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Abstract—In this paper, we propose two novel Dynamic Active
Learning (DAL) methods with the aim of ultimately reducing
the costly human labelling work for subjective tasks such as
speech emotion recognition. Compared to conventional Active
Learning (AL) algorithms, the proposed DAL approaches employ
a highly efficient adaptive query strategy that minimises the
number of annotations through three advancements. First, we
shift from the standard majority voting procedure, in which
unlabelled instances are annotated by a fixed number of raters,
to an agreement-based annotation technique that dynamically
determines how many human annotators are required to label
a selected instance. Second, we introduce the concept of the
order-based DAL algorithm by considering rater reliability and
inter-rater agreement. Third, a highly dynamic development
trend is successfully implemented by upgrading the agreement
levels depending on the prediction uncertainty. In extensive
experiments on standardised test-beds, we show that the new
dynamic methods significantly improve the efficiency of the
existing AL algorithms by reducing human labelling effort up to
85.41 %, while achieving the same classification accuracy. Thus,
the enhanced DAL derivations opens up high-potential research
directions for the utmost exploitation of unlabelled data.

Keywords—Active learning algorithms, adaptive query

strategies, rater reliability, inter-rater agreement

I. INTRODUCTION

Within the context of Computational Paralinguistics, speech
patterns can be characterised using objective and subjective
measures [1]. In the case of objective measures (e.g. age,
gender, weight), the labels attributed to speech are referred
to as the ‘ground truth’. On the other hand, there are speech
phenomena (e. g. voice likeability, degree of interest or native-
ness) that can only be reliably assessed (annotated/labelled)
by perceptive judgments [2]. In consequence, the reliability of
labels for the subjective speech phenomena highly depends on
the annotators’ stable and transient characteristics, including a
myriad of subjective factors [2], [3]. Taking emotion recognition
for example, there are clear gender differences in the ability to
recognise discrete emotions in a variety of non-verbal domains,
which indicate that women perform slightly better overall,
especially for negative emotions [4]. Further, some of the
variations amongst individuals in perception of emotion in the
auditory domain can be attributed to personality differences,
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which are associated with affective biases in emotion judgment
[5] due to the interaction of personality with attention, mo-
tivation and mood [6]. Other factors which may influence
individual variation in the perception of emotion include
emotional intelligence (which is associated with improved
emotion perception abilities), and age (emotion recognition is at
its peak in young adults and declines with age [7]). Therefore, in
contrast to the ‘ground truth’ that can be measured objectively,
subjective annotations lead to what is known as the ‘gold
standard’, and are necessarily assessed by inter-rater agreement
procedures. Thus, a large number of annotators is necessary to
establish a well grounded reference. Unfortunately, one of the
major barriers of today’s research is the costly consequences
of obtaining human annotations, which are time-consuming
and expensive to obtain.

Given this scenario, many researchers in the area of Machine
Learning (ML) developed approaches for the exploitation of
unlabelled data, which is nowadays pervasive in digital format
and relatively easy and inexpensive to collect (e. g. from public
resources such as social media). The most common mcthods
include Semi-Supervised Learning (SSL) [8], [9], Active
Learning (AL) [10]-[12], as well as diverse combinations
thereof (e.g. [13]-[15]). The essence of the conventional ML
methods is to train a classifier on a small, labelled data set,
and re-train the model iteratively by sequentially adding new
(machine or human) labelled instances to the training set. The
active learner aims at achieving greater accuracy with fewer
training labels by (actively) choosing the data from which it
learns, and querying human annotators for labelling. It has
been shown that AL strategies significantly reduce human
labelling work, while still achieving good performance levels
[10]. Despite the success that has been achieved with these
techniques, the methodology has converged to a degree of
standardisation, and major breakthroughs have been lacking in
the past years.

