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Abstract—Investigating automatic methods for the early de-
tection of dementia and related conditions that cause cognitive
impairment is an area of growing interest. Video processing could
play a role by providing a non-invasive and low-cost alternative
to current expensive assessments. For this to be successful it is
crucial that approaches are robust to in-the-wild challenges. In
this paper, visual cues, related to the eye blink rate (EBR), are
investigated to quantify the early phase of neurodegenerative
disorder (ND) and mild cognitive impairment (MCI) as well
as functional memory disorder (FMD; problems with memory
not related to neurodegenerative disorder). This paper aims to
improve the detection of ND and MCI by investigating a novel
approach to calculating the EBR that is more robust to in-the-
wild challenges. An in-house dataset with 18 participants is used.
The EBR is calculated from eye landmarks extracted using two
libraries (Dlib and Openface). To mitigate issues observed in
the noisy, in-the-wild recordings, a multiple threshold approach
for EBR detection is proposed. It involves generating multiple
thresholds for identifying a blink, where a threshold is used to
determine whether an eye is open or closed. Several supervised
machine learning approaches are used for automatic classifica-
tion. The results show that accuracy measures of 89% and 78%
are achieved using Dlib and OpenFace data, respectively, when
distinguishing between three conditions with ND, MCI and FMD.

Index Terms—cognitive impairment, dementia, eye blink rate

I. INTRODUCTION

Dementia is a growing socio-economic challenge. Currently

50 million people have dementia, and this is predicted to

rise to 152 million by 2050 [1]. Diagnosing dementia is a

complex and costly process requiring neurological expertise.

There is therefore growing interest in investigating automatic

methods for detecting early signs of dementia and other

memory problems. With the increasing prevalence of devices

with cameras, exploring the use of video-based cues such as

eye blink rate (EBR) could help pave the way for easy-to-use,

low-cost, home-based assessments.

Neurodegenerative disorder (ND), including dementia, is

a deterioration in cognitive function caused by cell death

in a particular area of the brain. It significantly influences

people’s ability to communicate and express their feelings [2].

Moreover, it affects their personality, and people may lose

independence in daily life. Mild cognitive impairment (MCI)

is a deterioration in cognitive function but without the major

functional problems associated with dementia. It does not

affect everyday activities but exhibits a high probability of

progression to dementia [2]. This paper investigates the use

of EBR to help distinguish people with ND and MCI from

those with FMD (people with memory problems not related to

dementia) because each group has different way of treatments.

For instance, ND, which is often Alzheimer’s disease (AD),

needs treatment and care while MCI could develop into AD

and thus needs regular monitoring appointments. However,

FMD could be dealt with as anxiety or depression because

it is not related to cognitive impairment problem.

Diagnosing early signs of ND and MCI is complex and

typically involves a range of methods, such as medical and

collateral history, physical examination, cognitive assessment

tests (e.g. MoCA and MMSE), MRI, lab tests, and neurologi-

cal examinations [3], [4]. Traditional testing is subjective and

dependent on specialists who already have significant training

and practice. Therefore, previous studies have investigated ND

and MCI characteristics that might lead to an efficient objec-

tive detection system that could hopefully aid diagnosis. This

study’s approach uses data recorded by common consumer

devices, such as webcams. These kinds of devices are available

in people’s homes and may be advantageous to use as people

would need fewer visits to clinics or hospitals and a reduced

number of invasive diagnostic procedures. Establishing an

early diagnosis could allow for treatment before a condition

reaches an irreversible phase. However, for approaches to be

successful they need to be able to handle the less homogeneous

nature of the collected data, typically not found in datasets

recorded in controlled lab settings.

Facial behaviour is intrinsically linked to cognitive pro-

cesses. Some studies have examined social communication

skills to evaluate mental state [5] using facial behaviour

signs such as facial expressions, gaze, and eye blinks [6].

Research has shown that EBR can be a sign of MCI and

ND [7], motivating work on developing automatic diagnostic

aids based on visual features (e.g., [8], [9]; more details in

Section II). An advantage of using visual symptoms is that it

could be language independent. People who have migrated to

another country often forget a new language when suffering

from cognitive impairment, and they generally revert to their

mother tongue [10]. In these cases, using visual cues instead of

language-based approaches could help with diagnosing certain
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health conditions.

