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Abstract—While there is growing interest in developing tech-
nology to support pain assessment, pain-related self-management,
and healthcare personalisation, there are currently no datasets on
nonverbal pain behaviour in the context of functional activities.
To address this gap, we introduce the EmoPain(at)Home dataset
which consists of motion capture data and self-reported pain,
worry, and confidence intensities captured from people with
chronic pain. The data were recorded during self-selected func-
tional activities in the home, e.g. vacuuming. We include analysis
of the dataset as well as baseline classification of pain levels with
average F1 score of 0.61 for two classes. We additionally discuss
inclusivity considerations for capture of datasets in naturalistic
settings, based on lessons learnt within our study.

Index Terms—affect, body movement, confidence, dataset,
home, pain, worry

I. INTRODUCTION

Automatic assessment of pain experience and behavior is
an established area of research that ultimately aims to support
personalization of care, empowerment of patients, and self-
management of chronic conditions [ 1|-[3]]. As with the general
field of affective computing, datasets are key to advance in
the area. They are a critical resource for developing and
benchmarking machine learning algorithms, and can addition-
ally be valuable for better understanding of pain experience.
In this paper, we introduce EmoPain@Home, a new dataset
that captures body movement data together with self-reported
levels of pain and related worry and confidence from people
with chronic pain during functional activities at home.

Several datasets for automatic recognition of pain and
related affect exist (see Table [] for an overview) but only a
much smaller number cover chronic pain and these have been
limited to the context of stillness and instructed movement
in lab settings [4], [6[, [8], [10[], [16], [21]. Chronic pain is
of particular interest due to its significant effect on the sense
of self, engagement in valued activities, and interaction with
others [20]], [26]—[28]. It is important for technology that aims
to support personalization of care and self-management for
people with chronic pain to be built on data that is more
representative of pain experience and behaviour in the context
of everyday activities where their challenges lie [20]. This
requirement has motivated our new dataset, which shifts data
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capture to naturalistic functional activity settings and covers
activities that people with chronic pain find challenging.

Overall, our paper contributes the following to the area of
automatic recognition of pain and related affective states:

1) The first functional activity pain dataset,
EmoPain@Home, that consists of motion capture
data and self-reports of pain, pain-related worry, and
movement-related confidence captured from 9 people
with chronic pain during their normal home activities
over multiple days (mean=2.78 days per participant).
This dataset builds on our previous dataset (EmoPain
[16]) captured from people with chronic pain in exercise
movements in lab settings. While the EmoPain dataset
further includes data from healthy participants, with the
EmoPain@Home dataset we focus on capturing a wide
range of pain experiences (e.g. from no pain to extreme
pain) in everyday functioning with chronic pain.

2) A discussion of lessons learnt around inclusivity dur-
ing our data collection process. The importance of cap-
turing and understanding issues around the acquisition of
sensor data and related self-report is increasingly being
appreciated by different stakeholder groups. Insight into
issues that affect inclusivity for specific populations
particularly have the potential to shape the design of
technology so that it is feasible for use by these people
groups. Such insights can further be useful in helping
dataset creators maximise participation and data quality
via the use of informed data collection methods and
protocols (our discussion in this paper centres on the
sensor selection and participant training).

3) Exploration of automatic detection based on the
EmoPain@Home dataset, with analysis of features
of pain, worry, and confidence captured from different
movement timescales, as well as baseline classification
of pain levels. This extends previous pain level classi-
fication studies based the EmoPain dataset with a more
challenging dataset captured in functional movement set-
tings at home and with a more difficult task of detecting
pain levels in continuous time during each activity rather
than only at the end of the activity. Further, the findings
of our analysis provide new insights into relationships
between movement behavior and pain experience.
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Our studies were approved by our local research ethics com-
mittee (reference: 5095/001).

II. BACKGROUND: NONVERBAL MEASURES OF PAIN AND
THE SIGNIFICANCE OF THE BODY MOVEMENT MODALITY

Table [[| shows the variety of pain expression modalities rep-
resented across the multiple pain datasets that exist. The facial
modality of expression has been the most widely captured in
this area as can be seen in the table. Findings in [29] indeed
highlight the relevance of this modality, showing statistically
significant difference in the activation of facial actions between
the use of the pain-affected arm in people with shoulder pain
and the use of their non-affected arm. Significant although low
correlation was also found between the aggregate scoring of
these facial actions and self-reported pain intensity.

