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Abstract—In speech emotion recognition, training and test
data used for system development usually tend to fit each other
perfectly, but further ‘similar’ data may be available. Transfer
learning helps to exploit such similar data for training despite
the inherent dissimilarities in order to boost a recogniser’s
performance. In this context, this paper presents a sparse autoen-
coder method for feature transfer learning for speech emotion
recognition. In our proposed method, a common emotion-specific
mapping rule is learnt from a small set of labelled data in a target
domain. Then, newly reconstructed data are obtained by applying
this rule on the emotion-specific data in a different domain. The
experimental results evaluated on six standard databases show
that our approach significantly improves the performance relative
to learning each source domain independently.

Index Terms—speech emotion recognition; transfer learning;
sparse autoencoder; deep neural networks

I. INTRODUCTION

Speech emotion recognition focuses on using acoustic and
linguistic parameters as features and classifiers as tools to
predict the ‘correct’” emotional states [1]. In this task —
just as in almost any other pattern recognition task — better
performance is usually achieved using training data from the
same session or corpus. Building a feature representation is an
opportunity to incorporate domain knowledge into the data and
can be very application specific. For that reason, much of the
actual effort in deploying systems of speech emotion recogni-
tion goes into the design of an appropriate representation of the
data in order to support promising classification performance.
At present, several emotional speech corpora exist, but they are
typically highly dissimilar in terms of spoken language, type
of emotion such as acted, elicited, or naturalistic, or type of
labelling scheme such as categorical or dimensional [2]. When
labelling emotional corpora, even worse, there is no certain
ground truth but a subjective ambiguous ‘gold standard’ as
given by majority voting of several human raters which may
be in considerable disagreement. To reduce human label effort,
either to annotate new data or bridge the gap between corpora
annotated in different ways, speech emotion recognition is in
need of a method to reuse existing corpora and retrieve useful
information within corpora for a related target task.

Recently, transfer learning has been proposed to develop
methods to transfer useful information in one or more source
tasks to a related target task [3]. It has been empirically and
theoretically shown that transfer learning can greatly improve
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the learning performance especially when only a small number
of data are available in a target domain [3], [4]. Speech
emotion recognition can benefit from using transfer learning
as well. As an example, the labelled corpus may be acted
speech obtained through previous human labelling efforts. For
a classification task on a newly spontaneous corpus where
the data’s features or data’s distributions may be different,
there may be a lack of labelled training data. As a result, one
may not be able to directly apply the emotion models learnt
on the acted speech to the new spontaneous data. In such
cases, it would be helpful if we could transfer the classification
knowledge into the new domain.

In this paper, we thus propose feature transfer learning
based on a sparse autoencoder method — a type of neural
network with sparseness constraints on hidden units — for
discovering knowledge in acoustic features from small target
data to improve performance of speech emotion recognition
when applying the knowledge to source data. Qur approach
to feature learning via a sparse autoencoder consists of two
stages: First we learn a representation using a single-layer
autoencoder trained on class-specific instances from target
data. Then, we apply this representation to source data with
respect to the specific class for reconstructing those data, and
use it for the classification task in the way of building standard
emotional models.

The remainder of this paper is organised as follows. Sec-
tion IT discusses related work. In Section III, we briefly
introduce the six chosen databases and acoustic features used.
We then present the sparse autoencoder-based method in
Section IV. Experiments on the six standard corpora are
demonstrated in Section V. Finally, we draw a conclusion and
point out future work in Section VI.

II. RELATED WORK

Recently, increasing attention has been drawn to the study of
the emotional content of speech signals, and hence, many sys-
tems have been proposed to identify the emotional content of
a spoken utterance [1]. Most studies tend to overestimation in
this respect: Acted data are often used rather than spontaneous
data, results are reported on preselected prototypical data, and
true speaker disjunctive partitioning is still less common than
simple cross-validation. Even speaker disjunctive evaluation
can give only little insight into the generalization ability of



today’s emotion recognition engines since training and test
data as used for system development usually tend to be
similar as far as recording conditions, noise overlay, language,
and types of emotions are concerned [2]. For example, if a
system builds upon a classifier using features extracted from
adults’ speech corpora to identify children’s emotional state,
its performance can be expected as very low. In this example,
this comes, as — among other factors — there is a relevant
difference of certain low level descriptors (LLDs) such as pitch
between adults and children on which emotion phenomena
relies heavily.