This paper investigates the use of EBR for distinguishing

between different types of cognitive impairment: ND, MCI

and FMD. We use a dataset that has been recorded in a real-

world scenario (in-the-wild ). As a result, participants are seen

to change their distance to the camera and sit in non-optimal

positions, the illumination changes, and there is background

noise as other people appear in the view. This makes the de-

tection of EBR more challenging as it relies on measuring the

ratio between the eye’s width and the openness of the eye (Eye

Aspect Ratio, EAR) and detecting, as a blink, regions where

the EAR is below a certain threshold. For controlled datasets,

where the participant is relatively still in the frame, identifying

what the threshold level should be is more straightforward,

however, this will not be sufficient for in-the-wild recordings

like those in the dataset used, and obtaining an accurate EBR is

challenging. We present a solution that uses a novel approach

based on applying multiple thresholds for EBR calculation.

This results in every participant having a vector of blink rates

calculated corresponding to a given range of thresholds. This

is subsequently used as a feature vector to train a classifier for

cognitive impairment detection. We investigate the use of two

eye tracking libraries and demonstrate classification accuracies

comparable to those achieved using one-modal (audio/video)

or multi-modal approaches [8], [9], [11]–[13].

The remaining sections of this paper are structured as

follows. Section II discusses related work. Section III describes

the dataset and the proposed method and how this method

addresses realistic conditions such as those in our dataset.

Section IV presents the experiments and the analysis of the

results. Finally, Section V presents the conclusions.

II. RELATED WORK

Several studies have investigated automatic methods for

detecting health conditions, such as early-stage of dementia

or MCI, using visual signs [7], [8], [11], [14].

A. Eye Blink and Cognition

In general, non-verbal behaviour is considered a type of

human communication and a continuous signal that provides

important information about people’s feelings, personalities,

and mental state [5]. The eyes contribute significantly to

nonverbal behaviour in social communication, for instance,

eye blink has received significant attention. A relation has

been found between eye blink and cognitive state in terms

of brain activity [15], [16]. Spontaneous eye blinks reflects

cognitive states. For instance, a person’s blink rate increases

during certain activities, such as speaking (for adults) [17],

conversation [18], memorising [19], stress, positive mood

and emotions, fatigue, pain, physical activity, disease, and

when expressing anger or excitement [20]–[23]. In contrast,

decreases in a person’s blink rate can be seen during visual

tracking and reading activities [19], [24]. Spontaneous eye

blink is an unconscious expression that is related to attention

and transmitted by frontal, parietal, and temporal cortical

structures [25]. Moreover, a person’s EBR plays a significant

role in eye movements, fixations, emotional expressions, and

visual cognition [26], [27]. Eyelid movements, which can be

either voluntary or involuntary, occur as a reflex to sensory

stimulation. Aging affects the average blink rate by increasing

from about 24/minute at age 40 to 49 years to 32/minute at age

80 to 89 years [22]. In addition, environment-related factors

may affect the blink rate and duration, such as temperature,

brightness, air conditions, and relative humidity [22]. Several

studies have focused on studying eye blink in the context of

conditions affecting cognition [23], [28].

Investigations on EBR show that it is correlated with a

person’s cognitive state, and it can change based on various

cognitive conditions. Therefore, a person’s EBR could be

an early indicator of certain cognitive conditions, including

dementia and MCI [7], [29]. A reduced rate has also been

observed in patients with Parkinson’s disease, which also

affects cognition and may lead to a type of dementia [30].

Reference [7] showed that people with MCI have a higher

rate of eye blink than healthy people do, and an increase in

their EBR may indicate a transition from MCI to an early

stage of dementia.

B. Visual Dementia Data

Previous studies have attempted to investigate dementia

detection by extracting audiovisual features [8], [11], [31],

[32]. In [11], they recorded 18 participants and found some

significant acoustic features, but the smile ratio feature was not

a significant feature. However, in another study, [8] recorded

their data from 29 participants finding significant features, such

as smile ratio and some acoustic features, for the detection

system. A study by [9] investigated using facial features from

OpenFace to detect dementia with 24 participants and found

important features, such as lip activity, facial action units,

and eye gaze. Notably, they used advanced technology to

record the audio and video in a controlled environment. Such

recording processes increase the cost, effort, and recording

time needed and do not represent real-world scenarios.