As aforementioned, in the case of subjective labelling tasks,
reliability of ratings is of paramount importance and therefore
AL techniques are preferred as labels are obtained from human
and reliability can be assessed. In conventional AL, the most
‘informative’ instances are selected and submitted to a fixed
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number of human raters for labelling (hereinafter referred to
as ‘Static Active Learning’ (SAL)). It is evident that applying
majority voting on a fixed number of annotators for each
instance is a rather inefficient method. Consequently, there
is the possibility of further reducing the amount of human
annotations required by SAL, as long as we shift our perspective
from standard majority voting methods to agreement-based
annotation strategies.

The our previous work [16], we introduced for the first
time a novel method called DAL with random query order
(rDAL). rDAL is a derivation of the DAL algorithm, in which
an adaptive query strategy is used to dynamically determine
the number of annotators for each selected instance. The main
underlying idea behind this method is to sequentially query
human annotators to label a specific instance until a predefined
agreement level (i. e. a certain number of votes for one common
class label) is achieved, instead of requesting all available

raters and then computing the gold standard by majority voting.

rDAL was shown to significantly reduce the labelling costs
up to 79.17 % with the Medium Certainty (MC) strategy in
relation to traditional AL methods and warrant the reliability
of the subjective labelling procedure without sacrificing the
classification performance.

In rDAL, the order in which the raters are queried to label
a specific instance was randomised. Considering that some
annotators (and groups of annotators) are more reliable than
others, it is plausible to assume that the efficiency of rDAL can
potentially be improved by querying the most reliable raters
first in order to reach the predefined agreement level with less
annotators. This idea motivated us to develop new query order
strategies that consider both individual rater reliability as well
as inter-rater agreement.Henceforth, we will refer to this method
as order-based DAL (oDAL). The core underlying idea behind
oDAL is that we approximate the gold standard by selecting the
most reliable rater or group of raters first, hoping to achieve
further reduction of the annotation costs while maximising
the reliability of the gold standard. Moreover, the agreement
level in these algorithms is set to a fixed value, which lead
to a deterioration of classification performance as learning
progresses because of the noisier instances left to be labelled
at the end of the learning process. In order to overcome this
limitation, a possible option is to switch to higher agreement
levels for labelling noisy instances. Therefore, in this paper,
we also introduce another variant of DAL — uDAL~ which
implements an oDAL algorithm that dynamically upgrades the
agreement levels dependent on the noisiness of the instance to
be labelled.

In what follows we describe the algorithms developed
to integrate an efficient query order into rDAL and their
applications to speech emotion recognition. In Section II, we
describe our proposed algorithms and methodology. Then, in
Section III and Section IV, we describe the database and feature
set, respectively, which are used to demonstrate the potential
of our method. The experimental setup and the results are
presented in Section V. In Section VI, we discuss our findings
and explore possible extensions of this work.
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II. METHODOLOGY

In this section, we introduce the enhanced DAL methods in
the context of speech emotion recognition. We employ Support
Vector Machines (SVMs) as the classification model. SVMs are
introduced in Section II-A as well as the concept of confidence
values which are used by the algorithms to select the instances
for human annotation. Then we formally define agreement
level, rater reliability and inter-rater correlation, which form
the basic concepts underlying the DAL algorithms. Finally, we
describe the oDAL and uDAL algorithms in Section II-D.

A. SVMs and Confidence Levels

Similar to traditional AL, the dynamic active learner actively
selects the data from which it learns by considering the
prediction uncertainty of the trained classifier in terms of
confidence values. For this purpose, we apply Support Vector
Machines (SVMs) that construct decision hyperplanes to sepa-
rate instances of different classes by using the decision function
f(x), while maximizing the functional margin. For each
instance, the output distances to the decision boundaries are
then transformed into probability values through a parametric
method of logistic regression [17]. For binary classification,
the sigmoid function with the parameters A and B is defined
as:

1
P = oA T B M
Py(x) =1- Pi(x) @)

The confidence value for the predicted class is obtained
by forming the difference of the posterior probabilities
Py(x), P1(x) for classes ‘0’ and ‘1°, respectively.