Transfer learning has been proposed to deal with the sig-
nificant problem of how to reuse the knowledge learnt before
from other data or features. Pan and Yang demonstrated several
practical examples to illustrate transfer learning’s role [4].
Among the various ways of transfer learning, deep neural
networks that have many hidden layers and are trained using
new methods have shown to suit well to transfer learning [5].
Previous work [6], [7] further demonstrated that a deep archi-
tecture is necessary to represent many functions compactly and
such architectures lead to useful representations that ideally
disentangle the factors of variation present in the input. Glorot
et al. applied a stacked denoising autoencoder with sparse rec-
tifiers to domain adaption in large-scale sentiment analysis [8].
Another successful application of deep neural networks arises
in the field of speech recognition to exploit information in
neighbouring frames and from using tied context-dependent
states for acoustic modelling, which outperforms state-of-the-
art methods on a variety of speech recognition benchmarks,
sometimes by a large margin [9], [10].

Furthermore, deep neural networks have been also analysed
in speech emotion recognition. In [11], a generalised discrim-
inant analysis based on deep neural networks was proposed to
learn discriminative features of low dimension for optimisation
from a large set of acoustic features for emotion recognition
which slightly rises the benchmark. Brueckner and Schuller
successfully investigated the applicability of deep belief net-
works on the Likability Sub-Challenge of the Interspeech 2012
Speaker Trait Challenge [12].

Sparseness plays a key role in learning gabor-like filters,
thus Lee et al. presented a sparse variant of the deep belief
networks proposed by Hinton et al. [13] which faithfully
mimics certain properties of the visual area V2 in the cortical
hierarchy [14]. The first layer of the network results in
localised, oriented, edges filters. Apparently, the network can
effectively discover high-level features in the data but the
higher-level features learnt on other data may not be suitable
for the target task. Sometimes, such networks may fail due to
large difference between source features and target features in
speech emotion recognition. We therefore consider introducing
a sparse autoencoder as a link to reconstruct source data in
accordance with common feature structure learnt on small
target data, which results in the information transfer from
source domain to target domain.
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TABLE I: Emotion categories mapping onto negative and
positive valence for six databases.

Corpus | Negative | Positive

FAU AEC angry, touchy, emphatic, | motherese, joyful, neutral,
reprimanding rest

TUM AVIC boredom neutral, joyful

EMO-DB anger, boredom, disgust, | joy, neutral
fear, sadness

eNTERFACE | anger, disgust, fear, sad- | joy, surprise
ness

SUSAS high stress, screaming, | medium stress, neutral
fear

VAM q4, q3 q2, ql

Abbreviations: ql—q4: quadrants in the arousal-valence plane

TABLE III: Overview of the standardised feature set provided
by the INTERSPEECH 2009 EC.

LLDs (16 x 2) | Functionals (12)

(A) ZCR mean

(A) RMS Energy | standard deviation

(A) FO kurtosis, skewness

(A) HNR extremes: value, rel, position, range
(A) MFCC 1-12 | linear regression: offset, slope, MSE

III. DATABASES

To investigate the performance of the proposed method, we
consider the INTERSPEECH 2009 Emotion Challenge (EC)
two-class task [15] as target. It is based on the FAU Aibo
Emotion Corpus (FAU AEC), which contains recordings of
children interacting with the pet robot Aibo in German speech.
In the training set there are 6 601 instances of positive valence
and 3 358 instances of negative valence, and in the test set one
finds 5792 instances of positive valence and 2465 instances
of negative valence.

Besides, another five publicly available and highly popular
databases, namely the TUM Audio-Visual Interest Corpus
(TUM AVIC) [16], Berlin Emotional Speech Database (EMO-
DB) [17], eNTERFACE [18], Speech Under Simulated and
Actual Stress (SUSAS) [19], and the “Vera am Mittag”
(VAM) database [17], [20] are chosen as source set, which
are different from the target database FAU AEC in terms of
speaker age, partially spoken language, type of emotion, type
of recording situation, and of course annotators and subjects.
For the comparability with FAU AEC, we additionally map
the diverse emotion groups onto the valence axis in the
dimensional emotion model. The mapping defined in [2] for
cross-corpus experiments is used to generate labels for binary
valence from the emotion categories in order to generate a
unified set of labels. This mapping is given in Table . In
addition, Table II summarises the six standard databases.

A. Acoustic Features
To keep in line with the INTERSPEECH 2009 EC [15], we

decided to use its standardised feature set of 12 functionals
applied to 2 x 16 acoustic Low-Level Descriptors (LLDs)



TABLE II: Summary of the six chosen databases.

