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Abstract

Recognizing facial action units (AUs) is important for situation analysis and automated video 

annotation. Previous work has emphasized face tracking and registration and the choice of features 

classifiers. Relatively neglected is the effect of imbalanced data for action unit detection. While 

the machine learning community has become aware of the problem of skewed data for training 

classifiers, little attention has been paid to how skew may bias performance metrics. To address 

this question, we conducted experiments using both simulated classifiers and three major 

databases that differ in size, type of FACS coding, and degree of skew. We evaluated influence of 

skew on both threshold metrics (Accuracy, F-score, Cohen's kappa, and Krippendorf's alpha) and 

rank metrics (area under the receiver operating characteristic (ROC) curve and precision-recall 

curve). With exception of area under the ROC curve, all were attenuated by skewed distributions, 

in many cases, dramatically so. While ROC was unaffected by skew, precision-recall curves 

suggest that ROC may mask poor performance. Our findings suggest that skew is a critical factor 

in evaluating performance metrics. To avoid or minimize skew-biased estimates of performance, 

we recommend reporting skew-normalized scores along with the obtained ones.

I. INTRODUCTION

Our everyday communication is highly influenced by the emotional information available to 

us from other people. Recognizing facial expression is important for situation analysis and 

automated video annotation.

In the last decade many approaches have been proposed for automatic facial expression 

recognition [7], [29]. Although, previous work has emphasized face tracking and registration 

and the choice of feature classifiers, relatively neglected is the effect of imbalanced data 

when evaluating action unit detection.

In the case of facial expression data, the samples can be annotated using either emotion-

specified labels (e.g., happy or sad) or action units, as defined by the Facial Action Coding 

System (FACS) [10]. Action units are anatomically defined facial actions that singly or in 
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combinations can describe nearly all possible facial expressions or movements. Action unit 

(AU) detection, as well as expression detection of which AU detection is a subset, is a 

typical binary classification problem where the vast majority of examples are from one 

class, but the practitioner is typically interested in the minority (positive) class.

The problem of learning from imbalanced data sets is twofold. First of all, from the 

perspective of classifier training, imbalance in training data distribution often causes 

learning algorithms to perform poorly on the minority class. This issue has been well 

addressed in the machine learning literature [4], [15], [27], [26], [8] A common solution is to 

sample the data prior to training to re-balance the class distribution [2], [27]. An alternative 

to sampling is to use cost-sensitive learning. This approach targets the problem of skew by 

applying different cost matrices that describe the costs for misclassifying any particular data 

point [26], [8]. For a more detailed survey on the problem see [16] and the references 

therein.

Relatively little attention has been paid to how skew may spoil performance metrics. Facial 

expression data is typically highly skewed. Imbalance in the test data distribution might 

produce misleading conclusions with certain metrics. Percentage agreement, referred to as 

accuracy, is especially vulnerable to bias from skew. When base rate is low, high accuracy 

can result even when alternative methods rarely if ever agree [12], [14]. Agreement in that 

case is about the very large number of negative cases rather than the very few positive ones. 

Alternative metrics have been proposed to address this issue [24], [15]. Ferri et al. studied 

the relationship between different performance metrics and address the problem of rank 

correlations between them [12].

How does skewed data influence performance metrics for action unit detection? To address 

this question, we conducted experiments using both simulated classifiers and three major 

databases that include both posed and spontaneous facial expression and differ in database 

size, type of FACS coding [9], [10], and degree of skew. The databases were Cohn-Kanade 

[21], RU-FACS [13], and UNBC-McMaster Pain Archive [22].

We included a broad range of metrics that included both threshold metrics (Accuracy, F1-

score, Cohen's kappa, and Krippendorf's alpha) and rank metrics (area under the ROC curve 

[11] and precision-recall curve). With exception of area under the ROC curve, all were 

attenuated by skewed distributions; in many cases, dramatically so. Alpha and kappa were 

affected by skew in either direction; whereas F1-score was affected by skew only in one 

direction. While ROC was unaffected by skew, precision-recall curves can reveal 

differences between classifiers, because of the different visual representation of the curves. 

Very different precision-recall can be associated with same ROC.

