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Abstract—Photorealistic facial expression synthesis from single 

face image can be widely applied to face recognition, data 

augmentation for emotion recognition or entertainment. This 

problem is challenging, in part due to a paucity of labeled facial 

expression data, making it difficult for algorithms to 

disambiguate changes due to identity and changes due to 

expression. In this paper, we propose the conditional difference 

adversarial autoencoder (CDAAE) for facial expression 

synthesis. The CDAAE takes a facial image of a previously unseen 

person and generates an image of that person’s face with a target 

emotion or facial action unit (AU) label. The CDAAE adds a 

feedforward path to an autoencoder structure connecting low 

level features at the encoder to features at the corresponding level 

at the decoder. It handles the problem of disambiguating changes 

due to identity and changes due to facial expression by learning 

to generate the difference between low-level features of images of 

the same person but with different facial expressions. The 

CDAAE structure can be used to generate novel expressions by 

combining and interpolating between facial expressions/action 

units within the training set. Our experimental results 

demonstrate that the CDAAE can preserve identity information 

when generating facial expression for unseen subjects more 

faithfully than previous approaches. This is especially 

advantageous when training with small databases.  

1. Introduction 

Rendering photorealistic facial expression from a single 

static face while preserving the identity information will have 

significant impact in the area of affective computing. 

Generated faces of a specific person with different facial 

expressions can be applied to emotion prediction, face 

recognition, expression database augmentation, entertainment, 

etc. Although prior works have shown how to transfer facial 

expressions between subjects, i.e. facial reenactment [1], or to 

synthesize facial expressions on a virtual agent [2], the 

problem of synthesizing a wide range of facial expressions 

accurately on arbitrary real faces is still an open problem. 

This paper describes a system that takes an arbitrary face 

image with a random (i.e., not necessarily neutral) facial 

expression and synthesizes a new face image of the same 

person, but with a different expression, as defined by an 

emotion (e.g. happiness, sadness, etc.), or by varying levels of 

facial action unit (AU) intensity, as defined by the Facial 

Action Coding System (FACS) [3] (e.g., lip corner up, inner 

brow up etc.). This work is challenging because databases 

with labeled facial expressions, like CK+ [4] and DISFA [5], 

are usually small, containing only about 100 subjects or less. 

Although the databases contain images with a large variety of 

facial expressions, because they have so few subjects, it is 

hard to disentangle facial expression and identity information. 

Due to this difficulty, prior work has considered the problem 

of generating expressions only for subjects in the training set. 

These approaches, based on deep belief nets (DBNs) [6] or 

deconvolutional neural networks (DeCNNs) [7], essentially 

generate faces by interpolation among images in the training 

set, making them inherently unsuited for facial expression 

generation for unseen subjects.  

With the recent development of generative adversarial 

networks (GANs) [8], image editing has migrated from pixel-

level manipulations to semantic-level manipulations. GANs 

have been successfully applied to face image editing, e.g., age 

modeling [9], pose adjustment [10] and the modification of 

facial attributes [11], [12]. These works generally use the 

encoder of the GAN to find a low-dimensional representation 

of the face image in a latent space, manipulate the latent 

vector, and then decode it to generate the new image. Popular 

manipulations of the latent vector include shifting the latent 

vector along the specific direction corresponding to semantic 

attributes by using vector arithmetic [13], [14], or directly 

concatenating attribute labels with the latent vector [9], [11]. 

Adversarial discriminator networks are used either at the 

encoder to regularize the latent space [15], at the decoder to 

generate blur-free and realistic images [13] or at both the 

encoder and decoder, i.e., the Conditional Adversarial 

Autoencoder (CAAE) [9]. All of these approaches require 

large training databases so that identity information can be 

properly disambiguated. Otherwise, when presented with an 

unseen face, the network tends to generate faces which look 

like the “closest” subject in the training dataset.  

Yeh et al. proposed to handle this problem by warping 

images, rather than generating them from the latent vector 

directly [16]. This approach captures the idea that facial 

expressions generally affect small face regions, rather than 

whole images. A mapping is learned from the latent space to 

a flow space, which is used to warp the original images. To 

generate a new facial expression, the latent vector is modified 

by vector arithmetic: adding the averaged difference between 

the latent vectors of images with target and source labels. The 

approach achieves a high quality for interpolation, but 
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requires that the input expression be known, and fails when 

mapping between facial expressions that are “far apart,” e.g. 

generating angry faces from smiling faces.  