C. Eye Blink Detection Techniques

A range of approaches to detecting eye status (open or

closed) have been proposed. For example, [33] used features

that were extracted by a scale-invariant feature transform

and the histogram of oriented gradients with a classification

stage. Their research showed a lower accuracy score in some

conditions, such as skin colour variations, illumination and

head movements. Convolutional neural networks have been

investigated to overcome previous limitations by extracting

effective features [34], [35] and estimating the EBR, even

when the person is not facing forward [36]. Several methods

have been investigated the detection and tracking through

videos rather than processing a single image to overcome

previous methods’ limitation [33], [37], [38]. An eye blink

detection approach using a state machine was proposed with

a scheme for merging the left and right eye blink frames [39].

They further improved the performance by extracting features

using dense optical flow and sending them to a recurrent neural



network [40]. In [38], an algorithm was developed for finding

the eye region landmarks and computing the EAR, which was

then used with a support vector machine to determine whether

the eye was open or closed. In addition, a study by [41] was

carried out to detect whether the eye was open or closed

in each frame by using a pre-trained convolutional neural

network to label the eye region on a few hundred annotated

images.

To validate if the eye closure is a blink or not based on

the length of the closure, previous studies have used a state

machine (SM) [39], [40], [42], [43]. A number of studies

have reported that eye blink usually lasted from 100ms to

400ms [44] and 50ms to 400ms [21]. When the eye blink

is partially closed it is considered an incomplete blink [45].

Fully closed eyes that last from 70ms to 1s are called extended

blinks [46]. People may have multiple blinks in the same

sequence. In this study, the SM parameters used will be

described in Section III-D.

D. Eye Blink Datasets

To evaluate the performance of eye blink detection ap-

proaches, datasets recorded in-the-wild should include many

samples of different eye status cases with a high variation

in head orientation, a changeable distance from the camera

over time, low illumination and very low resolution images or

videos. Several common datasets, such as ZJU [47], TalkFace1

and EyeBlink8 [42], were not recorded in-the-wild. Most of

the available datasets were recorded with the participant facing

the camera. The Researcher’s Night dataset [40] is considered

challenging because it includes some head movements. Those

head movements do not show high head-angle variations,

whereas this study’s data does.

In summary, research has shown that EBR is a robust and

relevant cue for ND/dementia and MCI detection. This paper

proposes an approach to distinguish between ND, MCI, and

FMD automatically by using EBR extracted from data that

were recorded in a real-world scenario (i.e., in-the-wild). Such

data involve a number of challenges which will be described

in more detail in Section III-A2.

III. METHODS

This section presents the full experimental setup, including

the data and its inherent challenges, as well as describing

the classification pipeline and the proposed new method for

extracting a more robust measure for EBR.

A. Data

1) Task and Participants: This study uses data that were

recorded at Hallamshire Hospital Memory Clinic in Sheffield,

UK. This data include videos, audio recordings, and diagnostic

details of people with different types of cognitive impair-

ment (FMD, MCI and ND) as they answer memory-probing

questions by an intelligent virtual agent (IVA). The questions

were different types: open questions, closed questions, and

1http://www-prima.inrialpes.fr/FGnet/data/01-
TalkingFace/talking face.html

combined questions to assess participant’s long and short

term memory. Ethical approval for collecting and using this

data was given by the National Research Ethics Service

(NRES) Committee South West-Central Bristol (Rec number

16/LO/0737) in May 2016. This data cannot be shared due

to the ethical guidelines. For full details of the data, please

see [13], [48], [49].

A total of 24 participants took part, and 18 participants out

of 24 were used, split equally into 6 with ND, 6 with MCI, and

6 with FMD. We excluded 4 with depressive pseudodementia

and 2 for whom the diagnosis was not clear. The total duration

of all the videos is 208 minutes, and the average is 11 minutes

and 56 seconds. The dataset is small, but this is a common

issue in studies that involve human participants in clinical

settings, as described in Section II. The participants were told

that they could bring someone with them and, as a result, 6 of

the 18 participants brought a caregiver/partner with them (4

ND, 1 FMD, and 1 MCI). Therefore, some videos contain

four people: the participant, the accompanying person, the

neurologist, and the person who operates the laptop. Although

participants were not given any specific instructions as to

where to look, the talking head on the screen will have been

the most salient point on which to look. This obviously poses a

challenge for video-based processing. The study under which

the recordings were done was mostly focusing on speech

processing, and this paper presents the first research done

using the videos.

