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Abstract—Machine learning models automatically learn dis-
criminative features from the data, and are therefore susceptible
to learn strongly-correlated biases, such as using protected
attributes like gender and race. Most existing bias mitigation
approaches aim to explicitly reduce the model’s focus on these
protected features. In this work, we propose to mitigate bias
by explicitly guiding the model’s focus towards task-relevant
features using domain knowledge, and we hypothesize that
this can indirectly reduce the dependence of the model on
spurious correlations it learns from the data. We explore bias
mitigation in facial expression recognition systems using facial
Action Units (AUs) as the task-relevant feature. To this end,
we introduce Feature-based Positive Matching Contrastive Loss
which learns the distances between the positives of a sample based
on the similarity between their corresponding AU embeddings.
We compare our approach with representative baselines and
show that incorporating task-relevant features via our method
can improve model fairness at minimal cost to classification
performance.

Index Terms—facial expression recognition, fairness, con-
trastive loss

I. INTRODUCTION

The performance of machine learning models depends on
the quality of the dataset that they are trained on; any bias in
the dataset will be learnt by the model [1], [2]. One example is
dataset imbalance: if in a Facial Expression Recognition train-
ing dataset, there are more Male faces with Angry labels than
Female faces, then given this spurious correlation, the model
might learn to associate features associated with Male faces
(which is task-irrelevant), with the output class Angry. Such
task-irrelevant cues may be shortcuts that the model learns to
achieve better performance, but which reduce generalizability
to new data [3]–[5]. Moreover, for moral, ethical, and legal
reasons, we may want to ensure that the model is unbiased
with respect to certain protected attributes, such as race and
gender.

Generally, there are two broad classes of approaches to
mitigate bias in machine learning models. The first class of
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approaches require knowledge of the labels of the protected
attribute. If one has labels of the protected attribute, one could
try to compensate for the statistical distribution of the attribute
[6], use the labels in contrastive-based approaches [4], or to
“train out” the bias using adversarial-based approaches [7]–
[10].

The second class of approaches do not require labels of
the protected attribute during training (although for evaluating
our bias mitigation techniques, we would still require labels).
Most methods in this class use a helper model that is trained
with the knowledge of the type of bias-causing features (such
as texture biases in CNN models), and the information from
these helper models is used to debias the main models [4],
[11], [12]. Other approaches utilise the learning dynamics of
neural networks, which have been shown to learn biased cues
faster than task-relevant features [3], [5].

In this work, we propose a different approach to reducing
bias. Instead of explicitly reducing the model’s reliance on
task-irrelevant features, we instead propose to guide the model
to focus on a set of task-relevant features—and in doing
so, reducing bias in the model. In particular, in the case
of Facial Expression Recognition, we consider Facial Action
Units (AUs) [13], which have been widely studied in Fa-
cial Expression Recognition research [14]–[17]. We introduce
feature-based Positive Matching Contrastive Loss, which uses
extracted AUs to compute similarities between faces with the
same emotion label (i.e., among positive samples). We use
these similarities in a contrastive loss to weigh the distances
between each sample and its positive samples. We compare
our work with representative baselines using two datasets
(RAF-DB and IASLab), and find that, compared to existing
approaches which do and do not use bias labels, our approach
performs very well at reducing bias.

II. RELATED WORK

A. Bias mitigation for Machine Learning models

We review existing approaches based on whether they
require explicit labels of the protected attribute (i.e., labels
of the potential bias) during training.
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1) Bias mitigation with labels: One set of approaches
makes the model aware of the bias such as by explicitly
predicting bias labels in a multi-task setting [18], [19], com-
pensating for the distributional statistics of the protected
classes [6] or by incorporating the bias labels in the loss
computation [4]. Alternatively, adversarial-based approaches
explicitly try to make the model “blind” to the bias labels by
using a confusion loss [7], [10] or gradient reversal techniques
[9], [20]. Although most existing bias mitigation approaches
use bias labels for mitigation, this may not always be practical
as it is difficult to exhaustively list all the factors that may
induce bias in real-life conditions. In addition, a majority of
existing datasets do not contain bias label annotations, which
may limit the utility of these approaches.

