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Abstract—Cross-lingual speech emotion recognition (SER) is a
crucial task for many real-world applications. The performance
of SER systems is often degraded by the differences in the
distributions of training and test data. These differences become
more apparent when training and test data belong to different
languages, which cause a significant performance gap between
the validation and test scores. It is imperative to build more
robust models that can fit in practical applications of SER
systems. Therefore, in this paper, we propose a Generative
Adversarial Network (GAN)-based model for multilingual SER.
Our choice of using GAN is motivated by their great success in
learning the underlying data distribution. The proposed model
is designed in such a way that can learn language invariant
representations without requiring target-language data labels.
We evaluate our proposed model on four different language
emotional datasets, including an Urdu-language dataset to also
incorporate alternative languages for which labelled data is
difficult to find and which have not been studied much by the
mainstream community. Our results show that our proposed
model can significantly improve the baseline cross-lingual SER
performance for all the considered datasets including the non-
mainstream Urdu language data without requiring any labels.

Index Terms—Speech emotion recognition, Urdu, Multi-
lingual, generative adversarial networks (GANs)

I. INTRODUCTION

Speech emotion recognition (SER) is gaining more interest
in recent years. The goal of SER is to identify different kinds
of human emotion from the given speech, which has been
proven very helpful in automating many real-life applications
including health-related diagnostics [1]–[4]. Existing SER
systems can perform to a satisfactory level when training and
test data belong to the same corpus [5], [6]. However, it is still
an open challenge to design more robust SER systems that are
more resilient to cross-lingual emotions recognition.

Due to recent advancement in the field of machine learning
(ML), particularly deep learning (DL), researchers are attempt-
ing to solve various problems in audio and related fields [7]–
[10]. For SER. many researchers are also attempting to design
more robust systems that can work best with applications
involving multiple languages. One approach for the design of
more robust SER systems is to use as diverse dataset (having
multilingual data) as possible. Studies (e.g., [11], [12]) have
shown that a model trained using multiple sources or corpora
can help to achieve better results for SER. However, acoustic
training from multiple language data is not a reasonable

approach as it requires labelled data that might not be available
for all languages. Alternatively, robustness in SER system
can also be achieved by using a partial data from the source
language to improve the performance [13], [14]; but some
labelled target data for training the model is needed here as
well.

A more practical approach is the use of domain adaptation,
which generalises SER systems to the multilingual scenarios
without the need for labelled data. Researchers have tried
different domain adaptation methods in SER to improve the
performance of models on cross-lingual or cross-corpus emo-
tion recognition tasks [15], [16]. To this end, unsupervised
domain adaptation methods are becoming very popular in
such applications. Recently, Generative Adversarial Networks
(GANs) [17] has become very popular and being employed
in various vision [18] and speech related fields [19]. They are
also exploited for unsupervised domain adaptation in several
tasks related to voice user applications including speaker
identification [20], automatic speech recognition (ASR) [21]–
[23] and SER [24], [25]. However, multilingual SER is not
explored using GAN based domain adaptation approaches.

In this study, we propose an adversarial domain adaptation
for multilingual SER, particularly for languages like Urdu
for which emotional labels are not available. Urdu is the
official national language of Pakistan and is amongst the 22
official languages recognised in the Constitution of India. The
performance of state-of-the-art SER systems degrades when
unknown language data like Urdu is used in testing phase
[26]. To the challenges introduced by such languages, it is
crucial for developing more robust SER systems for their next-
generation cross-cultural applications. Therefore, we evaluate
the proposed approach on multilingual SER tasks including
Urdu language data.

We assume that source language data with annotated emo-
tional labels is available and is used for training the model
while the target language data (which is considered as the
target domain and is used for testing the model’s performance)
does not have emotional labels. The proposed approach uses
unsupervised adversarial domain adaptation for multilingual
SER where the model aims to learn language invariant emo-
tional representation from the given source language similar
to target language features.

Our proposed model utilizes the following four networks in
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its architecture (illustrated in Figure 1):
• (1 and 2) feature encoding networks for the source

language data and target language data, respectively;
• (3) a discriminator network that discriminates between

the features encoded by source encoding network and by
target encoding network; and

• (4) a classifier for emotion identification.