Corpus | Age | Language Speech  Emotion # Val # All | h:mm | #m  #f ‘ Rec Rate
- + kHz
FAU AEC children | German variable  natural 5823 12393 18216 9:20 | 21 30 | normal 16
TUM AVIC adults English variable  natural 553 2449 3002 1:47 11 10 | studio 44
EMO-DB adults German fixed acted 352 142 494 0:22 5 5 | studio 16
eNTERFACE | adults English fixed induced 855 422 1277 1:00 34 8 | normal 16
SUSAS adults English fixed natural 1616 1977 3593 1:01 4 3 | noisy 8
VAM adults German variable  natural 876 71 947 0:47 15 32 | noisy 16

Age (adults or children). Number of utterances per binary valence (# Valence, Negative (=), Positive (+)), and overall number of chunks (#
All). Total audio time. Number of female (#f) and male (#m) subjects. Recording conditions (studio/normal/noisy). Sampling Rate.

including their first order delta regression coefficients as shown
in Table III. In detail, the 16 LLDs are zero-crossing-rate
(ZCR) from the time signal, root mean square (RMS) frame
energy, pitch frequency (normalised to 500 Hz), harmonics-
to-noise ratio (HNR) by autocorrelation function, and Mel-
frequency cepstral coefficients (MFCC) 1-12. Then, 12 func-
tionals — mean, standard deviation, kurtosis, skewness, mini-
mum and maximum value, relative position, and ranges as well
as two linear regression coefficients with their mean square
error (MSE) — are applied on the chunk level. Thus, the
total feature vector per chunk contains 16 x 2 x 12 = 384
attributes. To ensure reproducibility as well, the open source
toolkit openEAR toolkit [21] was used to extract the feature
set with the pre-defined openEAR configuration for the 2009
challenge.

IV. APPROACH

Speech is produced by modulating a relatively small number
of parameters of a dynamical system [22], [23], and this
implies that its true underlying structure is much lower-
dimensional than is immediately apparent in a window that
contains hundreds of coefficients [10]. We believe, therefore,
that speech emotional features also have such underlying
structure if there is a method that can effectively exploit
information embedded in a large data set. To allow for feature
transfer learning, we use the underlying feature structure learnt
from target data to reconstruct other source data accordingly
and preserve the data’s own information as much as possible.
The single-layer sparse autoencoder is used to exploit the
underlying feature structure on target data, represented by a set
of weight matrices and a bias vector. We input a given source
data to the learnt sparse autoencoder structure to reconstruct
its own. In this section, we describe briefly the single-layer
autoencoder, and then present in detail the sparse autoencoder
feature transfer learning.

Let us assume a given target training set of n; examples
T; = {(=%,4%),...,(=k,,9%,)} drawn from some distribu-
tion D, and a source training set of n, examples T, =
{(=%,4%),. .., (=h,, 4%, )}. Here, the target training set and the
source share the same feature space and label space, i.e., each
input feature vector z; € R"™, and the corresponding class
label y; € {Cy,...,CL}. However, we do not assume that
the target data 7, was drawn from the same distribution as

the source data T,, which means the classifiers learnt from
the source set cannot classify the (target) test data well due
to different data distribution. In addition, the size of T} is
often inadequate to train a good classifier for the test data.
Transfer learning aims to help improve the learning of the
target predictive function in 7% using the knowledge in T's [4].

A. Single-layer autoencoder

A single-layer autoencoder, which is a kind of neural
network consisting of only one hidden layer, sets the target
values to be equal to the input. Deep neural networks use
it, as an element, to find common data representation from
the input [7], [24]. Formally, in response to an input example
z € R™, the activation of each neuron, h;,i=1,...,m is

h(z) = f(Wiz + &), M

where f(z) = 1/(1 + exp(—=z)) is the non-linear activation
function applied component-wise, h(z) € R™ is the vector
of neuron activation, W; € m X n is a weight matrix, and
b1 € R™ is a bias vector. The network output is then:

% = f(Wah(z) + ba), @

where Z € R" is a vector of output values, Wa €n xmisa
weight matrix, and b, € R™ is a bias vector.

Given a set of p input examples z;,7 = 1,...,p, the weight
matrices W7 and W5 and the bias vector b; and b, are adapted
using back-propagation to minimise the reconstruction error
> s — &;||®. Further, we constrain the expected activa-
tion of the hidden units to be sparse following the method
of [14], i.e., we add a regularisation term that penalises a
deviation of the expected activation of the hidden units from
a (low) fixed level p. Thus it turns out to be the following
optimisation problem:

D m
minimise |z — |* + B _SP(ollg;) ()

i=1 j=1

where SP(p||g;) = plogp%_ +{1-p logll_;‘g is a sparse
penalty term, g; = % S | hj(z;) is the average activation of
hidden unit j (averaged over the training set), p is a sparsity
level, and 3 controls the weight of the sparsity penalty term.