Our findings suggest that skew is a critical factor in evaluating performance metrics. Metrics 

of classifier performance may reveal more about skew than they do about actual 

performance. Databases that are otherwise identical with respect to intensity of action units, 

head pose, and so on may give rise to very different metric values depending only on 

differences in skew. This finding has implications for testing classifiers so as to avoid or 

minimize confounds and for meta-analyses of classifier performance. Sensitivity of the 
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threshold metrics for skewed distributions could be reduced by balancing the distribution of 

datasets.

The paper is built as follows. Datasets and their properties are reviewed in Section 2. 

Theoretical components are described in Section 3. Experimental results on the effect of 

imbalanced data on performance metrics and AU classification are detailed in Section 4. 

Discussion and a summary conclude the paper (Section 5).

II. DATASETS

First, we describe the datasets (Section II.A-C). We then report findings with respect to 

skew for each AU (Section II.D).

In our simulations we used three major databases that include both posed and spontaneous 

facial expression and differ in database size, type of FACS coding, and degree of skew. The 

databases were Cohn-Kanade, RU-FACS and UNBC-McMaster Pain Archive.

A. Cohn-Kanade Extended

The Cohn-Kanade Extended Facial Expression (CK+) Database [21] is an extension of the 

original Cohn-Kanade Database [18]. Cohn-Kanade has been widely used to compare the 

performance of different methods of automated facial expression analysis. CK+ includes 

593 frontal image sequences of directed facial action tasks (i.e., posed AU and AU 

combinations) performed by 123 different participants. Facial landmarks (68-point mesh) 

were tracked using person-specific active appearance models [28]. Twenty-seven action 

units were manually coded for presence or absence by certified FACS coders. For a subset 

of 118 sequences, the seven universal emotion expressions (anger, contempt, disgust, fear, 

happy, sad and surprise) plus neutral were labeled. We used all 593 sequences for the 

current study.

B. McMaster Pain Archive

The Pain Archive [22] consists of facial expressions of 129 participants who were suffering 

from shoulder pain. The participants performed different active and passive motion tests 

with their affected and unaffected limbs on two separate occasions. The distribution has 200 

video sequences with 48398 frames from 25 participants. All of the frames were FACS 

coded for 12 AU by certified FACS coders and have frame level pain scores, sequence-level 

self-report, and observer measures. Facial landmarks (66-point mesh) were tracked using 

person-specific active appearance models [28].

C. RU-FACS Database

The version of RU-FACS available to us consisted of unscripted (i.e., spontaneous) facial 

behavior from 34 participants. Participants had been randomly assigned to either lie or tell 

the truth about an issue for which they had strong feelings. The scenario involves natural 

interaction with another person. AUs were manually coded for each video frame. Video 

from five participants had to be excluded due to excessive noise in the digitized video. Thus, 

video from 29 participants was used. Facial landmarks were tracked using a 68-point mesh 

using same AAM implementation [3].
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D. Imbalance in the Datasets

Action unit classification is a typical two-class problem. The positive class is the given 

action unit that we want to detect, and the negative class contains all of the other examples. 

Unless databases have been contrived to minimize skew, skew is quite common. Most facial 

actions have relatively low rates of occurrence. Smile controls, actions that counteract the 

upward pull of a smile (e.g., AU 14 or AU 15), occur less than 3% of the time even in a 

highly social context [25]. Thus, for action unit detection, the number of positive training 

examples will often be small, which can result in large imbalance between the positive and 

negative examples. While skew in training sets can be adjusted by under-sampling negative 

cases, skew in test sets remains.

The imbalance of this type of data can be defined by the skew ratio between the classes:

(1)

Table I shows the skew ratios of action units from the three datasets. In the small, posed CK

+ dataset, the average skew ratio is around 30. In the case of larger, spontaneous datasets the 

skew ratio is even more extreme: about 60 in the Pain Archive and over 80 in RU-FACS.

III. METHODS

We tuned high precision shape-based AU classifiers in each dataset. Details of the methods 

are presented in Section III.A.

To evaluate the effect of skew on the classifiers, we used a broad range of both threshold 

and rank metrics. These are described in Section III.B.