Fig. 1. Proposed model for multilingual domain adaptation. Where Es and
Et are source language and target language encoders, D is the discriminator,
and C is the classifier

We have evaluated the proposed model on four publicly
available language datasets and have compared our results
with popular emotional features eGeMAPS. Our results indi-
cate that our approach significantly improves the multilingual
emotion identification predictive accuracy. Our results are a
promising advance in the field since our model can be used
to identify emotions for any unlabelled language data in an
unsupervised adversarial manner.

II. RELATED WORK

Cross-language SER is important and has been studied in
various research works. It aims to generalise the classifiers
having different training and test conditions including different
noise levels, microphone settings, and speaker variations and
language. The performance of classifier on these different
conditions have been highlighted in [11], [27]–[29]. These
studies used SVM as a classifier and pointed out the need for
in-depth research to improve the performance of cross-lingual
SER. Researchers have also attempted different classifiers to
improve the performance of cross-lingual SER. For instance,
Neumann et al. [30] used CNN for binary arousal/valence
classification for the French and English languages. They
showed that fine-tuning the model on the target domain can
help to produce better results. In another work, Albornoz et
al. [26] developed an emotion profile-based ensemble SVM
SER for different languages and demonstrated a substantial
performance gain over baseline accuracy by training the en-
semble model in a language-agnostic manner. Likewise, Li

et al. [31] used a combination of different features along
with speaker normalisation technique to improve multi-lingual
emotion recognition.

Previous works have also attempted different techniques to
minimise the differences in the feature space of both source
and target domains. Zhang et al. [32] normalised the features
of each corpus separately to decrease cross-corpus variability.
To reduce the effect of covariate shift, Hassan et al. [33] used
three algorithms to apply importance weights to the training
data of SVM classifier to match the test data distribution. Deng
et al. [34] used autoencoders with shared hidden layer to learn
common feature representation across different datasets. These
authors were able to reduce the discrepancy among corpora
and improve the baseline results. In another study [35], authors
used Universum autoencoder, to enhance the performance
of SER in mismatched training and test conditions. They
achieved promising results on cross-corpus evaluations due
to the additional supervised learning capability of Universum
autoencoders in contrast to conventional autoencoders.

In contrast to the studies mentioned above, we aim to
minimise mismatch of training and test conditions in an
unsupervised adversarial way for cross-lingual emotion recog-
nition. Our attempt is motivated by the great success of GANs
in computer vision for domain adaptation task [36], [37]. Very
few studies exploited GANs for SER. For instance, Zhou et al.
[38] used a class-wise domain adaptation method using adver-
sarial training to address cross-corpus mismatch issue. They
used two datasets, including AIBO and EMO-DB for the same
language and showed that adversarial training is useful when
the model is to be trained on target language with minimal
labels. Wang et al. [20] exploited adversarial multitask training
to learn a common representation for both the source and target
language domains. Authors used two datasets of the English
language and presented promising results for cross-corpus
emotion recognition by creating more discriminant features
that reduce the gap between the source and target datasets.
Similarly, Gideon et al. [39] used three well-known English
language datasets and proposed an adversarial discrimina-
tive domain generalisation method for cross-corpus emotion
recognition. Besides these studies, we proposed a method for
cross-lingual emotion recognition over four different language
datasets. The proposed model is then evaluated for languages
such as Urdu whose labelled emotional data is barely available.

III. MODEL

We proposed a model for unsupervised domain adaptation
of multilingual SER. Our proposed model leverages the unla-
belled target language data and aims to learn common feature
representations for both source and target language.

Fig. 1 shows the architecture of proposed model. Where
source language data xs is fed to source language feature
encoder Es and target language data xt is given to the target
language feature encoder Et. Both Es and Et are connected to
discriminator D that is tasked to enforce Es to learn features
fs from xs which are similar to ft of target language data xt.
The intuition of this method is that emotional data of different



TABLE I
SELECTED CORPORA INFORMATION AND THE MAPPING OF CLASS LABELS ONTO NEGATIVE/POSITIVE VALENCE.