C(x) = [Pi(x) = Po(x)] 3)
In our experiments, we consider the MC query strategy [18]
that has the potential advantage of avoiding the selection of
noisy data, which can be caused by distortions of acoustic
patterns [19], unreliable or ambiguous annotations [20] as it is
usually the case for acoustic emotion recognition tasks due to
their subjective nature. Formally, the query function for MC is

defined as:
xpc = argmin |C(x) — Ch,l, 4)

X

where C'(x) denotes the confidence value assigned to the
predicted label of a given instance x. The confidence values are
ranked and stored in a queue (in descending order). Accordingly,
C,,, represents the confidence value of the instance located
in the centre of the ranking queue. Ideally, for uniformly
distributed predictions, C), would be 0.5. Nonetheless, in
practice this value is not fixed. In fact, it varies due to the
changes on the unlabelled data pool as learning progresses and
labelled instances are accumulatively moved to the training set.



B. Agreement Levels

Given the number n of annotators who are available for
labelling a specific database, we define the agreement level
as the minimum number of raters agreeing on one common
category. Accordingly, j € {1,...,|%H |}, with j,n € N,
agreement levels can be selected. For the upper limit of the
interval, the floor is considered with regard to even numbers
of annotators. Specifically, n’ € {j,...,25 — 1},n’ € N raters
might be needed until a certain agreement level j is achieved.
In practice, j raters would be required simultaneously in the
first round of queries to minimise the related time-consumption
as j is the minimum number of ratings to achieve the respective
agreement level. The SAL performance that is achieved through
majority voting among all n raters is set to the baseline in our
experiments.

C. Rater Reliability and Correlation

In existing crowd-sourcing platforms (e. g. Amazon Mechan-
ical Turk [21]), annotation tasks are distributed to paid click-
workers to complete [22], [23]. For work screening in these
annotation systems, the rater reliability is usually assessed and
guaranteed through a pretest comprising different questions to
determine the annotator is taking his task seriously or just
clicking haphazardly. Inspired by the quality management
system, we implement a preliminary stage preceding the
learning algorithm to assess the rater reliability and the
representativeness of every possible rater subset in relation
to the respective gold standard labels. For this purpose, we
randomly select a test set of labelled instances and train a rater-
specific model for each single rater. The obtained classification
accuracy is used to rank the raters according to their reliability.
Additionally, the correlation between the arithmetic mean of the
votes within the rater subsets and the respective gold standard
label is computed. By this means, we obtain a measure for
the inter-rater agreement and the reliability of a rater group,
respectively. Table I depicts an example of the correlation values
of the rater subgroups with the highest correlations. As it can
be seen, the larger rater groups with the highest correlation
values always include the smaller ones, which can be explained
by the high coherence between rater reliability and inter-rater
correlation. This ranking list is particularly advantageous for
the implementation of the adaptive query strategy because the
raters are sequentially requested. Depending on the defined
agreement level, the subgroup with the minimum number j of
raters is selected. If no consensus is reached, the raters who
are most representative by forming a group with the preceding
raters are enlisted one after another.

In this example, there are five raters available and rater 3
achieves the highest performance in the pretest. Consequently,
the most efficient query order considering both rater reliability
and correlation is defined as 3,4, 1,5, 2. Besides, it should be
noted that once a minimum subset of j raters is selected for an
agreement level j, the internal order is not relevant since all
raters will be queried in one turn. The principle of the adaptive
query strategy is illustrated in Figure 1. The solid line indicates
the minimum number of annotations required to achieve the

TABLE I
CORRELATION BETWEEN THE ARITHMETIC MEAN OF THE RATINGS OF THE
MOST RELIABLE RATER SUBGROUPS AND THE GOLD STANDARD LABELS,
OBTAINED BY MAJORITY VOTING AMONG ALL FIVE AVAILABLE RATERS.