Vocal/paraverbal expressions have also been shown to be
valuable for capturing pain experience. For example, [34]]
found significant higher base frequencies, insistence and peri-
odicity, as well as duration of maximum pressure in infant cries
where there were other expressions of pain, compared to cries
associated with mild or no non-vocal expression. In [35] with
adults with severe intellectual and developmental disabilities,
vocalizations (such as moaning, crying, yelling) were observed
in both painful and non-painful activities. However, there
were significant differences in the number of pulses and the
shimmer level of the vocalizations for the two sets of activities.

There is also evidence of physiological response to painful
stimulus. For instance, [30] found significant effect of heat
stimuli intensity (higher than subjective pain threshold) on skin
conductance level and number of skin conductance responses.
In [20] (based on the EmoPain dataset), significant delayed
and lower back muscle relaxation was found in people with
chronic low back pain and high level pain during trunk flexion
movements compared with those experiencing lower level pain
or healthy participants. Relaxation was also significantly lower
in their upper back muscles. These findings are similar to the
finding of low but significant correlation between self-reported
pain levels and flexion relaxation ratio in lower back muscle
activity in people with chronic low back pain [31].

Closely related to muscle activity is overt bodily behaviour
which has also been associated with pain experience. [32]]
found significant differences in range and speed of head
movement between people experiencing pain (heat or cold
pressor) and those not experiencing pain. Their finding was
consistent across two datasets (BioVid Heat Pain [[11] and
BP4D-Spontaneous [12f]). They also explored a third dataset
UNBC-McMaster Shoulder Pain Expression [10] but their
findings were less evident with this. This may be due to
the constraint on head movement in the UNBC-McMaster
dataset as there were several instances in which the participant
was lying down. Unlike experimentally induced pain (i.e. for
BioVid Heat Pain and BP4D-Spontaneous datasets) where
speed was higher in people experiencing pain, speed was
lower in the movement of the pain-affected region (arm) for
people with clinical pain in the UNBC-McMaster dataset. [20]]
similarly found both lower speed and lower range of motion

(in the head and trunk) for participants with chronic low back
pain experiencing high level pain, in the EmoPain dataset.

While the use of multiple nonverbal measures of pain is
ideal [1]], logistical constraints such as the practicality of
data capture is a critical consideration. For example, facial
expressions are more practical for sedentary settings (e.g. [9],
(LT3[, [18]], [23], [25]) or when mobility is limited to
a single space (e.g. [10]], [16]]). Context and/or purpose of
assessment are further important in selecting the modalities
to employ. Findings in [33]], for instance, suggest that body
movement may be particularly valuable when the goal of
assessment includes judgement of task demands and coping
strategy during physical activity for people with chronic pain.

For our new EmoPain@Home dataset, we captured body
movement data because this is especially relevant in physical
activity context, and it provides insight into strategies used for
executing challenging activities. Additional modalities such as
muscle activity could be useful for a more comprehensive
capture of pain experience. However, we focused on body
movement in this dataset to minimize the burden (learning to
use unfamiliar sensors, self-attaching sensor units with pain,
and dealing with technical sensor issues) on participants.

III. THE EMOPAIN@HOME DATASET

Participants were recruited using ads on social media as
well as by directly contacting community pain support groups
across the UK. 10 people signified interest in taking part in the
study, but one person withdrew from taking part (due to other
unforeseen commitments) resulting in 9 participants in total.
The participants gave informed consent for collection and pro-
cessing of their data as well as for sharing pseudonymised data
with the research community. Participants were reimbursed for
their time at the rate of £10 per hour.

All (5 female, 4 male) self-identified as living with chronic
musculoskeletal pain involving the lower back area: 4 reported
sciatica, 2 reported chronic pain resulting from an old spinal
injury, and 3 reported other forms of chronic pain. The
participants were between 27 and 59 years old (mean=45.11,
standard deviation=11.50). The participants were in the UK at
the time of the study (March-August 2021).