In Section III.C we describe random sampling methods to balance the distribution of the 

testing partition of the datasets.

A. Training AU Classifiers

Our method contains two main steps. First, we estimate 3D landmark positions on face 

images using a 2D/3D AAM method [23]. We describe the details of this technique in 

Section III-A1. Second, we remove the rigid transformation from the acquired 3D shape and 

perform an SVM-based binary classification on it using the different AUs as the class labels. 

We show this method in Section III-A2 and III-A3.

1) Active Appearance Models—As noted above, each of the datasets had been tracked 

using person-specific AAM. AAMs are generative parametric models for face alignment. A 

3D shape model is defined by a 3D mesh and in particular the 3D vertex locations of the 

mesh, called landmark points. Consider the 3D shape as the coordinates of 3D vertices that 

make up the mesh:

(2)
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or, x = (x1 ,..., xM)T, where xi = (xi, yi, zi)T. We have T samples: . We assume that 

– apart from scale, rotation, and translation – all samples  can be approximated by 

means of the linear principal component analysis (PCA).

The interested reader is referred to [23] for the details of the 2D/3D AAM algorithm.

2) Extracted Features—To register face images, 3D structure from motion first was 

estimated using the method of Xiao et al. [28]. We then extracted the normalized 3D shape 

parameters by removing the rigid transformation. Next, we performed a personal mean 

shape normalization [17]. We calculated an average shape for each subject (the so called 

personal mean shape) and computed the differences between the features of the actual shape 

and the features of the personal mean shape. This step removes within-person variation.

3) Support Vector Machine for AU Detection—After extracting the normalized 3D 

shape, we performed an SVM-based binary-class classification using each AU in turn as the 

positive class labels. Negative labels were all other AU.

Support Vector Machines (SVMs) are powerful for binary and multi-class classification as 

well as for regression problems. They are robust against outliers [1]. For two-class 

separation, SVM estimates the optimal separating hyper-plane between the two classes by 

maximizing the margin between the hyper-plane and closest points of the classes. The 

closest points of the classes are called support vectors. They determine the optimal 

separating hyper-plane, which lies at half distance between them.

We are given sample and label pairs (x(k), y(k)) with , y(k) ∈ {–1, 1}, and k = 1, ..., 

K. Here, for class 1 (class 2) y(k) = 1 (y(k) = −1). Assume further that we have a set of feature 

vectors , where M might be infinite. The support vector 

classification seeks to minimize the cost function

(3)

(4)

We used binary-class classification for each AU, where the positive class contains all shapes 

labelled by the given AU, and the negative class contains every other shapes. In all cases, we 

used only linear classifiers and also varied the regularization parameter by factors of ten 

from 10−4 to 102.

B. Performance Metrics

In a binary classification problem the labels are either positive or negative. The decision 

made by the classifier can be represented as a 2 × 2 confusion matrix. The matrix has four 

categories: True positives (TP) are examples correctly labeled as positives. False positives 
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(FP) refer to negative examples incorrectly labeled as positive. True negatives (TN) 

correspond to negatives correctly labeled as negative and false negatives (FN) refer to 

positive examples incorrectly labeled as negative. Using these categories we can derive two 

performance metrics: the precision  and the recall  values of 

the classifier. Precision is the fraction of recognized instances that are relevant, while recall 

is the fraction of relevant instances that are retrieved.

For the comparison we used both threshold metrics (Accuracy, F1-score, Cohen's kappa, and 

Krippendorf's alpha) and rank metrics (area under the ROC curve and precision-recall 

curve).

1) Threshold Metrics—The threshold metrics used in this paper are Accuracy, F1-score, 

Cohen's kappa, and Krippendorf's alpha. These metrics have a threshold level, where 

examples above the threshold are predicted as positive and the rest as negative. For these 

metrics, it is not important how close a prediction is to the level, only if it is above or below 

threshold.

Accuracy is the percentage of the correctly classified positive and negative examples:

(5)

Accuracy is a widely used metric for measuring the performance of a classifier, however, 

when the prior probabilities of the classes are very different, this metric can be misleading.