In this paper, we propose an alternative approach to 

decouple identity and expression information, which works 

for training databases with limited subjects. We propose the 

Conditional Difference Adversarial Autoencoder (CDAAE), 

which augments the adversarial autoencoder with a long-

range feedforward connection from the encoder to the decoder. 

The network models only the changes of low-level facial 

features conditioned on the desired expression label, rather 

than the entire face generation process. Specifically, we make 

two changes to the CAAE [9]. First, instead of utilizing the 

same images as the input and output during training, we train 

the network on pairs of images of the same subject, but with 

different facial expressions. One image is presented at the 

input, the other at the output. Second, we add a feedforward 

connection to from a middle layer in the convolutional 

network to the corresponding layer in the decoder network. 

We train the model to learn the difference between the feature 

representations of the source and target images at this level. 

This enables us to reuse parts of the low-level facial attributes, 

and to learn the high-level changes of expression. Intuitively, 

the long range feedforward connection preserves identity 

information, enabling the rest of the network to focus on 

modelling changes due to the facial expression.  

The proposed CDAAE has two primary contributions. 

First, it generates accurate expressions for faces unseen in the 

training set. Because the additional feedforward connection 

preserves identity information, the network does this even 

when trained on a database containing only a small number of 

subjects. Our experimental results demonstrate that the faces 

generated through the CDAAE are perceptually more similar 

to the input subject’s than faces generated by the CAAE. 

Second, compared to prior methods, with the CDAAE it is 

easier to manipulate the generated facial expressions, and 

even to generate images corresponding to new combinations 

of facial muscle movements on new subjects.  

1.  Related Work 

1.1.  Facial Expression Synthesis 

Facial expression synthesis can be categorized into virtual 

avatar animation and photorealistic face rendering. The 

realization of facial expression generation on new subjects 

can be achieved by expression transfer, which extracts 

geometric features (facial landmark points) [17], appearance 

features (wrinkles) [18] or 3D meshes adopted from the RGB-

D space [1][19] from images of existing subjects, and maps 

them to avatars or new faces. Another possibility is cross 

fading or warping/morphing existing faces based on an 

existing source. Mohammed et al. [20] composited local 

patches in the training set to create novel faces with modified 

facial expressions. Yang et al. [21] proposed an interactive 

platform that used user-marked facial feature points and 

default mesh parameters to generate facial expressions on 

new faces. However, these methods cannot generate 

expressions based on high-level descriptions like facial 

  

Fig.1. The system structure of the proposed CDAAE. The network takes faces of the source expression and an expression label to generate images 

of the target expression. The input goes through an encoder 𝐸 to map the raw pixels to a latent space distribution 𝑞(𝑧). The latent vector 𝑧 and 

the target label vector 𝑙 are then concatenated to generate the target faces through a decoder 𝐺. An additional feedforward connection, shown here 

as the dashed line connecting position ② in both the encoder and decoder, is added. The connection splits the encoder and decoder into two 

stages, 𝐸1, 𝐸2, 𝐺1 and 𝐺2. It forces 𝐸2 and 𝐺1 to learn and generate the general difference between the source and target expression, and reuse the 

low-level features computed by 𝐸1 for further integrated decoding. Two discriminators,  𝐷𝐸 and 𝐷𝐺, are imposed on  𝐸2 and  𝐺2 respectively.  𝐷𝐸 

is utilized to regularize the latent space distribution 𝑞(𝑧) to a Gaussian distribution 𝑝(𝑧), and  𝐷𝐺 is applied to improve the quality of generated 
images. 



 

 

 

expression or AU labels. In addition, the full complexity of 

natural human expressions and identity-specific 

characteristics are hard to model only by morphing or other 

pixel-wise operation. 

Neural networks now provide better flexibility in image 

generation. The development of deep networks enables the 

generation to be guided by semantic labels. Nejadgholi et al. 

[22] proposed a brain-inspired model to generate prototypes 

and ambitious exemplars from trained or new neutral faces. 

However, it cannot model the transformation of expression. 

Yeh et al. [16] used a variational autoencoder to learn a flow 

map that could be used to warp source images with one facial 

expression to target images with a different label, and then 

applied the flow map to warp images of new faces. These 

methods attempt to manipulate facial expression synthesis 

with labels, but do not systematically model the intricate 

correlations between different expressions and facial 

movements. 