A. Data Capture Settings

Data was captured in the context of everyday physical
functioning at home. The sensor system used was sent to
participants by courier and the participants were trained (re-
motely) to attach the sensors and record the data themselves.

Rather than recreating activities for the purpose of the study,
the participants performed tasks that they needed to do in
their own homes (see Table [[I). In order to have a good
representation of pain experiences across the range of these
activities for each participant, they were asked to include
activities that they usually found particularly challenging as
well as those that they did not find challenging. Participants
were asked to fill in a diary over the days before the first data
capture session to identify these activities beforehand. Data
capture sessions were then arranged for the days when the



TABLE I

EXISTING PAIN RECOGNITION DATASETS

Dataset Year Type of pain Context Modalities
Gioftsos and Grieve [4] 1996 chronic muscu- | instructed exercise movements in | body movement, feet force
loskeletal lab settings
Bishop et al. 5] 1997 acute constrained exercise movements | spine movement
in lab settings
Dickey et al. [6] 2002 chronic muscu- | instructed exercise movements in | spine movement
loskeletal lab settings
Brahnam et al. [[7]] 2006 puncture hospital neonatal unit facial expression
Levinger and Gilleard [_]] 2007 chronic muscu- | instructed walking in lab settings | lower limb movement, ground reaction
loskeletal force
Hi4D-ADSIP [9] 2011 acted seated facial expression
UNBC-McMaster Shoulder | 2011 acute, chronic muscu- | instructed exercise movements | facial expression
Pain Expression [[10] loskeletal standing or laid down in the lab
BioVid Heat Pain [11] 2013 heat seated in lab settings physiological signals, facial expression,
upper body movement
BP4D-Spontaneous [12] 2014 cold seated in lab settings facial expression, head movement
Rivas et al. [13] 2015 acute seated exergaming hand movement, hand pressure, facial
expression
Infant Cry Sounds [[14] 2015 acute hospital visit vocal expression
Zhang et al. [[15] 2016 cold seated in lab settings physiological signals, facial expression,
head movement
Triage Pain-Level Multimodal | 2016 acute triaging in hospital emergency | physiological signals, vocal expression,
Database unit facial expression
EmoPain [16] 2016 chronic muscu- | instructed exercise movements in | physiological signals, facial expression,
loskeletal lab settings body movement
SenseEmotion [17]] 2017 heat seated looking at affective images | physiological signals, vocal expression,
augmented with sound facial expression, body movement
Multimodal  Intensity Pain | 2018 electrical stimulation seated in lab settings physiological signals, facial expression
(MIntPAIN) (18]
Ubi-EmoPain [19], [20] 2018 chronic muscu- | instructed and naturalistic move- | physiological signal, body movement
loskeletal, widespread | ment in lab settings
Hu et al. [21]] 2018 chronic instructed standing in lab settings | physiological signals, ground reaction
force, spine movement
Clinical Valid Pain [22] 2018 acute hospital emergency unit visit blood test data, facial expression
X-ITE Pain [23] 2019 electrical stimulation, | laid down in lab settings physiological signals, vocal expression,
heat facial expression
iCOPEvid [24] 2019 puncture neonatal hospital unit facial expression
Intelligent Sight and Sound | 2021 cancer reading aloud text, describing | vocal expression, facial expression
Chronic Cancer Pain 1 [25]] current feelings
EmoPain@Home (current pa- | 2022 chronic functional activities at home body movement
per)

participant planned to engage in the noted activities. Within
each session, the participant engaged in a number of the self-
selected activities (shown in Table [II).

Each participant took part in multiple data capture sessions
across multiple days. The number of session days per par-
ticipant ranged between 1 and 4 days (median=3). For each
session day for a participant, the session was limited to an hour
to minimise fatigue. We additionally limited capture of each
activity in a session to 15 minutes roughly and participants
were encouraged to take breaks earlier if needed. These
considerations were decided together with a clinician within
the research team and further discussed with the participant.