A better choice is F1-score, which can be interpreted as a weighted average of the precision 

and recall values:

(6)

Cohen's kappa is a coefficient developed to measure agreement among observers [6]. It 

shows the observed agreement normalized to the agreement by chance:

(7)

Krippendorff's α-reliability measures the observed disagreement normalized to the observed 

disagreement [19], [20]:

(8)
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2) Rank Metrics—The rank metrics depend only on the ordering of the cases, not the 

actual predicted values. As long as ordering is preserved, it makes no difference whether 

predicted values fall between different intervals. These metrics measure how well the 

positive cases are ordered before negative cases and can be viewed as a summary of model 

performance across all possible thresholds. The rank metrics we use are area under the ROC 

curve (AUC-ROC) and area under Precision-Recall curve (AUC-PR).

The ROC curve depicts the true positive rate as the function of the false positive rate, while 

the Precision-Recall curve shows the precision as the function of recall. Recall is the same 

as TPR, whereas Precision measures that fraction of examples classified as positive that are 

truly positive.

C. Skew Normalization using Random Sampling

Different forms of re-sampling such as random over- and under-sampling can be used to 

balance the skewed distribution of the test partitions of the dataset before calculating the 

performance metrics.

Random under-sampling tries to balance the class distribution through the random 

elimination of majority class examples. The major drawback of random under-sampling is 

that this method can discard examples that could be important for the performance metric.

In this paper we used random under-sampling with averaging: first, we under-sample the 

majority class, then calculate the performance metrics. We repeat the process in the function 

of the skew present in the data.

IV. EXPERIMENTS

We executed a number of evaluations to judge the influence of the skewed distributions on 

the performance metrics. Studies concern (i) simulated classifiers with given relative 

misclassification rates, (ii) the effect of the skewed distributions on performance scores 

using different databases for AU classification.

A. Experiments on Simulated Classifiers

In this experiment we simulated binary classifiers with different properties to understand the 

effect of the skew on the performance metrics better. The classifiers were different in the 

relative misclassification rate: a fixed percentage of the positive (and negative) examples 

were misclassified in proportion to the number of positive (and negative) examples. For 

example, in the ”5% case” 5% of the positive examples were labelled as false negatives 

(FN), and 5% of the negative examples were labelled as false positives (FP).

In the case of the threshold metrics, the score was calculated from confusion matrices, while 

the rank metrics were calculated by drawing random samples from Gaussian distribution 

representing the decision values of the classifiers.

Fig. 1 depicts the different metric scores in the function of the skew ratio. Skew = 1 

represents a fully balanced dataset, Skew > 1 shows that the negative samples are the 

majority, and the Skew < 1 values represent positive sample dominance in the distribution.
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With the exception of area under the ROC curve, all metrics are attenuated by skewed 

distributions. Alpha and kappa are affected by skew in either direction; whereas F1- score is 

affected by skew in one direction only. Random performance in the alpha and kappa spaces 

is equivalent with the 0 value, but in the F1-space it changes as a function of skew: in the 

balanced case (Skew = 1) is associated with 0.5 score and drops exponentially as skew 

increases.

It is important to note, that even the best (1% error rate) classifier's performance drops 

significantly in the high skew ratio part of the graph (Skew = 50). This imbalance range is 

equal or even below the skew ratio present in spontaneous facial behaviour datasets (see 

Table I).

B. Experiments on Real data

In this experiment we studied the effect of skewed AU distributions on the CK+, McMaster 

Pain Archive and RUFACS.

In the case of CK+ dataset we used leave-one-subject-out cross-validation to maximize the 

data available in the database. In the RU-FACS and Pain dataset for each AU we divided the 

data into a training and testing set in a way that the skew ratio of the two sets was similar.

We calculated F1 score, kappa, alpha measures and area under ROC and PR curves. Tables 

II - III show these measures in the columns labelled ’original’.

To proceed, we repeated the same procedure, but this time we balanced the distribution of 

the classes in the testing set using random under-sampling and averaging. The performance 

scores are depicted in the ’normalized’ columns of Tables II - III. From the results, we can 

draw several observations as follows.

First of all, by examining the scores in the imbalanced case of the CK+ dataset, we found 

that these performances are similar to other shape based methods in the literature [5], [17].