2) Bias mitigation without labels: Recently, there has been
a shift in bias mitigation strategies towards debiasing the mod-
els without using bias labels. A majority of these approaches
train an auxiliary model to debias the primary model [4],
[11], [12]. The auxiliary model is generally trained to predict
the task using biased features. For example, Convolutional
Neural Networks(CNNs) are biased towards textures [21], and
so one approach to debias object recognition models is to
train an auxiliary model to use textures. For instance, [4]
used the distance between samples from embedding space
of the auxiliary model to weigh the positives samples in the
contrastive objective of the primary model such that when two
positives are closer in the embedding space, they should be
weighed less in the primary model.

Another set of approaches harnesses the learning dynamics
of neural networks to mitigate bias [3], [5]. If the dataset
contains strong biases, then the model learns early on in
training to differentiate samples based on these easier-to-learn
bias features, which hampers the model’s ability to learn
task-relevant features [3], [5], [22], [23]. For example, [3]
introduced Spectral Decoupling which uses a L2-regularisation
penalty term to decouple the features from the learning dynam-
ics of neural networks, which in turn gives the model a chance
to learn from all the features. [5] used the observations from
the model learning dynamics to select easy and hard samples
for the main model with the help of an auxiliary model.

Our work does not require bias labels nor knowledge of the
bias features. Instead of explicitly removing the dependence of
the model on the task-irrelevant features, we aim to increase
the importance of task-relevant features, obtained using do-
main knowledge. We hypothesize that doing so would in turn
diminish the model’s dependence on the bias features.

B. Bias mitigation strategies in Facial Expression Recognition

Facial expression recognition have been widely deployed in
various commercial settings such as in automated candidate
screening where companies use videos from applicants to filter
candidates based on their facial expressions. Recently, these
algorithms have come under scrutiny for reinforcing biases
against certain groups of people, such as people with disabili-
ties [24]. Similarly, Rhue [25] investigated two commercial
expression recognition software, Face++ and Microsoft AI,

and found that these two commercial offerings rated Black
basketball players (in their professional website pictures) as
displaying much more negative emotions than White players.

Yet, there are only a few papers that have focused on
mitigating bias in the context of facial expression recognition.
One example is [8], who investigated existing bias-mitigation
techniques that use bias labels for gender- and race-bias mit-
igation in facial expression recognition of six basic emotions,
and found promising results for adversarial approaches.

In a recent study, [26] used Facial Action Units to mitigate
annotation bias, which occurs when human annotators extend
their personal/social biases into the data annotation. In this
work, while we are less concerned with annotation bias, we
also use Facial Action Units as the task-relevant feature to
develop fairer expression recognition models.

1) Facial Action Units for Facial Expression Recognition:
We use the Facial Action Coding System (FACS) as the task-
relevant features for Facial Expression Recognition. FACS [13]
is an anatomically-based coding system which codes facial
muscular movements into a set of Action Units (AU), which
gives a description of facial muscle movements. Action Units
have been widely used in the study of facial expression and
perception [27]–[29].

[14] used a FACS-based deep learning architecture to
retrieve images that display similar facial expressions in
FER2013, an in-the-wild facial expression dataset. Another
detailed investigation by [15] found that there is activity in
CNN-based FER models in the regions of the face correspond-
ing to the locations of relevant Facial Action Units, which
suggests a high correlation between the facial expressions and
facial action units. Thus, there is literature to support the
claim that these extracted AUs are meaningful indicators of
facial expression, and hence we may be able to use these AU
features as task-relevant features to guide the model towards
these features, and away from task-irrelevant features.