In order to enable recording of end-of-session interviews
as well as to facilitate continuous capture of self-report based

on experience sampling, the researcher was present during the
sessions. However, the researcher only attended them remotely,
i.e. via video-conferencing. Three participants further took part
in sessions without the researcher present.

B. Data Description

1) Body movement data: In each data capture session, body
movement data was captured using wearable inertia-based
sensor units (Notch sensors) that record 3D joint angle and
position data. To further limit the burden on the participants,
only 6 sensor units were used; lab tests suggested that sensor
attachment time and possibility of technical issues increased
with the number of sensor units. We captured movement data
for the right elbow and wrist, mid spine, hip, and right knee
and ankle. Findings in previous work [[19]], [20]], [36] suggest
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TABLE II

Participant ID
ACTIVITIES CAPTURED IN THE EMOPAIN @ HOME DATASET 80 :g :2 =§
(SELF-SELECTED BY PARTICIPANTS) + s 7 m10
3 60
o
40
PID| Challenging activities Non-challenging activities 2
2 Changing bedsheets**, Walking exercise, Sweeping, Illl!....-.-------___
Washing up**, Loading Dusting**, Vacuuming* 0 $ % % % s 2 % %s % £3%3%28% gs T‘; 2% ége.éc% 2553
washing machine, Unloading g3 332%% 3%%3%2 T 3 gé%g‘%%éa%%%
N . . e ) ES E3 - ° e e 3
washing machine, Window 23 3% %: 35 3;% %%3 : 3 %%%% %&%2%% 3%
cleaning 5 3%% E’““;@%"a% ) %i‘é‘%%%é"’i%g'{;
g g 0 - - 2 @ 3 © S v 3 °32% 3 % %
3 Hoovering, Washing up**, Washing up**, Unloading 5 7 3 S 3 2 3 e%3ig
Bathroom cleaning, washing machine®*, EY %a ’é B
Unloading shopping, Cleaning | Loading washing machine** °
windows, Tidying up* Activity
4 Hoovering**, Changing Bathroom cleaning, Dusting
bedsheets**, Vacuuming (car), Preparing food*, Fig. 1. Distribution of the activity instance segments by activity type.
(car), Watering garden Cleaning parrot cage*
5 Painting shelves, Painting a -
wall, Walking e?(ercise, Challenging
Bathroom cleaning 100 CINo
6 Changing bedsheets Unload dishwasher, Sorting Eyes
out boxes of stuff 80
7 Unloading washing machine, Loading washing machine, -
Unloading dishwasher, Loading dishwasher, 2 60
Changing bedsheets Tidying up room %
8 Washing up, Hanging clothes Yoga, Unloading washing E
to dry, Vacuuming, Changing machine 40
bedsheets, Cleaning windows
9 Ironing, Preparing lunch Filing documents 20
10 | Tidying up room -
Note that the participant with PID=3 originally specified Washing up’ as 0
. . . . . 0 1 2 3 4 5 6 7 8 9 10
non-challenging, but referred to it as challenging for a different session

when they experienced (chronic) hand pain.
PID - Participant ID

* - performed without the researcher (remotely) present
#* - performed both with and without the researcher (remotely) present

that capture of data from only one side of the body can be
informative for automatic assessment.

2) Self-reported pain and related affect labels: In the data

capture sessions where the researcher was present (remotely),
audiovisual data was recorded using the participant’s webcam.
This recording was used to capture from the participant at
every minute verbal self-report of pain, worry about pain, and
confidence about being able to perform the rest of the activity.
Pain and worry were assessed on a numerical scale from 0 to
10, with O for ‘none’ and 10 for ‘very severe’ as was done
in the EmoPain dataset. Confidence was assessed using an
ordinal scale of: no confidence, less than average confidence,
average confidence, more than average confidence, and max
confidence. While there is a lot of precedent for the 0-10 scale
(especially for pain) that is the standard [37]], there is little
evidence that people make up to 11 (or more) distinctions be-
tween levels of confidence, so we kept the scale for confidence
simpler. The fewer distinctions for the confidence scale made
it feasible to use a verbal (rather than numeric) scale, which
people prefer [38]]. An additional rationale for using the ordinal
scale for confidence was to help differentiate it from the pain
and worry scales for which, unlike with confidence, a higher
value represents a more negative experience, and so make it as
minimally challenging as possible, cognitively, to self-report
all three constructs continuously through the activities.