1.2.  Generative Adversarial Network 

The Generative Adversarial Network (GAN) [8] and 

Deep Convoluntional GAN (DCGAN) [23], establish a min-

max two-player adversarial game between a generative and a 

discriminative model. However, during generation, the latent 

variable is randomly sampled from a prior distribution, so 

there is not much control over the output. There are normally 

two ways to resolve the problem. First, the GAN can be 

extended to a conditional model called the CGAN [24] by 

adding auxiliary information like labels. Second, an 

autoencoder-like structure, such as the variational 

autoencoder (VAE) [25] or the adversarial autoencoder (AAE) 

[15], can be used to impose a prior distribution on the GAN. 

These approaches encode the original data at the pixel level 

using a low dimensional representation, and to generate novel 

images from points in this low dimensional subspace. The 

advantages of the AE in forming a controllable latent space 

with input, and the benefits of the GAN in estimating the pixel 

space directly can be combined to manipulate photorealistic 

images. Zhang et al. [9] integrated both the AAE and the 

CGAN for age modeling. They proposed a Conditional AAE 

(CAAE) to learn the face manifold conditioned on age. The 

success of this model relies upon the availability of a large 

database with thousands of subjects at different ages, so that 

identity manifolds can be modeled properly. Unfortunately, it 

is hard to collect and label facial expression databases with 

comparable size. Deton et al. [26] proposed a pyramid GAN 

to generate samples following a coarse-to-fine strategy. This 

work inspired us to modify the CAAE structure to use the 

upper (coarse) layers of the AE to learn differences in facial 

expression, and to use these differences to modify information 

at a lower (finer) layer. 

2.  Methodology 

2.1.  Datasets 

Facial expression database can be categorized as 

containing either posed or spontaneous expressions. Posed 

facial expression databases often have extreme facial 

changes, and are mostly labeled with emotions, e.g., 

happiness, sadness. Spontaneous facial expressions exhibit 

more subtle facial changes, which are difficult to classify 

using only a small number of emotion classes. Instead, these 

are usually labeled by estimating the intensities of the active 

facial action units (AUs). In this paper, we consider facial 

expression synthesis for both posed and spontaneous facial 

expressions. 

The Denver Intensity of Spontaneous Facial Action 

(DISFA) dataset [5] contains stimulated spontaneous facial 

expression videos from 27 adult subjects (12 female and 15 

male). Each subject appears in only one video, which is 

recorded as they watch a four-minute emotive video stimulus. 

Each video contains 4845 frames, and each frame is labeled 

with the intensity over 12 facial AUs, which are AU1, AU2, 

AU4, AU5, AU6, AU9, AU12, AU15, AU17, AU20, AU25, 

and AU26, ranging from zero to five. The range of the labels 

was rescaled to 0-1 for training.  

The Radboud Faces database (RaFD) [27] is a multi-view 

posed facial expression collection consisting of images of 67 

subjects labeled with eight expressions and three gaze 

directions taken from five viewing angles. In this paper, we 

used only the frontal-view images with three different gaze 

directions. We obtained in total 1608 samples (67 × 3  for 

each class), and conducted a four-fold subject-independent 

cross validation, by randomly splitting the folds of 16 or 17 

subjects.  

 
(a) 

 
(b) 

Fig. 2. Comparison of expression generation ability and the identity 

preserving quality of the four network structures: (a) spontaneous 

facial expression synthesis on DISFA database and (b) posed 
expression synthesis on RaFD database. For both types of expression 

synthesis, N2 not only generates plausible facial expressions, but also  

simultaneously preserves identity information.  



 

 

 

For each dataset, we aligned the faces by Procrustes 

analysis using the 68 facial landmarks detected by the Dlib 

Regression Trees algorithm [28], [29], and cropped them. 

Each image was further resized to 32 × 32. 

2.2.  System Architecture 

Fig. 1. demonstrates the detailed structure of the CDAAE. 

The network takes 32 × 32 RGB faces 𝑥 ∈ 𝐑32×32×3 of the 

source expression and outputs RGB images 𝑥̂ ∈ 𝐑32×32×3 of 

the target expression. The input images first go through a 

four-layer convolutional encoder 𝐸, which maps the raw face 

images to a regularized latent space 𝑞(𝑧). The latent vector 

𝑧 = 𝐸(𝑥) ∈ 𝐑100  and the target label vector 𝑙  are then 

concatenated to generate the target faces through a four-layer 

deconvolutional decoder 𝐺. The activation function between 

each layer is Leaky ReLU with gradient 0.2. 