III. APPROACH

A. Model Fairness

How do we measure if a model is “fair”? This is not a trivial
question, and there have been different notions of fairness
discussed in the literature [1], [30], [31]. In our context, let
us consider a model trained to detect happiness (or not),
ŷ ∈ {0, 1}, in a dataset containing the sensitive or protected
attribute gender, male or female {am, af} ∈ A. We may desire
for our model to have the same level of accuracy in predicting
“truly” happy men and as it does for predicting “truly” happy
women, or in other words, to have the same true positive
detection rate (of happiness, y) across groups a ∈ A. This
is in line with the notion of equality of opportunity [1], [30],
where we ideally want:

P (ŷ = 1|y = 1, A = af ) = P (ŷ = 1|y = 1, A = am) (1)

where ŷ is the predicted label, y is the target label, for the
protected classes {af , am} ∈ A. In this work, we focus on
equality of opportunity as it maintains a balance in achieving
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Fig. 1. An overview of our proposed Positive Matching Contrastive Loss. xi is
the input image, hi is a latent embedding of the input image used to compute
the contrastive loss, and Ai is AU embedding obtained after projection. Both
hi and Ai was normalised before computing the loss, in Eqn. 2. Dashed
arrows represent pre-processing steps (extracting AU from input data) and
solid arrows represents connections that are updated during model training.
Images shown are taken from the RAF-DB dataset.

fairness by equalising the true positive rates amongst different
protected groups [30].

B. Feature-based Positive Matching Loss

In standard supervised classification, the model learns in-
put features that yields the best classification accuracy—
sometimes, some of these output-relevant features may cor-
respond to protected attributes such as race and gender. For
example, if the training dataset is imbalanced or has other
types of bias in it, such that some protected attributes are more
correlated with some output classes (e.g., White faces that tend
to be labelled as Happy, compared to Black), then the model
would learn to associate these attributes with the output (e.g.,
see [25] for an example for emotion classification and race).

In this work, we propose a different approach. How about if
we guide the model to pay attention to certain types of input
features that we know, from theory, relate to the output? In
the case of emotion classification, there has been systematic
research characterizing facial muscle movements, which has
been formalized in the Facial Action Coding System [13], [27]
and provides an informative set of features from which to infer
emotions.

We introduce feature-based Positive Matching Contrastive
Loss which provides extrinsic guidance to the model using
task-relevant features, without the need for explicit bias labels.
We hypothesize that such guidance will help the model focus
on task-relevant similarities (such as facial muscle movements)
over task-irrelevant features (that may be associated with race
and/or gender).

Let the latent embedding of a sample i using a Convo-
lutional Neural Network-based feature extractor be hi, and
let the embeddings of its positive samples (i.e., the other
samples {p} ∈ Pi that share the same output class as i) be

{h1, · · · , hPi
}. We use a similarity function to calculate the

pair-wise similarities between i and its positives {p} ∈ Pi, to
obtain: {S(hi, h1), · · · , S(hi, hPi)}. Next, we repeat the same
similarity calculations with the AU embeddings of sample i,
Ai, along with its positives {A1 · · · ,APi

}, and we use these
to weight the similarity scores of the h embeddings in the loss:

Lpos-match = − 1

N

N∑
i=1

Pi∑
p=1

S(Ai,Ap) · S(hi, hp) (2)

where N is the total number of samples in a batch. We
normalise both AU embeddings Ai and latent embeddings hi,
and we use cosine similarity for S(., .).

To obtain the AU embeddings, we use the recently-
introduced AU detection model, JAA-Net [32], to get the
raw intensities for 12 AUs1 in the range of 0 to 1. The AU
extraction step is performed prior to the training of the CNN-
based feature extractor. During training, each 12-dimensional
raw AU vector is projected into a latent space using a non-
linear layer with a dimension of 32 with a ReLU activation.
This network is trained along with the feature extractor to get
the corresponding AU embedding Ai.

For feature extraction (Fig. 1), we fine-tune ResNet50 pre-
trained with VGGFace2 weights [33]–[35]. The output of
the ResNet-50 network is further projected down to a latent
space using a non-linear layer with a dimension of 128 with
ReLU activation to obtain hi which is used for computing
Lpos-match (Eqn. 2). For facial expression classification, as done
in standard fine-tuning, the output from ResNet-50 is passed
through a classification layer and trained using a Cross Entropy
Loss. Therefore, the combined objective is given by:

09Lfinal = Lpos-match + LCE (3)

IV. EVALUATION

A. Datasets
We used two emotion-classification datasets with seven la-

bels: {happy, sad, angry, fear, surprise, disgust, and neutral}.
• RAF-DB [36], [37] consists of crowd-sourced face im-

ages from the Internet. All the images are labelled
with race, gender and age attributes, and we will con-
sider mitigation of bias by race and gender 2. The
train/validation/test split is 9816 / 2455 / 3068 samples
respectively. We used the cropped and aligned version
provided by the authors.

