low dynamics variances
of βa = βc = 0.01. The application asks sample questions
from the Graduate Record Exam (GRE) educational testing
system, and the client clicks on a multiple-choice answer. The
agent provides feedback as to whether the client’s answer is
correct. The client then has the opportunity to ”speak” by
clicking on a labelled button (e.g., ”that was too hard for
me!”). The statement maps to a behaviour from the ACT
database (e.g., ”whine”). These mappings were determined in
an empirical survey described below. The behaviour label in
turn maps to the value for Fb found in the ACT database
(in this case [−1.4, −0.8, −0.5]). BayesAct then computes an
appropriate agent action, i.e. a vector in EPA space, which
maps to a behaviour label (e.g., ”apologize”), which again
maps to a statement (e.g., ”Sorry, I may have been too
demanding on you.”).

Mappings of agent and client statements to behaviour labels
contained in the ACT database were based on an empirical
online survey. Participants were N = 37 (22 female) students
(avg. age: 30.6 years). We presented them with four blocks
of statements and behaviour labels, two blocks referring to
agent and client behaviours conditional on a correct/incorrect
answer of the client. We also asked participants to rate
the affective meaning of each statement directly using the
semantic differential [3]. The survey resulted in a list of 27
agent statements and 18 client statements for which a clear
majority of participants agreed on a mapping. We implemented
these behaviours and the corresponding mappings to behaviour
labels from the ACT database as the possible actions in
BayesAct tutoring system.

The tutor has three discrete elements of state X =
{Xd, Xs, Xt} where Xd is the difficulty level, Xs is the
skill level of the student and Xt is the turn. Xd and Xs

have 3 integer “levels” where lower values indicate easier
difficulty/skill. The tutor’s model of the student’s progress is
P (X ′s = xs|xs, f , τ ′) = 0.9 with the remaining probability
mass distributed evenly over skill levels that differ by 1
from xs. The dynamics for all values where X ′s ≤ xs are
then multiplied by (f ′ − τ ′)2/2 and renormalised. Thus,
skill level changes inversely proportionally to deflection. The
tutor gets observations of whether the student succeeded/failed
(Ωx = 1/0), and has an observation function P (Ωx|Xd, Xs)
that favours success if Xd matches Xs.The reward is the
sum of the negative deflection and Rx(x) = −(x − 2)2 and
Equation (9) is used for action selection.

We conducted a pilot experiment with 20 participants (7
female) who were mostly undergraduate students of engineer-
ing or related disciplines (avg. age: 25.8). We compared the
experiences of 10 users interacting with the BayesAct tutor
with those of 10 users interacting with a control tutor whose
actions were selected randomly from the same set as the

Survey Question BACT rand. T p
Communication was similar to a human. 2.10 1.70 0.87 n.s.
MT acted like it understood my feelings 2.80 2.00 1.92 < .05
I felt emotionally connected with MT. 2.50 2.00 1.00 n.s.
I enjoyed interacting with MT. 3.30 3.10 0.44 n.s.
MT gave awkward responses (RC) 3.44 4.50 -2.70 < .01
I found MT to be flexible to interact with. 3.00 1.90 2.18 < .05
Using MT would improve my skills. 3.40 2.00 2.49 < .05
The dialogue was simple and natural. 3.50 2.00 3.14 < .01
Overall, I am satisfied with this system. 2.70 1.70 2.34 < .05

TABLE II
USER STUDY RESULTS. T HAS DF=18 AND p IS ONE-TAILED. SCALES

RANGED FROM 1 (=NOT TRUE) TO 5 (=TRUE).
(BACT=BayesAct,MT=MATHTUTOR, RC=REVERSE-CODED)

BayesAct tutor5. Participants completed a short survey after
using the system for an average of 20 minutes. Results are
displayed in Table II. Users seemed to experience the flow
of communication with the BayesAct tutor as more simple,
flexible, and natural than with the random control tutor. The
mean deflection for BayesAct was 2.9± 2.1 while for random
it was 4.5 ± 2.2. We have to treat these results from a small
sample with caution. Future versions would need to be ex-
panded and made to better reflect actual student development.
In particular, one could expand the state space X to include
more features related to the application and student skills than
the simple 3-valued difficulty and skill levels we have used.
This would require more complex models of the transitions
in X (e.g. goals and problem dimensions [10], [11]), of the
observations of X (e.g. from sensors and sentiment mappings),
and of the dependence of the sentiments on the state.