If the number of hidden units 7 is less than the number of
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Algorithm 1 Sparse Autoencoder Feature Transfer Learning

Input: The two labelled data sets 7} and T, and the corre-
sponding class labels Cy,...,CL.

Output: Leamnt classifier H for the target task.

1: Initialise reconstructed data T = 0.

2: forl=1to L do

3: Initialise a single-layer autoencoder SA' (W, b).
Choose class-specific examples th‘ from 7.
Train SA'(W, b) using TC".
Choose class-specific examples T'C! from T.
Reconstruct data TC = SAL...(TF).
Update the reconstructed data T, = T, UTC".
: end for
. Learn a classifier 7{ by applying supervised learning
algorithm s (e. g., SVM) to the reconstructed data 7.
return The learnt classifier 7.

R A

11:

input units 7, then the network is forced to learn a compressed
and sparse representation of the input.

B. Sparse Autoencoder Feature Transfer Learning

Since speech can be segmented into units of analysis,
such as, phonemes, previous works tends to learn a sparse
representation in speech related tasks via stacked single-layer
autoencoders. For example, Dahl et al. proposed a context-
dependent model for large vocabulary speech recognition that
uses deep belief networks for phone recognition [9]. This is
not applicable in speech emotion recognition since common
units of analysis can be hardly found. However, emotional
features are highly correlated in terms of a specific emotion,
thus instances with the same emotional state can be assumed
to share implicitly a common structure. The single-layer au-
toencoder has shown the capability of discovering a common
structure in the data. Motivated by this, we propose a sparse
autoencoder-based feature transfer learning method.

More specifically, for each class in the target training data,
we first apply a single-layer autoencoder to class-specific
examples 7t € R™ to learn a set of parameters Wy, Wa, by,
and b, as described in Section IV-A. To transfer each of the
class-specific examples z; € R™ from the source data to the
target domain, we then compute features £ € R™ based on
the learnt set of the parameters by solving:

"i"z? = SARecon(a":ig)’ (4)

where SAgecen(Z) = f(Waf(Wiz + b1) + ba) is the output
of the single-layer autoencoder. Equation (4) forces the input
x; to reconstruct itself through computing a sparse non-linear
combination of the parameters learnt on the target data. The
reconstructing procedure, in turn, decreases the difference
between the source data and the target data, as well as
completes the feature transfer from the source domain to the
target domain.

A formal description of the framework is given in Algo-
rithm 1. As can be seen from the algorithm, at each iteration
step, class-specific samples in the target set are used to train
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a single-layer autoencoder denoted SA® (W, b) which captures
a general mapping structure for the input samples. Then, we
move to transfering information from the source to the target
domain. For the source set, samples with the corresponding
class are reconstructed by using SA% ... (T'!) , as described in
Equation (4), according to the mapping structure learnt by the
trained autoencoder SA'(W, b). Next, like most speech emo-
tion recognition systems, we use these reconstructed features
as input to standard supervised classification algorithms H —
here, Support Vector Machines (SVMs). Finally, a test partition
is used to evaluate the classifier.

V. EXPERIMENTS: SPEECH EMOTION RECOGNITION
A. Experimental Setup

In the experiments, we use SVMs as the basic supervised
learner. LIBLINEAR [25] with a linear kemnel is applied in
the experiments to implement the SVM classifiers. The hyper-
parameters of all SVMs are chosen by cross-validation on the
training set. When training SVMs, furthermore, we always
balance training instances between the positive and negative
class by SMOTE [26]. For performance evaluation, we choose
unweighted average recall (UAR), the sum of the recalls
per class divided by the number of classes, which was the
competition measure in the Emotion Challenge [15]. For two
classes, the chance level thus always resembles 50.0% UAR.
Besides this, here the baseline UAR for the FAU AEC two-
class task is 66.9 %.

As stated, we treat FAU AEC as target set, which con-
sists of a training and test partition (roughly half and half)
naturally given by recordings at different elementary schools.
To implement the sparse autoencoder algorithm, a small part
of examples (the size ranging from 50 to 950 chunks) are
randomly chosen from the FAU AEC training set to obtain a
common feature structure, where the same number of instances
are chosen from positive valence and negative valence. In the
sparse autoencoder learning process, the number of hidden
units was fixed to 200, and the sparsity level p was set to
0.01. The reported performance in UAR is the average over 20
runs to avoid ‘lucky’ or ‘unlucky’ selection. Then, we use the
common feature structure to reconstruct each source database,
as described in Section IV-B. Finally, FAU AEC test data are
classified by the classifier trained on the reconstructed data.