Pain

Fig. 2. Distribution of the activity instance segments by pain intensity.

Participants responded to prompts for current pain, worry,
and confidence from the researcher. In order to limit disruption
of the activities, the verbal prompt was shortened to “’time”
once the self-report constructs and procedure were extensively
described to the participant. The method and frequency of self-
report was based on discussion in [39] of the value of the
method for both research and the participants themselves.

For capture sessions where the researcher was not present,
the participant recorded in written form the pain, worry, and
confidence experienced at the start and end of each activity.

C. Descriptive Analysis

For analysis, we focused on the activity instances where
self-report was provided during the activity (at every minute),
rather than only at the start and end. The mean duration of
these activity instances (i.e. the time between the first and last
self-report in each activity instance) is 9.62 minutes (standard
deviation = 5.89). Each self-report point within these activity
instances was then used to define a unique activity instance
segment. An activity instance segment thus has as labels the
pain, worry, and confidence reported at the corresponding self-
report point as well as the activity type in which the self-report
was made. We obtained 504 activity instance segments. We
recoded the confidence labels to integer values with 1 for 'no
confidence’ and 5 for 'max confidence’ for analysis.

Fig. |1| shows the distribution of the activity instance seg-
ments across activity types highlighting the participant that
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Fig. 3. Distribution of pain intensity within each activity instance.

performed the respective segment. There are 26 activity types.
More than 30% of these have 20 or more segments. Further,
while most of the activity types are exclusive to individual
participants (e.g. only one participant had a yoga activity
instance), a number of activity types are common to 3 or
more participants. For instance, 5 participants had bedsheet
changing activity instances, and 3 participants had loading
washing machine activity instances.

Plot of the pain intensities across the activity instance
segments (Fig. [2) shows that although most of the segments
have mid-level pain labels, higher level pain labels are well-
represented. Further inspection of the range of pain intensities
within each activity instance (Fig. [3)) shows that for most of
the activity instances, there are changes in pain intensities
across segments from the same activity instance. The findings
were similar for worry and confidence (plots not shown due
to space constraints) although there is a right skew for worry
with a peak at intensity of 2 and a skew to the positive side for
confidence with its peak at 4 ("more than average confidence’).

IV. AUTOMATIC DETECTION OF PAIN LEVELS: BASELINE

We report here baseline classification of pain levels based on
the EmoPain@Home dataset using standard machine learning
algorithms and features based on existing work. We further
present findings of correlation analysis of the features with
respect to pain, worry, and confidence.

A. Methods

1) Feature Extraction: We extracted body movement fea-
tures corresponding to each of the activity instance segments.
We extracted features only from activity instance segments for
which all 6 anatomical joints of interest were recorded without
missing data (n = 226 out of 504 segments).

We computed 6 sets of features: average speed, average jerk,
average energy, normalised amount of movement, minimum
distance from the forearm (to capture self-adaptor behaviour),
and angular range of motion. These features were informed by
previous work in [[19], [20] based on the EmoPain dataset, but
here they were computed them across two different timescales.
For the activity instance timescale, the feature covered the
time period from the first frame of the corresponding activity

instance to the frame of the corresponding self-report point of
the given activity instance segment. With the activity instance
segment timescale, the same feature was computed over the
one-minute window preceding this self-report point.

2) Learning Algorithm: We used a standard machine learn-
ing algorithm, Bagging [42] which enables (random) selection
of a subset of features to build each learner in the ensemble.
This is particularly relevant given the dimensionality of the
extracted features (m = 60) in the context of the available data
(n = 226). We set the maximum number ¢,,,,, of features used
to build each learner to 18 with replacement. We did not obtain
better performance with other values (¢,,q, = 12,30, 60). We
used decision tree [43] as the Bagging learner as it performed
better than others such as support vector machines, k-nearest
neighbours, logistic regression, and multilayer perceptron in
experiments. The Bagging model was evaluated using leave-
one-activity-instance-out (LOAIO) cross-validation where all
segments from the same activity instance are held out in each
fold. The number of learners to use for the model was selected
in each fold using nested LOAIO cross-validation. We did
not test for generalisation to unseen participants (leave-one-
subject-out cross-validation) because of the difference in the
types of activities performed by the participants (Fig. [I).