Unlike the traditional autoencoder structure or CAAE, the 

CDAAE has an additional feedforward connection, which is 

shown as the dashed line connecting position ② in both the 

encoder and decoder of Fig. 1. In our experiments, we 

considered adding this single feedforward connection 

between points at positions ①, ② and ③, and denoted the 

networks by 𝑁1 , 𝑁2 , and 𝑁3 . The feedforward connection 

splits both the encoder and decoder into two stages: 𝐸1 and 𝐸2 

for the encoder, and 𝐺1 and 𝐺2 for the decoder. This forces the 

high-level parts of the network, (stages 𝐸2 and 𝐺1) to learn the 

difference between the source and target expression: 𝑑 =

𝐺1(𝑧, 𝑙), where 𝑧 = 𝐸2(𝐸1(𝑥𝑠)). It also enables the low-level 

features computed during the encoding process 𝐸1(𝑥𝑠) to be 

reused during the decoding process. At the layer learning the 

difference, we use the tanh activation function instead of 

Leaky ReLU. Intuitively, most expression-unrelated facial 

attributes are represented by low-level features and can be 

reused to maintain the identity information. Finally, the output 

faces conditioned on specific target expression labels can be 

expressed as 

               𝑥𝑡̂ = 𝐺2(𝐸1(𝑥𝑠) + 𝑑) 

             = 𝐺2(𝐸1(𝑥𝑠) + 𝐺1(𝐸2(𝐸1(𝑥𝑠)), 𝑙)) (1) 

In addition, two discriminators,  𝐷𝐸 and 𝐷𝐺, are applied 

to  𝐸2  and  𝐺2  respectively.  𝐷𝐸  is utilized to regularize the 

latent space 𝑞(𝑧)  to a Gaussian distribution 𝑝(𝑧) .  𝐷𝐺  is 

applied to improve the quality of the generated images. The 

detailed structures of the discriminators are illustrated in Fig. 

1.  

The training process can be modeled by a min-max 

objective function 

      min
𝐸1,𝐸2.𝐺1,𝐺2

max
𝐷𝐸,𝐷𝐺

𝛼𝐿𝑅 + 𝛽1𝐿𝐸 + 𝛽2𝐿𝐺 ,  (2) 

where 𝐿𝑅 indicates the mean square reconstruction error with 

the target images, and 𝐿𝐸 and 𝐿𝐺  are the objective loss for the 

adversarial process of the encoder and decoder respectively. 

Specifically, 

         𝐿𝑅 = 𝐿2(𝑥𝑡 , 𝑥𝑡̂)                                                           (3) 

                  𝐿𝐸 = 𝐄𝑧∗~𝑝(𝑧)[log 𝐷𝐸(𝑧∗)] 

                  +𝐄𝑥𝑠~𝑝𝑑𝑎𝑡𝑎
[log(1 − 𝐷𝐸(𝑧))] (4) 

                  𝐿𝐺 = 𝐄𝑥𝑠~𝑝𝑑𝑎𝑡𝑎
[log 𝐷𝐺(𝑥𝑠)] 

                  +𝐄𝑥𝑠~𝑝𝑑𝑎𝑡𝑎,𝑙~𝑝𝑙
[log(1 − 𝐷𝐺(𝑥𝑡̂))] (5) 

3.  Experimental Results 

3.1.  Spontaneous Expression Synthesis 

We conducted spontaneous expression synthesis 

experiment on the DISFA database. We used four-fold 

subject-independent cross validation, by randomly splitting 

the data into folds containing 6 or 7 subjects. For each training 

fold and for each AU, we chose as target faces up to 2000 non-

zero frames (depending upon the amount of data) following 

the original intensity label distribution and an additional 1000 

zero frames. In total, each fold contained about 30000 target 

face frames. We paired each target frame with a source frame 

 
(a) 

 
(b) 

Fig. 3. Example subspaces of the face manifold learned by the N2 

structure on the DISFA database. Given an input face with an 

arbitrary expression, the figure shows (a) generated faces with 
increasing intensity of AU2 and AU26 and (b) generated faces with 

increasing intensities of AU4 and AU12. 