2) Data Challenges: Data recorded in-the-wild can contain

a high level of noise due to the lack of restrictions on the

participants and the environment with respect to the webcam

position. In-the-wild conditions include a semi-dark or dark,

noisy room. In addition, spontaneous behaviour means that

participants may act as they would in their natural environ-

ment, such as moving about freely. A participant may contin-

ually change the orientation of their face, rotate their body, and

move closer to and further away from the camera. Other people

may also appear with the participant and move around too. In

addition, participants who wear glasses sometimes have their

eyes obscured by the frames or a reflection from the laptop

on the glasses. The majority of the IVA data recordings were

recorded at 30fps. However, five of the recordings were done

at 24fps, which also produced a different resolution recording.

These issues cause complications for automatic methods to

extract visual information from the data.

Some of the standard datasets recorded in lab-controlled

environments try to address certain aspects of real-world

scenarios. For instance, the ZJU [47] corpus was developed to

address certain situations, such as sitting in front of the camera,

both with and without glasses, and with an upward view. The

recordings had a resolution of 320x240, and the videos were

mostly captured at 30fps. Fig. 1 shows the plot of the EAR for

two participants: one in the ZJU dataset (left) and one in the

IVA dataset (right). The details of how the relevant feature is

extracted to produce the figure are given in Section III-C. From

Fig. 1 (left), it is clear that this participant had three blinks

where the EAR drops down from the steady level around 0.3.



Fig. 1: EAR values plotted for two recordings of participants

in ZJU and the IVA data, respectively.

As such, using one threshold to detect an eye blink should

work reliably. For example, assuming a threshold of 0.2, three

blinks would be correctly identified. In comparison, Fig. 1

(right) shows the calculated EAR for a random participant

from the IVA data. Red boxes are used to indicate the location

of real eye blinks. However, several additional dips in the EAR

values can also be seen, representing false blinks. These look

like a blink due to the video’s low resolution, particularly in

the eye region, low illumination, and because an animation was

played on a monitor positioned behind the participant. Another

difference to the more homogenous ZJU data is the fact that

the base mean of the EAR value does not appear to have a

fixed value, but is instead seen to fluctuate. The challenges of

the in-the-wild dataset can affect visual feature detection, such

as the EBR. In addition to the aforementioned challenges, the

fact that these are recordings of people with health conditions

also means that factors such as the blink speed, length and

frequency may vary dependent on the participant. In people

with health conditions, such as ND and MCI, false blinks

may be more prevalent due to the increased head and body

movements and the challenges mentioned earlier [39], [40].

This may lead to an increase in the variability of the EAR

values through the video.

B. Data Pre-processing

Before extracting the EAR features, the videos need pre-

processing due to some people’s appearance with the partic-

ipant in front of the camera. The height and width of the

video frames are cropped. To this end, two different computer

vision techniques implemented in the Dlib2 and the Open-

Face3 libraries are investigated to evaluate the performance of

the proposed method on the IVA data. OpenFace is known

to be very efficient in predicting facial landmarks for data

recorded in-the-wild [50], whereas Dlib shows high accuracy

for recordings with faces that are frontal, slightly non-frontal,

and have small occlusions [51].

C. Feature Extraction

This section describes the EAR and the EBR extraction in

detail, including determining whether an eye closure is a blink

or not, based on a state machine.

EAR =
‖p2− p6‖+ ‖p3− p5‖

2‖p1− p4‖
(1)

2http://dlib.net
3https://github.com/TadasBaltrusaitis/OpenFace/

Fig. 2: Eye landmarks detected by Dlib.

Fig. 2 shows the six eye (x,y) coordinates. These are used

to calculate the EAR using (1) and the approach in [38].

Equation (1) is used to calculate the EAR for both eyes for

each frame. The average of both eyes’ EAR is used. The

conventional approach is to compare this averaged EAR with a

particular threshold to determine whether it is a frame where

the eye is closed (EAR is lower than the threshold) or not.

As is common in similar approaches, a state machine is then

used to determine if this signals a true blink (defined as the

eye closure being longer than a certain number of consecutive

frames) or a false one.