# Raters | Rater Subgroup [ Correlation

2 34 0.852
3 341 0.891
4 3415 0.890

respective agreement level, while the dotted line implics the
backup raters who might be enlisted one after another.

agreement level j query order

:

Fig. 1. Adaptive query strategy of the DAL method according to different
agreement levels

D. Algorithms

Figure 2 shows the pseudo-code description of the oDAL
and uDAL algorithms based on the MC strategy. Let £ =
(x1,91],-- -y X, w])s 7 = 1,2,...,1, denote a small set of la-
belled training data, where x; is a d-dimensional feature vector,
and y; is the assigned emotion-related label. Additionally, a
large pool of unlabelled data U = (x},...,x}),k=1,2,...u,
exists where u > [ and X}, is a d-dimensional feature vector.
The number of votes for a specific class label ' that is manually
assigned to an example instance x’ € N, is named v'.

In a preliminary stage, a rater-specific model is trained
on a test set comprising a number ¢ of randomly selected
labelled instances. The classification accuracy of the model
is used to determine the reliability of each rater, while the
inter-rater agreement corresponds to the correlation between the
arithmetic mean of the votes within a subset of raters and the
respective gold standard label (Table I). Based on the reliability
assessment, a specific query order is defined by ranking the
raters and forming the rater subgroups for different agreement
levels. When using uDAL algorithm, the initial agreement level
is set to j = 1. The learning process starts by training a model
on the labelled data £ and subsequently using this model to
classify all instances of the unlabelled data pool ¢/. According
to the MC query strategy, an subset N, C U is selected. Step )
pertains to the proposed adaptive query strategy. Optionally, the
uDAL algorithm can be applied at this stage. Starting at j = 1,
if the confidence value of a selected instance decreases below a
prediction uncertainty level p, the agreement level is upgraded
to a higher one until the next prediction uncertainty limit is
reached. Depending on the selected agreement level, the most
reliable rater or rater subgroup is requested to annotate the
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selected instances. The stopping criterion for manual labelling
of each instance is fulfilled when the respective agreement
level is achieved. Finally, the human labelled instances are
removed from U and added to £. The sequential process is
repeated until a predefined number of instances are annotated.

Taking again our previous example, assuming there are five
expert labellers available for a specific binary classification
task, the majority is attained if the same opinion occurs three
times. In the existing SAL algorithm, all five labellers would be
needed in the query process regardless of the actual distribution
of votes. In comparison, choosing j = 3, the DAL approach
first queries the most reliable group consisting of three raters
since this is the minimum number of annotations to obtain the
same result as with majority voting among all five raters. If the
first three raters agree on one common category, the opinions
of the two others are redundant since they will not affect
the final annotation. If this is not the case, the query will be
continued by iteratively requesting one more rater according to
the ranking until the same opinion occurs three times or there is
no rater left. Following the line of thought, the term ‘majority’
can be regarded as relative to the number of the raters actually
enlisted, which does not necessarily correspond to the number
of all available raters. In this example, 5 = 3 is the highest
achievable agreement level as explained before. However, it
is also possible to sct the stopping condition to the first or
second agreement level, requiring only one or two vote(s) for
one common category. The respective numbers of potentially
required raters would be n’ = {2,3} for j =2 and n' = 1
for j = 1, respectively. The related trade-off between learning
performance and cost reduction will be further investigated in
Section V-B.

III. DATABASE

In our experiments, we use the FAU Aibo Emotion Corpus
(AEC) [24] of the INTERSPEECH 2009 Emotion Challenge
(IS09 EC) [25], [26]. The database consists of recordings of
children interacting with Sony’s pet robot Aibo, which performs
a fixed, predetermined sequence of actions. Spontaneous
German speech that is emotionally coloured is provoked by
leading the children to believe that the Aibo was responding
to their commands, whereas the robot was actually controlled
by a human operator and sometimes behaved disobediently.
The recordings were taken from 51 children (age 10-13, 21
male, 30 female, about 9.2 hours of speech without pauses) at
two different schools, referred to as ‘MONT’ and ‘OHM’. Five
labellers (advanced students of linguistics) annotated each word
independently from each other as neutral (default) or as one of
ten emotional states: angry, touchy, reprimanding, emphatic,
surprise, joyful, helpless, motherese, bored, and rest. We use the
same natural speech corpus as in the IS09 EC that comprises
18216 instances. Each instance corresponds to a manually
defined chunk that consists of multiple words according to
the syntactic-prosodic criteria. For binary classification, the
11-class labels are mapped onto two-class labels by defining
states with negative valence (angry, touchy, reprimanding,
emphatic) as NEG(agative), and all other states as IDL(e).