 

 

 

chosen randomly from the set of  facial images of the same 

person in the target frame.  

Fig. 1 presents the network structure. The facial 

expression labels 𝑙 ∈  𝐑12  are represented by the intensities 

(from zero to one) of the 12 facial AUs. We implemented four 

network structures: 𝑁1 , 𝑁2 , 𝑁3  and a network without the 

long-range feedforward connection, which is similar to the 

CAAE and is used as a control. We trained the four network 

settings using the Adam optimizer with learning rate 10−3and 

10−4 for the autoencoder and discriminators respectively. The 

batch size is 32. The discriminators and autoencoder are 

updated alternately, but the two discriminators ( 𝐷𝐸 and 𝐷𝐺) 

are trained simultaneously. During training, 𝛼 is set to 1, and 

𝛽1 = 10−2 , and 𝛽2 = 10−3  empirically. Training is stopped 

after about 40 epochs until the network generates plausible 

images. The system is implemented by Keras [30] with a 

Theano backend [31]. 

We compare the expression generation ability and the 

identity preserving quality of the four networks in Fig. 2 (a). 

Each column shows the generated faces for eight different 

AUs set to the highest intensity. Each row shows the results 

generated by a different network structure. The results 

demonstrate that it is hard to generate facial images of 

arbitrary subjects using the CAAE structure when it is trained 

on small databases. With the additional feedforward 

connection, important facial attributes encoding identity are 

preserved. Identity preservation improves for networks where 

the  feedforward path connects lower-level features, i.e. the 

network 𝑁1 better preserves identity than the network 𝑁3. On 

the other hand, the expression generation ability is limited 

with the lower-level connections. The network 𝑁2  achieves 

the best tradeoff between better expression generation and 

better identity preservation.  

Fig. 3 shows the manifold learned by 𝑁2  for different 

combinations of AUs. The input faces were unseen during 

training. The targeted AU intensity values ranged from zero 

to one. Fig. 3(a) shows combined expressions generated by 

simultaneously varying the intensities of AU2 (Outer Brow 

Raiser) and AU26 (Jaw Drop). The other AU intensity values 

were set to  zero. Similarly, in Fig. 3(b), we only set the 

 
Fig.4. A comparison of real facial images and generated images by the network N2 with the same expression label. We show results from three 
different subjects. For each subject, we show two rows of images. The top row shows actual images taken from the DISFA database. The bottom 
row shows images generated by the network whose input is the image framed in red and with the labels set to the corresponding labels in the top 
row image. 

 
Fig.5. Synthesis results of all the emotion classes and their interpolation using the CDAAE (N2) network. The interpolation is obtained by setting 
the label values of the two emotions to 0.5. (N:neutral, H:happiness, Sa:sadness, A:anger, D:disgust, C:contempt, F:fear, Su:surprise)   



 

 

 

intensity values of AU4 (Brow Lower) and AU12 (Lip Corner 

Puller). The generated faces in these figures show a gradual 

and smooth transition along the indicated direction of the AU 

intensity changes. Identity information is greatly preserved, 

despite dramatic changes of facial expression.  

Fig. 4 compares real expressions with corresponding 

expressions generated by network N2. Our model works well 

with multi-label inputs, with the generated images being very 

similar to the actual images, both in terms of expression and 

identity. 

3.2.  Posed Expression Synthesis 
A posed expression synthesis experiment was conducted 

on the RaFD database. The dataset contained 50 subjects in 

the training set and 17 subjects in the testing set. We split the 

training set into folds of 16 to 17 subjects, and conducted four-

fold cross validation. The training set contained 1200 images 

(50 subjects, 3 gaze directions and 8 emotions). We created 

9600 source-target pairs by pairing each images in the training 

set with the 8 images of the same subject and with the same 

gaze angle by different emotions. This forced the network to 

model all possible transformations between emotion classes. 

The network construction is shown in Fig.1. For the facial 

expression labels l ∈ 𝐑8, we use a one-hot vector to label the 

eight emotion classes. We also implemented all four 

networks:  𝑁1 , 𝑁2 , 𝑁3  and the CAAE-like structure. 

Parameter settings were the same as the previous experiment. 

The images generated by the networks are shown in Fig. 2(b). 