D. State Machine

In the context of investigating the use of EBR as a feature

for classifying different types of cognitive impairment, it is

not clear what would make for a good choice of eye closure

length in the state machine. In this study, different values for

the blink duration were therefore explored:

• Type 1 - one frame or any number of consecutive frames

having EAR values below the threshold will be consid-

ered a blink.

• Type 2 - a sequence of two frames or more being below

the threshold.

• Type 3 - a sequence of between two and 30 frames, inclu-

sive, being below the threshold. The range corresponds to

approximately 60ms to 1s due to patients who may have

a long eye blink. When frames per second are lower than

30, they may not show a complete blink.

Two different approaches to calculating the EBR are inves-

tigated: i) calculating the EBR by an automatic setting of a

single threshold (baseline) and ii) a novel approach that uses

multiple thresholds. Each approach is tested using the two

different facial landmark libraries (Dlib and OpenFace) and

the three state machines (Type 1, 2 and 3).

E. Automatic Calculation of a Threshold (Baseline System)

To construct a baseline system, a simple approach that deter-

mines an appropriate threshold and is participant-dependent is

used. The approach depends on the mean (µ) and the standard

deviation (σ). A blink is detected when the averaged EAR is

below the µ of the EAR minus half the σ. This method leads

to one threshold or one EBR feature for the whole video for

each participant.

This approach has drawbacks in the case of data recorded

in-the-wild due to several challenges, as described in Sec-

tion III-A2. These issues also exist in the used IVA data as

illustrated in Fig. 3. They show the EAR values through the

entire video of two random participants. For example, for par-

ticipant P13, the EAR values ranged between 0.05–0.5 on the



Fig. 3: EAR calculated for ND participant (P13) and FMD

participant (P17).

y-axis, whereas the values for participant P17 ranged between

0–0.3. Both of the participants’ EAR values show a large

degree of noise in the signal as the up and down fluctuations

that corrupt the quality of the signal make detecting the blinks

very difficult, and the mean changes for each participant over

time, especially for the ND participant P13.

F. Multiple Thresholds Approach

We propose a novel approach that can detect the EBR

using multiple thresholds regardless of the noise level. This

approach helps to address the impact of tiredness or dryness

changes on the calculations of the EAR and the EBR values.

The investigation of this approach involves generating many

thresholds of the whole video for each participant. The range

of the thresholds is determined by finding the maximum and

minimum EAR for each of the participants. Two different

facial landmark detection libraries – Dlib and OpenFace – are

used in evaluating the method. Fig. 4 shows the processing

pipeline.

Dlib Landmarks: Multiple thresholds are generated within

a particular range. With a minimum of 0.0 and a maximum of

0.7, a step size of 0.1 gives 0.0, 0.1, 0.2, ..., 0.6 which gives 7

thresholds. A step size of 0.01 between 0.0 and 0.7 gives 70

thresholds. A step size of 0.001 between 0.0 and 0.7 gives 700

thresholds. These different number of thresholds are resulted

in 7, 70, 700 blink rates features.

OpenFace Landmarks: The multiple threshold range starts

from 0.0 to 33.85, which is rounded to 34. As for Dlib, the

range 0.0–34 is divided into 7, 70, and 700 thresholds and

results in 7, 70, and 700 features for each participant. When

OpenFace outputs high values, these are assumed to indicate

head turns or movements, occluded faces, or any issue from the

above-mentioned challenges, with Dlib subsequently losing

facial landmarks tracking. Fig. 5 confirms this assumption

from the calculated EAR using Dlib (orange) and OpenFace

(blue). Two high values are indicated with a red rectangle, and

it can be seen that Dlib does not detect landmarks during a

number these frames in the middle of the rectangle.

These extreme high values are considered outliers. We apply

the standard deviation (σ) method to identify these. In many

data mining applications, outlier detection is commonly used

to detect and remove or ignore the anomalous data points

from the data [52]. This method considers any point greater

than (µ + (3 × σ) as an outlier. After calculating the outlier

for each participant, the minimum outlier is 0.65, which is

rounded to 0.7, making the new range for all participants to

generate multiple thresholds from 0.0–0.7 (previously 0.0–34).

Any number above 0.7 is considered an outlier.