Algorithms: Order-based Dynamic Active Learning (0DAL)

Pretest:

1) Select ¢ random test instances

2) Train a model for each single rater

3) Compute the correlation value for each rater subgroup

4) Define the query order based on rater reliability and
inter-rater agreement

Repeat:

1) (Optional) Upsample the training set £ to obtain even
class distribution £p
2) Use L/Lp to train a classifier H, and then classify the
unlabelled data set U
3) Rank the data based on the prediction confidence values
C' and store them in a queue
4) Sclect a subset N, with medium certainty
5) For each instance x’ in N,
a) Optional: Upgraded Dynamic Active Learning
(uDAL)
IfC>p:j=7;
else j + +;
b) Submit x’ to the first j raters
¢) If v/ = j; STOP
else repeat: select one rater for annotation
until agreement level j is achieved
d) Assign 3’ to x’
6) Remove N, from the unlabelled set U, U = U ~ N,
7) Add N, to the labelled set £, £ = L UN,

Fig. 2. Pseudocode description of the oDAL and uDAL algorithms based on
the medium certainty query strategy.

A heuristic approach is applied to map the labels from the
word-level to the chunk-level for cach of the five labellers,
where a chunk is defined as NEG if it contains at least one
word with negative valence. To define the gold standard for
the baseline results, we resort to majority voting to combine
the labels from all five labellers to one single label for each
chunk. The frequencies for the two-class problem are given
in Table II. Speaker independence is guaranteed by using the
speech samples of the school ‘OHM’ for training and the data
of the other school ‘MONT’ for validation. Specifically, the
training data referred to as ‘Pool’ contains both the labelled
training set £ and the unlabelled data pool U.

TABLE 11
DISTRIBUTION OF SPEAKERS AND INSTANCES PER PARTITION OF THE FAU
AEC. M: MALE; F: FEMALE; NEG: NEGATIVE EMOTIONS; IDL: NEUTRAL
AND POSITIVE EMOTIONS.

| #speakers | # instances per class
FAU AEC | M F | NEG IDL X
Pool 13 13 | 3358 6601 9959
Validation 8 17 | 2465 5792 8257
> 21 30 | 5823 12393 18216
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Fig. 3. Comparison between Random Dynamic Active Learning (rDAL) and Order-based Dynamic Active Learning (0DAL): the performance measures show
the UAR values averaged across 20 runs of the algorithm and the respective standard deviations vs the number of human annotations for the FAU AEC with
1S09 EC feature set by 200 initial training instances for agreement level a) j =1,b) 7 =2,and ¢) j =3

TABLE III
THE IS09 EC ACOUSTIC FEATURE SET: LOW-LEVEL DESCRIPTORS (LLDS)
AND RESPECTIVE FUNCTIONALS.

LLD (A)

Functionals

ZCR
RMS Energy
FO

HNR
MFCC 1-12*

mean
standard deviation energy

kurtosis, skewness

extremes: value, rel. position, range
linear regression: offset, slope, MSE

64 % 1
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'g‘ T
%
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Fig. 4. Order-based Dynamic Active Learning(oDAL) vs Upgraded Dynamic
Active Learning (uDAL): the performance measures show the UAR values
averaged across 20 runs of the algorithm vs the number of human annotations
for the FAU AEC with IS09 EC feature set by 200 initial training instances.

IV. AcousTiC FEATURES

The acoustic features used in our experiments are adopted
from the baseline feature set of IS09 EC. This is created with
the openSMILE framework [27], [28] by applying statistical
functionals to frame-wise low-level-descriptors (LLDs) as
depicted in Table III. To each of the 16 LLDs, the delta coef-
ficients are computed. Finally, the 12 functionals are applied
on a per-chunk level. As result of the ‘brute-forcing” method,
the total feature vector per chunk contains 16 x 2 x 12 = 384
attributes.