B. Experimental Results

During the evaluation, we considered a variety of com-
binations of the target data, the reconstructed data, and the
source data, in order to provide a full picture of the suggested
method’s effects. Figure 1 reports the results for the source
data being eNTERFACE and SUSAS. Reconstructed data by
the sparse autoencoder, possibly in combination with target
data, significantly (one sided z-test) outperform the target data
alone. For the eNTERFACE database with induced emotion
type, sparse autoencoder data achieves mostly the highest
test UAR when the number of chosen instances is in the
range of 50 to 550. For instance, the reconstructed data’s
UAR obtains 63.5% compared with only the target’s UAR
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Fig. 1: UAR comparison for the increase of number of
instances chosen from the FAU AEC training set for the source
data eNTERFACE and SUSAS. S:##.# is the UAR if only
using source data. Reconstructed: classifier trained on recon-
structed source data by a sparse autoencoder method. Target
+ Reconstructed: classifier trained on target and reconstructed
source data. Target: classifier trained on target data. Target +
Source: classifier trained on target and original source data.

of 60.1%, the target and the reconstructed data’s UAR of
61.6%, and the target and the source data’s UAR of 57.1 %,
while 150 target instances are used. Afterwards, when the
size of target training continues increasing, the performance
of target data gradually overtakes the sparse autoencoder data
since no more extra information in the eNTERFACE can be
transferred to the FAU AEC target domain. In comparison with
eNTERFACE, SUSAS’s actual stress data, which is collected
in a noisy recording, always obtains the highest test UAR. At
150 target instances available, the reconstructed data’s UAR
reaches 65.2% which is sharply larger than only the target’s
UAR of 61.2%, the target and reconstructed data’s UAR of
62.8 %, and the target and source data’s UAR of 57.9%. It is
worth noting that, with the increase of target training size, its
UAR stably goes up to 66.8 % at 950 target instances available,
which approaches the baseline UAR 66.9% with the whole
FAU AEC training set (9 958 instances) applied.
Experimental results on the source data EMO-DB, VAM,
and TUM AVIC are shown in Figure 2. As for EMO-DB
with acted emotion, note that, the sparse autoencoder method
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Fig. 2: UAR comparison for the increase of number of chosen
examples from the FAU AEC training set for the source data
EMO-DB, VAM, and TUM AVIC. Explanations: cf. Figure 1.

cannot transfer more useful information from the source with
the increase of target training size. Instead, its performance
decreases unexpectedly. However, the method of combining
target data with reconstructed data steadily rises in line with
the size of the target data. For the source data being VAM,
the sparse autoencoder method performs better within the
range of target size ranging from 150 to 350. Afterwards,
the performance of the sparse autoencoder is still comparable
with the method of using target data. For the final source
database TUM AVIC in the English language, there is not
significant improvement compared to the method of using
target data. Nevertheless, it is worth noting that its UAR of
the reconstructed data fluctuates around 62.5 %, and this UAR
value (62.7%) at 50 target instances available is dramatically
more than the average UAR values over the other source data



TABLE 1V: UAR comparison when 50 instances are chosen
from the target data. Average: 51.6% UAR (original) and
59.9% UAR (reconstructed).

UAR [%] | AVIC EMO-DB  eNTERFACE SUSAS VAM
Original 50.5 50.0 51.0 54.9 514
Reconst. 62.7 57.9 59.1 59.5 60.2

(59.1%). If only a small number of data are available in
the target domain, e.g. only 50 instances, Table IV shows
UAR values for each source data and the corresponding
reconstructed data. As can be seen from Table IV, when those
source data as training set are input to a speech emotion
recognition system, respectively, only the chance level UAR
is obtained for the two-class task of FAU AEC. But the
reconstructed data (average UAR 59.9 %) significantly outper-
form the original source data (average UAR 51.6%), which
means that knowledge transferred by the sparse autoencoder
is useful for the classification in speech emotion recognition.
The performance improvement over each original source data
are large even though very few target data instances are used.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a sparse autoencoder-based fea-
ture transfer learning method of which the basic idea is to use
a single-layer autoencoder to find a common structure in small
target data and then apply such structure to reconstruct source
data in order to complete useful knowledge transfer from
source data into a target task. In this method, each single-layer
autoencoder focuses on discovering non-linear generalisation
of class-specific target instances. We use the reconstructed data
to build a speech emotion recognition engine for a real-life
task as given by the Interspeech 2009 Emotion Challenge.
Experimental results with six publicly available corpora show
that the proposed algorithm effectively transfers knowledge
and further enhances the classification accuracy.

Future work includes extending the single-layer architecture
to a deep architecture in order to further find useful informa-
tion in emotional features.
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