Corpus Language Age Utterances Negative Valance Positive Valance References
EMO-DB German Adults 494 Anger, Sadness, Fear, Disgust, Boredom Neutral, Happiness [40]
SAVEE English Adults 480 Anger, Sadness, Fear, Disgust Neutral, Happiness, Surprise [41]
EMOVO Italian Adults 588 Anger, Sadness, Fear, Disgust Neutral, Joy, Surprise [42]
URDU Urdu Adults 400 Angry, Sad Neutral, Happy [43]

languages have some common features [11], [13], [27], [43]
that we are learning in this model in an unsupervised way.
The features (fs and ft ) encoded by Es and Et are given
to the classifier C for classification. Here we trained C on fs
by considering that source language data has labels while test
is performed on target language data without considering its
labels.

Our proposed model is trained like GANs [17] via an
adversarial process to produce features fs similar to the target
domain. In a simple GAN, the generator Gs maps the latent
vectors z drawn from some known prior pz ( e.g. Gaussian)
to fake data points G(z). The discriminator Ds is tasked with
differentiating between samples generated G(z) (fake) and
real data samples x (drawn from a distribution pdata). Both
generator Gs and a discriminator Ds play two-player min-
max game using the following GAN loss:

min
Gs

max
Ds

V (Ds, Gs) = Ex∼pdata [log(Ds(x))]

+ Ez∼pz
[log(1−Ds(Gs(z)))] (1)

Here, we use GAN, where instead of latent vectors z, generator
Es is fed by source language features xs and is trained to learn
representations fs similar to target language representations ft
encoded by Et. The adversarial loss training loss Ladv for Es

is defined as:

Ladv = log(1−D(Es(x
s))) (2)

The generator Es attempt to fool discriminator D by generat-
ing features very similar to ft. The discriminator D classifies
whether features are drawn from the source language (fs) as
fake or the target language (ft) as real using the following
loss function:

Ldic = − log
( Ns∑
i=0

D(Es(x
s
i ))−

Ns∑
j=0

(1−D(Et(x
t
j))
)

(3)

where Ns and Nt are the training samples for source
and target language data respectively. In our model, both
Es and Et are two autoencoder networks that encode the
source and target data in latent code. The intuition of using
autoencoders is that they encode the given data into underlying
feature structures using reconstruction loss [44], [45]. Both
autoencoders were trained separately using reconstruction loss
while the encoder part Es of source autoencoders is updated
using the adversarial loss (see Equation 2) to learn language
invariant features. We use an SVM as the classifier C for
emotion identification.

IV. EXPERIMENTAL SETUP

We have selected EMO-DB, SAVEE, EMOVO, and URDU
datasets in this work. The selection of these corpora is made
to incorporate maximum diversity of languages especially to
cover infrequently analysed languages such as Urdu. Further
details on selected databases, speech features, and model
configuration are presented below.

A. Speech Databases
1) EMO-DB: It is a well known and widely used corpus

for SER. The language of EMO-DB dataset is German, and
it was introduced by [40]. It comprises the recordings of ten
professional actors in 7 emotions: anger, disgust, boredom,
fear, neutrality, joy, and sadness. The linguistic content used
for recordings is pre-defined emotionally neutral ten short
sentences in the German language. Overall, it contains over
700 utterances, while only 494 utterances are emotionally
labelled. We used only annotated utterances in this work.

2) SAVEE: Surrey Audio-Visual Expressed Emotion
(SAVEE) database [41] is another popular multimodal emo-
tional dataset. It includes the recordings from four male actors
in 7 different emotions. The language of SAVEE dataset is
British English. The recordings in this dataset were evaluated
by ten different assessors under visual, audio, and audio-
visual conditions to assure the quality of emotional acting.
The scripts used for data recordings were selected from the
standard TIMIT corpus [46]. In total, SAVEE contains 480
utterances in 7 emotions: neutral, happiness, sadness, anger,
surprise, fear, and disgust. We used all these emotions in our
experiments by mapping them on the binary valance.

3) EMOVO: This dataset is the first Italian language emo-
tional corpus and contains 588 recordings [42]. There are 6
actors whose scripts of 14 different sentences in 7 different
emotional states including disgust, fear, anger, joy, surprise,
sadness and neutral. The recordings were evaluated by two
separate groups of listeners to validate the performance of
emotional actors. All the recordings in this corpus were made
with equipment in the Fondazione Ugo Bordoni laboratories.