3) Training Data Boost: To boost the size of the training
data, in each fold we included data from participants with
chronic pain in the EmoPain dataset. The context of the
EmoPain dataset was not functional activities at home but
rather exercise movements captured in lab settings. However,
the exercise movements (sit-to-stand, stand-to-sit, sitting still,
standing still, standing on one leg, forward reach, bend, walk)
are representative of movements involved in functional activ-
ities. For example, changing bedsheets may involve forward
reaching; vacuuming may involve walking and bending.

The same pain scale used in the EmoPain@Home dataset
was used in the EmoPain dataset. While the motion capture
sensor types for the two datasets are different, we expected
that the features computed would be comparable across the
two datasets. We further scale the feature set for each dataset
separately to account for any differences.

In the EmoPain dataset, exercise instances were of short
durations (under a minute [40|]) and pain intensity was reported
for each instance only at its end. Thus, each exercise instance
specified an activity instance segment for the training data.
This resulted in 330 additional segments in the training data
for each fold. While we extracted two timescales of features
per segment as was done with the EmoPain @Home dataset, for
the shorter timescale features were computed over the second
half of the corresponding exercise instance, and computed over
the full exercise instance for the longer timescale.

B. Results

1) Classification Results: Given the limited size of the data,
we focused on two levels of pain: lower level pain, defined as
pain intensity less than 5 on the pain scale, and higher level
pain otherwise. Table shows the confusion matrix for the
automatic classification of pain levels across all folds, with