V. EMPIRICAL EVALUATION

In this section, we investigate the performance of the various
DAL algorithms by evaluating the classification accuracy in
relation to the number of human annotations. Specifically, the
rDAL and oDAL algorithms are confronted with regard to
different agreement levels. Furthermore, the uDAL algorithm
which combines the first and second agreement levels of the
oDAL method is evaluated. Additionally, the robustness of the
trained model is examined. All results are compared with the
baseline performance achieved through the conventional SAL
method.

A. Experimental Setup

For transparency and reproducibility, we used open-source
classifier implementations of SVMs from the WEKA data
mining toolkit [29]. As classifiers, we chose lincar kernel
SVMs trained with a complexity parameter C' constant of 0.05
and with Sequential Minimal Optimization (SMO), as they are
robust against over-fitting in high dimensional feature spaces.
For initial training of the model, 200 instances were randomly
selected from the training data, whereas the remaining instances
were used as the unlabelled data pool. At each learning iteration,
we selected a subset A, comprising 200 instances to be
submitted to manual annotation. The learning process stopped
after a predefined number of iterations is reached. The training
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process was repeated in 20 independent runs. As the evaluation
measure, we considered the unweighted average recall (UAR)
in accordance with the previous IS challenges.

B. Discussion of Results

In Figure 3, we show the UAR measures across 20 indepen-
dent runs of the learning process and the respective standard
deviations by the use of the rDAL and oDAL algorithms.
According to the characteristic curve progression of AL, the
sequential addition of human-labelled instances to the initial
training set (200 per iteration) leads to continuous improve-
ments in the performance of the classifier. The UAR first
increases steeply with the number of total human annotations
before reaching a plateau. It can be clearly seen that higher
classification accuracy can be achieved through the DAL
methods with the same annotation effort as in SAL. For a
more detailed analysis of the various algorithms, we computed
Student’s t-test to statistically compare the performances. For
j = 1, we examined the interval between 1000 and 5000
annotations. As for j = 1,2, the UAR performance measures
are compared between 7000 and 15000 annotations. The
analysis of the significance levels (p < .0001) confirms our
previous observation and indicates that the DAL approaches
generally lead to significantly better performance than SAL.
This is particularly evident for oDAL that led to the best
performance for all three agreement levels by consistently and
robustly outperforming the other methods. Further, it is worth
noting that the highest UAR is obtained at agreement level
j =2, followed by j =1 and j = 3, which can be explained
by the different rater reliability levels. Above all, Figure 4
demonstrates that the highest efficiency is realised through the
uDAL method, which starts at agreement level 7 = 1 before
jumping to j = 2 after reaching 4 000 annotated instances and
finishing 20 iterations, respectively. The transition point can
be noted by the slight click in the learning curve.

In order to substantiate our findings, we additionally compare
the relative cost reduction by measuring the number of human
annotations at UAR = 68.2 %, which is the top performance
achieved with the SAL method. According to Table IV, the
relative cost reduction (CR) increases with lower agreement
levels regarding all applied algorithms. This can be explained
by the fact that all five labellers can be considered relatively
reliable. Consequently, selecting lower agreement levels results
in a dramatic cost reduction without affecting much the
overall performance. Furthermore, as expected, the rDAL
algorithm requires generally more human annotations than
oDAL, resulting in lower CR. Moreover, it is important to
mention that the average number of annotators per selected
instance (AA) inclines to the minimum that is necessary to
achieve a certain agreement level (Section II-B). This finding
suggests that the maximum number of raters is not required
in most annotation cases and reinforces the inefficiency of
majority voting. Finally, the analysis of standard deviation
shows that the stability of the model is enhanced during the
learning process.