4) URDU: This corpus is the first Urdu language dataset
that includes unscripted and spontaneous emotional speech
[12]. It comprises the audio recordings collected from the dis-
cussion of the different guests of Urdu TV talk shows. In total,
400 utterances for four basic emotions (angry, happy, sad, and
neutral) were collected. The recordings were given to four
different annotators who were tasked to annotate them based
on audio-visual conditions. There are 38 speakers including
27 males and 11 females. We utilised all 400 utterances in
this work.



B. Feature Extraction

In this study, we have used a minimalistic feature set
called eGeMAPS [47]. These features are widely used frame-
level knowledge-inspired parameters. The eGeMAPS com-
prise Low-Level Descriptor (LLD) of speech which has been
suggested as the most descriptive emotional feature by par-
alinguistic studies. Besides, eGeMAPS features also provide
performance comparable and even better compared to large
brute-force features [47]. In total, eGeMAPS consists of 88
parameters related to spectral, energy, frequency, cepstral, and
dynamic information. The components of eGeMAPS selected
from the arithmetic mean and coefficient of variation of 18
LLDs, 6 temporal features, 8 functionals applied to loudness
and pitch, 4 statistics over the unvoiced segments, and 26
additional dynamic parameters and cepstral parameters. A list
of these LLDs and functionals can be found in Section 3 of
[47]. We computed eGeMAPS using openSMILE toolkit [48].

C. Model Configuration

We implemented our model using the Tensorflow library.
Both the encoder parts (Es and Et) consist of two fully
connected (FC) layers with the latent code dimension of 512.
The discriminator D also consists of two FC layers having
512 and 256 hidden units followed by a softmax layer. For
regularisation, we used dropout layer between FC layers of
Es, Et and D, with a dropout rate of 0.5. We trained the
models using the training set, and the validation set was
used for hyper-parameter selection. For minimisation of cross-
entropy loss function of discriminator D, we used RMSProp
optimiser [49], with an initial learning rate of 10−4. We
input speech segments of length 250ms into the model for
encoding the latent code of dimension 512. The selection
of speech segment is made based on the previous studies
[50], [51]. The latent code encoded by both Es and Et are
then fed to SVM. The utterance level prediction, in testing
phase, is obtained by averaging the posterior probabilities of
the respective segments. For all experiments, the validation is
performed within corpus in a speaker-independent manner to
pick the optimal hyper-parameters. We select an RBF kernel
due to its better performance compared to the linear and cubic
kernel during experimentation.

V. EXPERIMENTS AND RESULTS

This section reports the experimental evaluations of the
proposed model for cross-lingual SER. For this, we used
four publicly available datasets. These databases are annotated
differently; therefore, we consider binary positive/negative
valence classification problem in this study (see Table I). We
adopt the binary valence mapping of categorical emotions
from [13], [52]. The input features of audio utterances are
given to the model for encoding them into language invariant
representations which are passed to SVM for classification.
We performed experiments in speaker independent evaluation
scheme for all datasets and results are reported in terms of
unweighted average recall rate (UAR). For the Urdu dataset,
we used 30 speakers as training data and the remaining 8 for

testing with five-fold cross-validation. For other corpora, we
used one-speaker-out evaluation scheme with cross-validation
equal to the number of speakers in the respective dataset as
per the accepted practice for computing the baseline results of
SER [47].

TABLE II
BASELINE RESULTS WITHIN CORPUS USING EGEMAPS

Corpus EMO-DB SAVEE EMOVO URDU
UAR (%) 81.3 65.1 74.2 83.4

For baseline results, we trained SVMs using eGeMAPS
features to perform classification within a corpus using both
training and testing data from the same language. The obtained
baseline results provide us with an idea about the best achiev-
able accuracy within each corpus. Table II shows the baseline
results for all datasets.

TABLE III
UAR (%) COMPARISON CROSS-LINGUAL EMOTION RECOGNITION USING

LATENT CODE LEARNT BY PROPOSED MODELS WITH EGEMAPS

Source Target UAR (%)
eGeMAPS Latent Codes eGeMaps+Latent Codes

EMO-DB
URDU

57.8 64.2 65.2
SAVEE 45.8 52.3 58.0
EMOVO 40.1 50.5 53.6

URDU
EMODB 55.1 64.5 65.3
SAVEE 43.7 51.8 53.2
EMOVO 50.8 59.8 61.3

Table III shows the results for cross-lingual emotion iden-
tification using latent code learned by the proposed model
and eGeMAPS. SVM trained on eGeMAPS shows the per-
formance degradation of SER in cross-lingual scenarios com-
pared to baseline results (Table II) obtained using training and
test data from the same corpus. Here, we use Urdu data as
target language with no labels. Latent codes for source and
target language data learned by the proposed model are given
to the SVM. The source language data is used only for training
and validation purposes. The testing is performed on target
language data. The same evaluation is performed for other
languages when Urdu data is used as source language (i.e.,
training data).