TABLE III
BASELINE PAIN LEVEL CLASSIFICATION RESULTS: CONFUSION

TABLE IV
FEATURE CORRELATIONS

MATRICES
WITH TRAINING DATA BOOST Variable Joint Timescale | Pain Worry Confidence
Prediction trunk NS NS NS
Lower level pain | Higher level pain thigh Activit NS -0.14* 0.14*
Ground Lower level pain 81 28 upper arm in(;tl;;lq Cye NS NS 0.14%*
truth Higher level pain 61 56 lower leg ‘ NS -0.17* 0.18%*
forearm segmern NS NS NS
WITHOUT TRAINING DATA BOOST Speed hip NS NS NS
Prediction p trunk -0.15% -0.14%* -0.15%
Lower level pain | Higher level pain thigh -0.24%% | -0.21%* [ 0.23%*
Ground Lower level pain 81 28 upper arm | Activity -0.14% -0.13* 0.16*
truth Higher level pain 64 53 lower leg instance -0.25%% [ -0.20%* 0.23%%
forearm NS NS NS
hip NS NS NS
trunk -0.30%* | -0.24%* | 0.31%*
) o ) thigh activiry NS NS NS
and without the training data boost (with test data from the Upper arm m‘;’t’;r’ge S028%F | -0.22%% | 0.32%%
EmoPain@Home dataset only in both cases). We obtained F1 lowerleg | o on L7024%* | -0.21%* | 0.23*
: : forearm & 0187 | 0.16* | 0.23%F
scores of 0.65 and 0.56 for the lower and higher pain levels hip NS NS NS
respectively with the multi-dataset training data. As can be Jerk trunk 036%F | 020%F | 037%%
seen, the boost improves performance albeit marginally. This thigh A 8%«:* 1\(1)531** 0N§8**
. . . . . . upper arm ctivity -0.33% -0.31° .
1mprovemc.mt is despite the differences in the tlmgscales of TowerTeg | instance | 0327 | 025%% | 0.28%
self-reporting and extracted features for the EmoPain@Home forearm 020%F | -0.22%F | 0.28%%
and EmoPain datasets. hip NS NS NS
. . . trunk -0.15% -0.14%*% | 0.14*
This ﬁndlng suggests tha.t more data could improve perfor- tfllinglh Aetivins NS NS NS
mance on pain level classification for the EmoPain@Home Upper arm in‘;t’;ggg NS NS 0.18%
dataset. It additionally highlights the possibility of combining lfower leg | seqment Eg Eg 812;
multiple pain datasets that include motion capture data from h?;earm NS NS NS
people with chronic pain to create larger datasets. Beyond ad- | Fnerey frunk 026%F | 0217 | 0217
ditional body movement data collected in the context of pain, thigh » 0.26%* | -0.18%% | 0.22%*
novel data augmentation/generation techniques and careful use upper arm | Activity RO O S MO
vel data aug ton/g 1 1qu reful us Tower leg | instance [ -0.27°F | -0.19%F | 0.23°F
of existing body movement datasets outside the experience of forearm NS NS NS
pain could perhaps also be valuable. hip . Eg Eg Eg
. trun
2) Correlation Results: In further exploration of the thigh NS 014" 0.14%
. y Activity < =
EmoPain@Home dataset, we performed Spearman’s correla- upper arm | o - | NS NS 0.14%
. . . . . — * E3
tion analysis. This was done using the EmoPain@Home data lfz‘r*gnfg segment Eg 1\?'517 %ég
alone. For the correlations between constructs (n = 504), we Afmoum hip NS NS NS
found strong association with worry: confidence having the | O trunk -0.15% | -0.14* [ 0.15%
- - movement —pioh -024%F [ 021%% | 0237
strongest correlation of —0.76 (p < 0.01) and the correlation £ . : el -
K K upper arm Activity -0.14* -0.13* 0.16*
for pain lower at 0.65 (p < 0.01). The correlation between Tower leg | instance | “0.25%F | -0.20%% | 0.23%%
pain and confidence was only moderate, —0.50 (p < 0.01). forearm NS NS NS
The correlations of each of these with the extracted features hip _ NS NS _ NS
. .. trunk Activity -0.27%% | -0.24%* | 0.28%*
(n = 226) are shown in Table We found statistically thigh instance NS NS NS
significant, although small, correlations with several features. Minimum | hip segment NS NS NS
. . distance trunk L. -0.34%*% | -0.18%* | 0.25%*
Wg fqund that c.orrelatlon was cons1sFe¥1tly. stronger for the to the high Activity 016 012 015
activity instance timescale than the activity instance segment forearm hip mstance | —goTEE [ 0.17% 0.18%%
Range of hip and knee motion was not significant for the two timescales.

timescale, particularly for the trunk, thigh, and lower leg. This
suggests that non-verbal behaviour associated with a given
experience may manifest over a longer timescale than the
sampling period that the verbalisation of the experience covers.
Another finding that was consistent, especially for speed and
amount of movement, is that while there was less significant
correlation for pain intensity than for confidence levels in
the shorter timescale, correlation was significant and stronger
for pain than confidence in the longer timescale. This further
suggests that non-verbal behaviour may be more related to
pain-related confidence in the short term, but with stronger

* - significant at p < 0.05; ** - significant at p < 0.01;
NS - not significant at p = 0.05

association with pain intensity in retrospect.

Further, there was generally stronger correlation for jerk
than for the other sets of features. The reason for this is
not clear, but we additionally found an inverse relationship
between pain (or worry) and jerk, with lower jerk (and so
more smoothness) associated with high pain intensity. This



departs from intuition. However, it is consistent with similar
findings, e.g., with acute shoulder pain in [41]] which highlight
relationship between jerk and speed, with higher jerk (less
smoothness) associated with greater speed. People with higher
levels of pain were slower and so less jerky. We found the same
relationship in the EmoPain@Home dataset.

No significant correlation was found with the hip and knee
range of motion features. This could be due to the wide
variety in activity types which inherently involve different
ranges of motion. For example, a small range of motion would
be expected in the washing up activity, whereas vacuuming
is more likely to be executed using a much larger range of
motion. Indeed, a boxplot of range of motion across activity
types showed a limited range of motion in the washing up
activity particularly for the knee, while activities such as yoga,
vacuuming, and sweeping had much larger ranges of motion.
Visual inspection of range of motion in lower and higher pain
levels by activity type showed no conclusive patterns.