G. Classification

Different supervised machine learning classifiers are in-

vestigated: a support vector machine with linear (L-SVM)

and rbf (rbf-SVM) kernels, logistic regression (LR), k-nearest

neighbour (kNN), and decision tree (DT). A grid-search

approach is used to improve the classification accuracy by

tuning the parameters C of each used classifier with Scikit-

learn by trying a combination of C and other parameters

of each classifier using subject-independent-Stratified cross-

validation (CV) with 3-fold. The parameters with highest CV

accuracy are estimated in each fold, then the average is taken

across all folds for SVM with linear and rbf kernels, C=2000,

and C=10, respectively. For LR parameters, multi-class is

auto and C=2000. For kNN, the number of neighbours is

8 with weight = uniform. For DT, the min-sample-split =

3 and 11 for 3-class and 2-class classification, respectively.

The classification involves a binary classification (ND/MCI,

ND/FMD, and MCI/FMD) and a multi-class classification

(ND/MCI/FMD). For system performance evaluation, we use

the accuracy metric and confusion matrix to analyse the

predictions.

IV. EXPERIMENTAL RESULTS

A. Baseline System

The single automatic threshold approach was first evaluated

on ZJU, a standard dataset with ground-truth annotations of

blinks. Due to the known issues around achieving a common

ground-truth set of annotations for this dataset, we used the

annotations provided by [39] and visually inspected the files

in addition, resulting in a further 4 blinks (at the beginning

and ends of files) being added to this annotation, resulting in

a total of 265 blinks. The eye blink is calculated by taking the

average of both eyes. The blinks at the beginning and the end

of the videos are counted as two different blinks. In addition,

two double blinks are considered as two different blinks. This

follows the approaches in [39], [42]. The detected-blinks =271,

true-positive = 265 blinks, false-positive = 6 blinks, and false-

negative = 0, which give 0.925 as f-measure.

Table I shows a comparison between our baseline method

and related work using F-measure as a metric to measure the

approach’s performance on ZJU. However, any comparison is

complicated by the fact that the evaluation procedure differs

in each study. Our baseline score is based on 79 out of the

80 videos because one of the participant’s face angle is up

in the video, which makes it difficult for Dlib to detect facial

landmarks from the frames. The motivation behind the one-

threshold approach is to find a simple approach with good

performance to construct a baseline and compare it with the

multiple threshold approach. The performance of the method

used is 0.925, which is considered acceptable to be used on

the IVA data as a baseline system.

Three types of SM parameters are investigated to distinguish

between ND, MCI, and FMD classes. The results of testing

the baseline and multiple thresholds approaches on the IVA

dataset are shown in Tables II and III, respectively. From



Fig. 4: Pipeline of the multi-threshold EBR extraction approach for each participant. Multiple thresholds (Tn) of the whole

video for a participant are calculated, together with a blink rate for each threshold (BRn).

Fig. 5: EAR calculated for FMD participant (P23) using Dlib

(orange) and OpenFace (blue).

TABLE I: EBR detection performance on ZJU (F-measure)

for baseline method and related work.

Study F-measure

[53] 0.992
[38] 0.952
[35] 0.937
[40] 0.976

Baseline 0.925

Table II, when only one threshold is used to calculate the EBR

(baseline), the 2-class classification gives better results than

the 3-class classification in Dlib and OpenFace. Distinguishing

the ND/MCI and MCI/FMD groups using one threshold gives

only the chance-level, 58% and 50%, respectively. These

two diagnostic classes are challenging, and it is not easy to

distinguish between them even in the clinic [54]. For the 3-

class classification, the achieved accuracy is 60% using Dlib

landmarks compared to 50% using OpenFace landmarks. The

type of state machine does not show a big difference in the

results.

B. Classification Results

Then, the classification of the proposed multiple thresholds

approach is carried out on multi-class and binary classifica-

tions: ND/MCI/FMD, ND/MCI, ND/FMD, and MCI/FMD as

shown in Table III. It can be seen from the table that when the

multiple thresholds approach is applied, the highest obtained

accuracy of Dlib and OpenFace landmarks are 88% and 78%,

respectively. In Dlib, types 2 and 3 of the state machine and

70 features achieve the highest classification accuracy with

TABLE II: Classification accuracy in percentage (%) when us-

ing the baseline threshold approach using different classifiers:

(Linear−SVM1, rbf−SVM2, kNN3, LR4, and DT 5) for

IVA data.