In addition to the previous conclusion that 𝑁2 better preserves 

identity and generates more realistic expressions than the 

others, we find that extreme expression changes tend to cause 

more artifacts when the feedforward connection is between 

the high-resolution layers. In the last row of Fig. 2(b), the 

generation of faces by 𝑁1  only works well for subtle facial 

changes. Dramatic expression transitions, like from happiness 

to surprise, causes ghost artifacts and nonrealistic image 

synthesis. Fig. 5 shows further synthesis results from N2 and 

demonstrates its ability to interpolate between emotions.  

3.3.  User Study 

To quantify human perception of the ability of the 

CDAAE network to preserve identity and to generate quality 

expressions, we created an online survey using both the 

DISFA and RaFD datasets. The survey is separated into three 

sections. In the first section, there were 33 questions regarding 

identity recognition on the RaFD dataset. We randomly 

selected 33 source images of different subjects with arbitrary 

expressions, each with a random target expression label, to 

generate faces using the 𝑁2 , 𝑁3  and CAAE models. The 

source image subjects were unseen during training. We 

presented four images to the users: an actual image from the 

dataset with the target expression label and images generated 

by the three structures in random order. Users were asked to 

select which of the three randomly ordered images best 

corresponded to the actual image. Subjects were also free to 

indicate none of them. In the second section, the same test was 

conducted on seven source images from the DISFA database. 

The third section included 16 questions for the RaFD 

database. We randomly picked two generated faces for each 

emotion class, and asked the users to identify the facial 

expression.  

In the end, we received feedback from 112 volunteers 

randomly recruited online, and obtained 3696 votes for 

section one, 784 votes for section two, and 1792 votes for 

section three. The statistical results are shown in Fig.6. Our 

survey has several findings. First, the proposed generative 

models efficiently preserve identity information. 72.94% and 

74.74% of users thought that at least one of the generated 

images was similar to the actual images from the RaFD and 

DISFA datasets respectively. Users preferred the images 

generated by the CDAAE (𝑁2)  network more often other 

images generated by the other networks for both databases. 

This suggests that the CDAAE (𝑁2)  has a better ability to 

preserve identity on DISFA, even though the number of 

subjects in the training datasets is small, and the facial 

changes are not too extreme. Second, the CDAAE 

successfully generates target facial expressions on unseen 

faces. On average 55.75% of the users recognized the ground 

truth expression of the target face. The recognition rate is 

highest for happiness (88.39%), sadness(75%) and 

fear(79.91%). Some expression pairs (neutral/contempt, 

anger/ disgust, fear/ surprise) are hard to differentiate. 

4.  Conclusion 

In this paper, we have proposed the Conditional 

Difference Adversarial Autoencoder (CDAAE) for facial 

expression synthesis on new faces. Given one query face with 

a random facial expression and a target label (AU label or 

 
(a) (b) 

 
(c) 

Fig.6. The statistical results of our user study. (a) RaFD user 

preference. Users preferred the images generated by the N2 structure. 

(b) DISFA user preference. N2 is preferred by a higher percentage 
than RaFD. These result shows that the CDAAE has advantages with 

smaller databases. (c) The confusion matrix of facial recognition 

from the users. Users can generally recognize most of the generated 
expressions, although it is still hard for them to differentiate neutral 

and contempt, anger and disgust, fear and surprise. (G:ground, 

R:recognition) 
 



 

 

 

emotion label), this network generates a facial image of the 

same subject with an arbitrary target facial expression while 

greatly preserving identity information. This is achieved by 

adding a feedforward connection, which enables the reuse of 

encoded low-level features during the decoding process in a 

Conditional Adversarial Autoencoder. This frees up the higher 

levels of the network to concentrate on encoding differences 

between pairs of facial expressions. Note that the facial 

expression of the input image need not be neutral or even 

known. Only the output facial expression needs to be 

specified explicitly. We investigated the performance of 

different locations of this feedforward connection, and the 

effect of deleting it entirely. Our results show that the N2 

structure does well both in preserving identity information 

and in synthesizing realistic facial expressions. We 

demonstrated this qualitatively by visualization and 

quantitatively by a user study. In summary, our model can 

generate photorealistic facial expressions. When used with the 

FACS, it can be used to generate arbitrary expressions through 

combinations of the AUs. In addition, it can be used to 

interpolate unseen expressions. These advances enable the 

CDAAE to achieve high quality results on database with a 

relatively small number of subjects. We are currently 

investigating how this method can be further applied to data 

augmentation for facial expression recognition and AU 

analysis.  
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