IV. RELATED WORK

ACT has important conceptual similarities with appraisal
theories, which are a prominent psychological framework in
affective computing research [17], [18]. Appraisal theories
generally posit that emotional states are generated from cog-
nitive appraisals of events in the environment in relation to
the goals of the agent [19]. As a result, an agents’ emotions
depend more on its subjective interpretations than on the
physical features of an event. Appraisal theorists describe a
set of fixed rules or criteria for mapping specific patterns of
cognitive evaluations onto specific emotional states. The logic
of ACT is quite similar: Emotional states result from (linguis-
tic) interpretations of observed events. The EPA dimensions
of affective space can be understood as very basic appraisal
rules related to the goal congruence of an event (E), the agent’s
coping potential (P), and the urgency implied by the situation
(A). For discussion of ACT vs appraisal theories see [20].
However, ACT is also more general and more parsimonious
than many appraisal theories, since it works without explicitly
defining complex sets of rules relating specific goals and states
of the environment to specific emotions. Instead, ACT treats
the dynamics of emotional states and behaviours as continuous
trajectories in affective space. Deflection minimisation is the

5BayesAct used 500 samples, βa = βc = 0.01, and took 4 seconds
per interaction on an AMD phenom IIx4 955 3.20 GHz with 8GB RAM
running Windows 7, while displaying the words “Thinking...”. The random
tutor simply ignored the computed response.



only prescribed mechanism, while the more specific goals tied
to types of agents and situations are assumed to emerge from
the semantic knowledge in the model (i.e., the culture-specific
databases of EPA meanings of concepts). BayesAct further
allows client goals to be explicitly encoded and optimised.

Shank [21] and Troyer [22] describe experiments to gather
EPA profiles of technology or computer terms. Shank gives
positive answers to three questions about the use of Affect
Control Theory in the modelling of human interactions with
technology. He shows that people have shared cultural identity
labels for technological actors, and that they share affective
sentiments about these labels. He also shows that people view
these technological actors as behaving socially, as explored
in [23]. The answers to these questions open the doors for the
usage of ACT in technology, as we do here.

POMDPs have been used as models for intelligent tu-
toring systems [10], including with emotional states [11].
Bayesian networks and probabilistic models have also seen
recent developments [17] based on appraisal theory [19]. Our
work has demonstrated that, by operating completely in a
dimensional space, we can surmount computational issues,
assure scalability (the size only grows with the amount of state
necessary for the application, not with the number of emotion
labels), and we can explicitly encode prior knowledge obtained
empirically through a well-defined methodology [3].

V. CONCLUSIONS

This paper has presented a probabilistic and decision
theoretic formulation of Affect Control Theory called
BayesAct, and has shown its use for human interactive
systems. The paper’s main contributions are the theoretical
model development, and a demonstration that a computational
agent can use BayesAct to integrate reasoning about emotions
with application decisions in a parsimonious and well-
grounded way. In future, the measurement of EPA behaviours
and the translation of EPA actions requires further study. We
plan to develop the planning aspects, and to parallelize the
code (for which the sampling method is ideally suited). We
plan to investigate usages of the model for collaborative agents
in more complex domains, for manipulative, competitive and
therapeutic agents, and for social simulations.
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[7] T. Schröder, J. Netzel, C. Schermuly, and W. Scholl, “Culture-
constrained affective consistency of interpersonal behavior,” Social Psy-
chology, vol. 44, pp. 47–58, 2013.
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APPENDIX A
To derive Equation (5), we use symbolic indices in {a, b, c} and {e, p, a},

and define two simple index dictionaries, di and da, to map between the
symbols and numeric indices ({0,1,2}) in matrices and vectors so that,
di(a) = 0, di(b) = 1, di(c) = 2 and da(e) = 0, da(p) = 1, da(a) = 2.
Thus, we can write an element of F as Fba which will be the kth element
of the vector representation of F, where k = 3di(b) + da(p). We will use
a “dot” to represent that all values are present if there is any ambiguity. For
example, the behaviour component of F is written Fb· or simply Fb when
there is no ambiguity.

Since G only uses the behaviour component of f ′, we can group terms
together and write MG (f ′, τ ,x) = H (τ ,x)f ′b −C (τ ,x)), where H and
C are 9 × 3 and 9 × 1 matrices of coefficients that are a refactoring of the
operators MG such that a simple linear function of f ′b is obtained. If Hijk
is the element at row 3di(i) + da(j), column da(k) of H , then the sum
of all terms in row 3di(i) + da(j) of M ′G (f ′, τ ,x) that contain Bk , is
then HijkBk . Similarly, the element at row di(i) of C , Ci, is the sum of all
terms in row di(i) of M ′G that contain no B· at all. Recall that, due to our
model being over “agent” and “client”, instead of over “actor” and “object”,
the matrices H and C will change depending on the turn, swapping “agent”
and “object” in both M and G .

We can rewrite Equation (4) by defining

H =

[
Ha
Hb
Hc

]
K =

[
I3 −Ha 03
03 I3 −Hb 03
03 −Hc I3

]
where Ha ≡ Ha·· (a 3 × 3 matrix giving the rows of H in which Hijk
have i = a) and similarly for Hb and Hc. We also define I3 as the 3 × 3
identity matrix and 03 as the 3× 3 matrix of all zeros. Using K , we arrive
at the general form for ψ:

ψ(f ′, τ ,x) = (f ′ −K −1C )TK TΣ−1K (f ′ −K −1C ) (10)

Equation (4) is therefore a product of two Gaussians, itself also a Gaussian the
mean and covariance of which can be obtained by completing the squares to
find a covariance, Σn equal to the sum in quadrature of the covariances, and
a mean, µn, that is proportional to a weighted sum of K −1C and 〈f ,ba〉,
with weights given by the normalised covariances of ΣnΣ−1

τ and ΣnΣ−1
f ,

respectively, as shown in Equation (5), where Στ ≡ K −1Σ(K T )−1.