Second, by comparing the skew normalized results to the imbalanced ones, we noticed that 

(except the area under ROC curve) all scores improved. The average F1 score increased 

from 0.45 to 0.77 in the case of CK+, from 0.23 to 0.68 in the case of RU-FACS and from 

0.17 to 0.65 on the Pain data. The difference between the scores is the smallest in the case of 

the CK+ data, because this is the smallest dataset with the smallest skew ratio (around 20) 

among the three. The improvement is smaller in kappa and alpha: these measures are 

somewhat more strict and a bit tolerant to the prior distributions of the classes. The 

differences in the case of the area under PR curve are comparable to the F1 score 

improvements.

Third, while ROC was unaffected by skew, the precision-recall curves suggest that ROC 

may mask poor performance in some cases.
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V. DISCUSSION AND SUMMARY

In the present work, we addressed the question how do imbalanced datasets influence 

performance metrics. We conducted studies using three major databases that include both 

posed and spontaneous facial expression and differ in database size, type of FACS coding, 

and degree of imbalance. The databases were Cohn-Kanade, RU-FACS, and McMaster Pain 

Archive. We included metrics used in facial behaviour analysis plus some others: we 

included both threshold metrics (Accuracy, F1-score, Cohen's kappa, and Krippendorf's 

alpha) and rank metrics (area under the ROC curve and precision-recall curve).

We used a variety of evaluations to study the influence of imbalanced distribution on 

performance metrics. We used simulated classifiers and binary SVMs trained on expert 

annotated datasets as well.

We discovered that with exception of area under the ROC curve, all performance metrics 

were attenuated by imbalanced distributions; in many cases, dramatically so. Alpha and 

kappa measures were affected by skew in either direction; whereas F1-score was affected by 

skew only in one direction. While ROC was unaffected by skew, precision-recall curves 

suggest that ROC may mask poor performance.

Metrics of classifier performance may reveal more about skew than they do about actual 

performance. Databases that are otherwise identical with respect to intensity of action units, 

head pose, and so on may give rise to very different metric values depending only on 

differences in skew. To avoid or minimize biased estimates of performance metrics, we 

recommend that investigators report both obtained performance metrics and skew-

normalized scores. Alternatively, report both the obtained scores and the degree of skew in 

databases1. In these ways, classifiers can be compared across databases free of confounds 

introduced by skew.
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Figure 1. 
The behaviour of different metrics using simulated classifiers. The horizontal axis depicts 

the skew ratio , while the vertical axis shows the given metric 

score. The metrics are (a): Accuracy, (b): Cohen's kappa, (c) Area Under ROC, (d) F1 score, 

(e) Krippendorff's alpha, (f) Area Under PR Curve. The different lines show the relative 

misclassification rates of the simulated classifiers.
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Table I

Database statistics. For more details, see text.

AU CK+ PAIN RU-FACS

# of AUs Skew # of AUs Skew # of AUs Skew

1 161 11.48 - 7616 14.45

2 109 17.43 - 6112 18.25

4 174 10.55 987 23.31 1028 113.44

5 95 20.15 - 714 163.77

6 113 16.78 5132 3.68 5184 21.69

7 108 17.60 3012 6.97 2332 49.45

9 65 29.91 422 55.86 55 2138.05

10 19 104.74 515 45.59 3215 35.59

11 32 61.78 - -

12 125 15.07 6627 2.62 18416 5.39

14 37 53.30 - 7599 14.48

15 83 23.20 6 3998.33 3676 31.00

16 21 94.67 - -

17 182 10.04 - 8028 13.65

18 9 222.22 - 1705 68.00

20 71 27.30 657 35.52 276 425.26

22 3 668.67 - 155 758.02

23 55 35.53 - 1796 64.51

24 49 40.00 - 3906 29.12

25 300 5.70 2407 8.97 26047 3.52

26 50 39.18 2093 10.46 17591 5.69

27 74 26.15 18 1332.11 -

28 1 2008.00 - 1431 81.21

30 1 2008.00 - 766 152.59

31 2 1003.50 - 117648 200.34

43 7 286.00 2120 10.32 -

45 14 142.50 - -
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