TABLE IV
COST CORRESPONDING TO THE NUMBER OF HUMAN ANNOTATIONS AT
UAR = 68.2 % AND THE RELATIVE COST REDUCTION (CR) BY COMPARING
THE AGREEMENT LEVELS j = 1, 2,3 OF THE ODAL ALGORITHM AND THE
UDAL PERFORMANCE WITH THE SAL BASELINE. THE AVERAGE NUMBER
OF ANNOTATORS PER SELECTED INSTANCE (AA) IS ALSO PROVIDED.

[ cost x 10k)  CR (%) | AA
SAL 1.6 - 5
rDAL j=3 1.27 20.53 3.72
rDAL j=2 0.72 54.69 | 2.35
rDAL j=1 0.38 76.33 1
oDAL j=3 0.99 38.34 | 3.52
oDAL j=2 0.42 73.73 2.25
oDAL j=1 0.23 85.41 1
uDAL 0.23 85.41 1.96

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two novel approaches for Dynamic
Active Learning that further reduce the amount of the costly
human labelling work in comparison with our previous work
[16] that introduced an adaptive annotation strategy with
random query order. In the enhanced DAL derivations, we
additionally consider the reliability of each single rater and
of every possible rater subgroup in order to identify the most
efficient query order. Moreover, a highly dynamic approach
is proposed that upgrades the agreement level to handle noisy
data on approaching the end of the learning process. Our
results demonstrate that the novel features of the DAL method
lead to improvement of the original DAL algorithm for all
tested agreement levels, requiring up to 85.41 % less human
annotations while obtaining the same performance. Or to put
it the other way round, higher classification accuracy can be
achieved with the same annotation effort.

The implementation of the preliminary stage to access the
rater reliability and inter-rater correlation is also compatible
with the currently emerging and popular crowd-sourcing
systems. In this way, we combine enhanced machine learn-
ing methods with highly efficient data annotation resources,
reaching a new milestone for highly efficient exploitation of
unlabelled data.

For future research, we will explore the link between the
agreement level, the quality of annotators, and the subjectivity
of the annotations. Besides, the reliability and correlation values
will be updated after each annotated instance in order to enable
more dynamic DAL algorithms. Finally, the robustness of the
DAL methods will be investigated by conducting experiments
on multiple corpora, different feature sets, and varying amount
of initial training instances.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Unions Framework Programme for Research
and Innovation HORIZON 2020 under the Grant No. 645378
(ARIA-VALUSPA) and the European Unions Seventh Frame-
work Programme under the ERC Starting Grant No. 338164
(iHEARu).

75



[1]

[2]

[31

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

REFERENCES

B. Schuller and A. Batliner, Computational Paralinguistics: Emotion,
Affect and Personality in Speech and Language Processing. New York,
NY: John Wiley & Sons, 2014.

S. Steidl, M. Levit, A. Batliner, E. Noth, and H. Niemann, ““of all
things the measure is man’: Automatic classification of emotions and
inter-labeler consistency,” in Proc. of ICASSP, Philadelphia, PA, 2005,
pp. 317-320.

B. Schuller, “Multimodal Affect Databases - Collection, Challenges &
Chances,” in Handbook of Affective Computing, ser. Oxford Library of
Psychology, R. A. Calvo, S. DMello, J. Gratch, and A. Kappas, Eds.
Oxford University Press, 2015, ch. 23, pp. 323-333, invited contribution.
A. E. Thompson and D. Voyer, “Sex differences in the ability to recognise
non-verbal displays of emotion: A meta-analysis,” Cognition and Emotion,
vol. 28, no. 7, pp. 1164-1195, 2014.

C. L. Rusting, “Personality, mood, and cognitive processing of emotional
information: three conceptual frameworks.” Psychological bulletin, vol.
124, no. 2, p. 165, 1998.

C. Edgar, M. McRorie, and I. Sneddon, “Emotional intelligence,
personality and the decoding of non-verbal expressions of emotion,”
Personality and Individual Differences, vol. 52, no. 3, pp. 295-300,
2012.