TABLE IV
UAR (%) COMPARISON USING MULTI-LINGUAL TRAINING.

Target Data UAR (%)
eGeMAPS Latent Codes Latent Codes+eGeMAPS

EMO-DB 60.5 65.9 68.0
SAVEE 50.6 56.3 56.7
EMOVO 56.8 60.5 61.8
URDU 60.9 65.2 67.3

We also evaluated the proposed model using multi-language
training as it helps to achieve better accuracy. Results are
presented in Table IV. In this experiment, we use the one-
language-data-out scheme, and the remaining corpora are
mixed and used for training the model. The results are com-
pared using eGeMAPS and latent code learned by the proposed
architecture of domain adaptation in Table IV.



VI. SUMMARY OF FINDINGS

We have presented results for cross-lingual SER using
unsupervised adversarial domain adaptation. We were able to
improve the results of cross-lingual SER significantly. From
the experiments, best results are obtained when data from
multiple languages are used as source data and one language
as the target. This essentially means that the proposed model
is capable of learning many intrinsic features from a broad
range of languages which are similar to the target language.
Table IV shows that the results using the features learned
by proposed model are significantly better compared to SVM
trained on eGeMAPs using a similar multi-languages traning
technique. We also compared the results for multi-language
training using the latent codes and eGeMAPS with baseline
results. Fig. 2 shows that baseline results using training and
testing data from same corpus is better than latent codes
learned by proposed model and eGeMAPS results in multi-
lingual training scenario. However, the results using the pro-
posed model outperformed significantly over the eGeMAPS.
This shows the language invariant representations is able to
improve the performance of cross-lingual emotion recognition.
Overall, the results for cross-lingual emotion recognition have

Fig. 2. UAR (%) comparison of baseline (within corpus) results with multi-
language training using eGeMAPS and proposed approach (latent codes).

improved for all datasets without any requirement of labels for
the target language dataset. This is a substantial leap towards
better SER models. The findings of this work are of vital
importance to many real-life SER applications where we have
multiple resource data available.

We also showed in Table III that the performance of the
existing SER systems degrade significantly across languages
compared to the baseline results (Table II) for all datasets.
We have also presented results using the proposed model in
Table III that shows significant improvement in cross-lingual
SER. More importantly, results using language invariant latent
codes learned by the proposed model is even better than the
multi-language training of SVM with eGeMAPS. For instance,
we have achieved 64.25% accuracy for Urdu data while using
the EMO-DB as training data. This is better than 60.98% that
we have achieved using eGeMAPS by training SVM in multi-
language training scheme with the remaining three datasets.

Similar results are obtained for other datasets when they
were used as target language data. This highlights the critical
functionality of GAN based proposed architecture that can
learn language invariant features in a completely unsupervised
manner and provides improved results compared to directly
using eGeMAPS. This shows that the proposed solution for
cross-language SER can fit in scenarios where labelled data is
not available for languages like Urdu.

Another important insight learnt from this work is that the
adversarially learned language invariant features when jointly
used with eGeMAPS can help to achieve more excellent
performance. The performance improvement is found for both
cases including cross-lingual and multi-language training ex-
periments. Results for cross-lingual SER using a combination
of adversarially learned features (latent codes) and eGeMAPS
are presented in Table III and for multi-language training are
presented in Table IV.

VII. CONCLUSIONS

In this paper, we proposed an unsupervised adversarial
domain adaption approach for developing deep learning mod-
els for cross-lingual speech emotion recognition tasks. The
proposed model is evaluated using the data from four emo-
tional corpora. It is revealed that using GAN for learning
language invariant features can provide better results com-
pared to widely used emotional features like eGeMAPS. The
proposed approach works in a completely unsupervised way,
and adversarially learns language invariant features without
the need of labels for the target language.
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