SM Technique ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

Type 1
Dlib 56

4
58

1,4
75

1,3,4
83

1,2,4

OpenFace 50
4

75
4

75
1,2,4

50
1,4,5

Type 2
Dlib 61

5
58

4
83

3
83

1,2,3,4

OpenFace 50
3,4

67
4

75
2,4

50
1,3,4,5

Type 3
Dlib 56

3,5
50

1,2,3,4,5
83

3
83

1,3,4

OpenFace 50
4

75
4

75
1,2,3,4

50
1,3,4,5

89%, 83%, 100%, and 92% for ND/MCI/FMD, ND/MCI,

ND/FMD, and MCI/FMD classes using L−SVM1. These

results show a significant improvement from the baseline

results. The DT 5 performed better using one EBR, whereas

L−SVM1 performed better when using multiple EBRs for

each participant. There is a significant difference (p<0.05)

between the baseline and the proposed method results. In

OpenFace, type 3 of the state machine and 700 thresholds give

the highest classification accuracy with 72%, 100%, 92%, and

92% for ND/MCI/FMD, ND/MCI, ND/FMD, and MCI/FMD

classes, respectively, using DT 5. Interestingly, removing out-

liers based on STD improves only the 3-class classification

by 78% with 7 thresholds for each participant. Comparing the

proposed method’s results with the baseline results in Table II,

they show a significant enhancement of the accuracy scores.

In the baseline results, the LR4 achieves the highest accuracy.

However, the DT 5 achieves better performance on multiple

thresholds. There is a significant difference (p<0.05) between

the baseline and the proposed method results of OpenFace.

The multiple thresholds methodology is intuitively simple, but

it provides efficient results.

In this study, the EBR is considered a very efficient feature

on its own compared to the results of prior studies that

have used visual and multi-modal features on limited data

size, which were recorded in a controlled environment. They

achieved 94% using the area under curve, 93% using SVM,

and 82% using LR in dementia diagnosis after combining

language, speech, and visual features [8], [9], [11]. We focus

on distinguishing between people with ND, MCI, and FMD,

unlike previous work that considered ND and MCI as one

class. In comparison, [13] used the audio parts of this dataset
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Fig. 6: Confusion matrix using DLib and OpenFace.

on ND/MCI/FMD, ND/MCI, ND/FMD, MCI/FMD and ob-

tained 70%, 75%, 100%, and 81.25% accuracy using LR,

respectively.

C. Discussion

As previously stated, we are interested in comparing the

performance of two facial landmarks tracking techniques to

handle data recorded in-the-wild. When only frontal or semi-

frontal frames are detected, and the noisy frames are removed

in Dlib, the detection of the cognitive impairment using EBR

has improved the system’s performance more than using all

the frames in OpenFace when the end-goal is classification and

not in itself an accurate EBR estimation. The high values of

the EAR are assumed to be an indication of head movements,

turns, or any one of the challenges in Section III-A2. Our

results indicate that ignoring those frames using the outlier

detection method improves only the 3-class classification,

which is less than the obtained accuracy using Dlib landmarks.

A confusion matrix is used to analyse Dlib and OpenFace

prediction results, as shown in Fig. 6. It shows that for both

approaches, ND and FMD are predicted correctly. However,

half of the MCI participants are predicted as ND when the

OpenFace library is used for facial landmark tracking. These

results demonstrate that classifying MCI from ND is the most

challenging task in 2-class and 3-class classification. This may

be due to the fact that people with MCI have an increased blink

rate related to memory issues, which is even higher when the

person is in the early phase of dementia [7].

V. CONCLUSIONS

This paper has presented a novel multiple threshold ap-

proach for EBR data that could be used for the early detection

of dementia and related conditions that cause cognitive im-

pairment. This has been applied to a dataset containing ND,

MCI, and FMD participants. The results show that EBR is a

significant cue to differentiate ND, MCI, and FMD from each

other. As part of the approach, two different facial landmark

tracking libraries – Dlib and OpenFace – were used. Dlib

gave better results in a 3-class classification: 89% using Dlib

data and 78% using OpenFace data. One limitation of this

study is the limited data size. The aim is to address this in

a future study. Further work will also be done on feature

fusion, for example incorporating other visual signals such as

head movements and facial expressions, and possibly speech,

to create a multi-modal system.
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