T. Ruffman, J. D. Henry, V. Livingstone, and L. H. Phillips, “A meta-
analytic review of emotion recognition and aging: Implications for
neuropsychological models of aging,” Neuroscience & Biobehavioral
Reviews, vol. 32, no. 4, pp. 863-881, 2008.

X. Zhu, “Semi-supervised learning literature survey,” Department of
Computer Sciences, University of Wisconsin at Madison, Madison, WI,
Tech. Rep. TR 1530, 2006.

A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proc. of 11th annual conference on Computational Learning
Theory, Madison, WI, 1998, pp. 92-100.

B. Settles, “Active learning literature survey,” Department of Computer
Sciences, University of Wisconsin—Madison, Wisconsin, WI, Tech. Rep.,
2009.

M. Li and L. Sethi, “Confidence-based active learning,” IEEFE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1251—
1261, 2006.

R. Liere, “Active learning with committees: An approach to efficient
learning in text categorization using linear threshold algorithms,” Ph.D.
dissertation, Oregon State University, OR, Portland, OR, 2000.

G. Tur, D. Hakkani-Tiir, and R. E. Schapire, “Combining active and
semi-supervised learning for spoken language understanding,” Speech
Communication, vol. 45, no. 2, pp. 171-186, 2005.

X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning and
semi-supervised learning using Gaussian fields and harmonic functions,”
in ICML 2003 workshop on the continuum from labeled to unlabeled

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

76

data in machine learning and data mining, Washington DC, 2003, pp.
58-65.

Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Cooperative learning
and its application to emotion recognition from speech,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 23, no. 1, pp.
115-126, 2014.

Y. Zhang, E. Coutinho, Z. Zhang, C. Quan, and B. Schuller, “Agreement-
based Dynamic Active Learning with Least and Medium Certainty Query
Strategies,” in Proc. of Advances in Active Learning : Bridging Theory
and Practice Workshop, ICML 2015, Lille, France, 2015, 5 pages.

J. Platt, “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods,” in Advances in large margin
classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds.
Cambridge, MA: MIT Press, 1999, pp. 61-74.

Z. Zhang and B. Schuller, “Active learning by sparse instance tracking
and classifier confidence in acoustic emotion recognition,” in Proc. of
INTERSPEECH, Portland, OR, 2012, 4 pages.

M. You, C. Chen, J. Bu, J. Liu, and J. Tao, “Emotion recognition from
noisy speech,” in Proc. of ICME. Toronto, Canada: IEEE, 20006, pp.
1653-1656.

M. Grimm and K. Kroschel, “Evaluation of natural emotions using self
assessment manikins,” in Proc. of IEEE Workshop on Automatic Speech
Recognition and Understanding, Cancun, Mexico, 2005, pp. 381-385.
A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with
mechanical turk,” in Proc. of the SIGCHI conference on human factors
in computing systems, Florence, Italy, 2008, pp. 453-456.

J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 14, 2006.

M.-C. Yuen, 1. King, and K.-S. Leung, “A survey of crowdsourcing
systems,” in Proc. of Privacy, Security, Risk and Trust (PASSAT) and
Proc. of Social Computing (SocialCom). Boston, MA: IEEE, 2011, pp.
766-773.

S. Steidl, Automatic Classification of Emotion-Related User States in
Spontaneous Children’s Speech. Berlin: Logos Verlag, 2009.

B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEECH 2009
emotion challenge,” in Proc. of INTERSPEECH, Brighton, UK, 2009,
pp. 312-315.

B. Schuller, “The computational paralinguistics challenge,” IEEE Signal
Processing Magazine, vol. 29, no. 4, pp. 97-101, 2012.

F. Eyben, M. Wollmer, and B. Schuller, “openSMILE — the Munich
versatile and fast open-source audio feature extractor,” in Proc. of ACM
MM, Florence, Italy, 2010, pp. 1459-1462.

F. Eyben, F. Weninger, F. GroB, and B. Schuller, “Recent developments
in opensmile, the munich open-source multimedia feature extractor,” in
Proc. of ACM MM, Barcelona, Spain, 2013, pp. 835-838.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.