V. DISCUSSION: RECOMMENDATIONS ADDRESSING
INCLUSIVITY IN DATA CAPTURE OUTSIDE LAB SETTINGS

Beyond the pain dataset captured in our study, our data
collection approach led to additional insights that highlight
important considerations for datasets creation, especially for
data capture in the wild. We focus our discussion here on
things to consider for inclusivity, particularly with respect to
sensor selection/design and participant training.

A. Sensor Selection

We found that certain kinds of motor manipulations (e.g.
turning on the sensor by pinching in a specific way) that the
sensors in our study required were difficult for the participants
with (additional) upper limb pain. Such experiences are sig-
nificant as ethically, the burden on the individual participant
must be considered and balanced with the benefits for both
the participant and the larger society. Further, sensor use diffi-
culties could contribute to data cascades [45] that negatively
affect the performance and use of technology, e.g. by deterring
participants from (effectively) engaging with it.

Dataset creators thus need to intentionally incorporate in-
clusivity in their selection of sensors, together with lobbying
for sensor designs that are more robustly inclusive. This
will include uncovering sensor-related barriers for the specific
participant populations and in the scenarios of interest. Direct
observation in situ allowed us to capture some of such issues in
our study. As a contrast, a similar study [44] with participants
with movement impairment but not using direct observation
found no population-specific sensor issues. While large scale
studies cannot afford to have the researcher present in all
data capture sessions as done in our study, a few of such
’supervised’ sessions can be included in the data collection
protocol to enable direct observation of limitations with re-
spect to sensor inclusivity in context.

B. Participant Training

At the start of our study, we evaluated the sensors as easy to
use by participants with limited technology experience, given

training. Our training approach with each participant consisted
of a one-on-one half-hour session in which they had hands-on
exploration of how to use the sensor system. We chose this
approach to minimise the burden on participants, leveraging
the direct availability of the researcher to troubleshoot issues
during actual data capture. However, we found that participants
often forgot specific procedures at the time of data capture.

The approach in [44] using formal post-training tests to
check (and require) participant understanding of how to use
the sensor(s) can be valuable in addressing this, especially
for large scale studies where researcher availability will be
limited. However, with the approach comes ethical questions
that the dataset creator needs to carefully address. For example,
to what extent should participants be unable to grasp how to
use the sensors to be excluded? Also, how many potential
participants might drop out from being overwhelmed by a long
and cumbersome briefing procedure?

These further underline the significance of sensor design
that sufficiently meets a broad range of needs in the given
population. Thus, a critical outcome of research should be
an explicit agenda challenging designers to make sensors
easily usable by a broader range of potential users, and at the
same time also challenging researchers to select sensors that
support this in their studies. A good sensor design should at
least ensure that the right amount of information is conveyed
at the right time for data collection. It could perhaps also
be adaptable to available cognitive resources, e.g. through
interface options (such as standard versus enhanced). Failing
to drive engagement with usability issues will limit the scope
and utility of affect-aware systems in the long term.

VI. CONCLUSION

We present the EmoPain@Home dataset of motion capture
data with pain and related worry and confidence labels cap-
tured in everyday activities at home with people with chronic
pain. The dataset can be accessed on request to the last author.

Our analysis shows that the dataset has a good distribution
of pain, worry, and confidence levels as well as an adequate
variety of activity types. Further, baseline performance of
0.61 average F1 score for continuous pain classification across
different activities demonstrates that the dataset can be valu-
able for developing automatic assessment technology for the
context of pain. This dataset thus represents a starting point in
building a corpus of ecologically valid data for research and
development in the area of pain. Extension of the dataset is
already ongoing. Additionally, we have highlighted important
considerations that can affect inclusivity as a guide for other
creators aiming to expand such corpus.

The outcome of our additional analysis of the relationship
between movement behaviour and pain and related experience
at different timescales highlights a need to explore in more
detail the timescales of influence of pain increase on move-
ment. Insights gained from such investigations can be useful
for more appropriate interpretation of movement behavior that
further facilitates helpful tailoring of intervention.
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