• IASLab3 is a lab-controlled dataset which comprises of
posed expressions that also have gender annotations. In
this dataset, all images are modified to have eyes centered
in the same location4. We use a train/validation/test split

1AU01: Inner brow raiser, AU02: Outer brow raiser, AU04: Brow lowerer,
AU06: Cheek Raiser, AU07: Lid tightener, AU10: Upper Lip Raiser, AU12:
Lip Corner Puller, AU14: Dimpler, AU15: Lip Corner Depressor, AU17: Chin
Raiser, AU23: Lip Tightener, and AU24: Lip Pressor.

2In RAF-DB some samples are labelled ”Unsure”. Following previous
works, for fairness evaluation we do not use these samples.

3Development of the Interdisciplinary Affective Science Laboratory
(IASLab) Face Set was supported by the National Institutes of Health
Director’s Pioneer Award (DP1OD003312) to Lisa Feldman Barrett.

4https://www.affective-science.org/face-set.shtml

https://www.affective-science.org/face-set.shtml


Gender Male Female Unsure
IASLab 414 (35.9%) 740 (64.1%) -
RAF-DB 3,893 (40.2%) 5,179 (53.5%) 609 (6.3%)
Race Caucasian African-American Asian
RAF-DB 7,420 (76.6%) 767 (7.9%) 1,494 (15.4%)

TABLE I
BREAKDOWN OF DATA BY RESPECT TO GENDER (TOP) AND RACE

(BOTTOM). ONLY RAF-DB HAS RACE ANNOTATIONS.

of 1,151 / 144 / 145 samples.

B. Implementation Details

1) AU Detection: We use the py-feat5 [38] package to
implement JAA-Net for detecting AUs from training images.
We first perform face detection using RetinaFace [39]. Sam-
ples with no faces detected are discarded and if multiple faces
are detected then we take the largest face. Each image with
a detected face will be passed through JAA-Net to obtain a
12-dimensional AU intensity vector.

2) Model Training: We trained our models using Stochastic
Gradient Descent with a momentum of 0.9, a learning rate of
1e-03 and batch size of 32. We trained the models for 30
epochs using a step learning rate scheduler with step size
of 10 and decay factor γ of 0.5, and did early stopping,
choosing the best model based on validation accuracy. We
resized the the shorter side of images to 256 pixels and perform
center cropping of 224 × 224 pixels to shape the input to
the feature-extractor [33]. The images are normalised using
each respective dataset’s mean and standard deviation. To
prevent over-fitting, we augmented the datasets by performing
horizontal flipping for a randomly-chosen 50% of the images.

C. Evaluation metric

1) Expression Classification: For classification perfor-
mance, we use classification accuracy and weighted-F1 score.

2) Fairness measure: We use as our fairness measure
the equality of opportunity [30] given in Eqn. 1. Following
previous research [8], [31], we use the worst-case min-max
ratio, which is the ratio of the minimum accuracy across all
protected groups to the maximum accuracy across all protected
groups. For example, if gender is the protected group and
if the classification accuracy of emotions for males is lower
than that for females, then the ratio would be the accuracy for
males over the accuracy for females. The closer the min-max
ratio is to unity, the smaller the disparity between the true-
positive rate between protected groups, and hence the “more
fair” the model is. Formally, if ad is the protected group with
the highest classification accuracy (for emotions):

ad = argmax
a∈K

1

Na

N∑
i=1

1(ŷi=yi|A=a)

where K is the number of group defined by the protected
attribute, N is the total number of samples, Na is the number
of samples belonging to protected group a, and 1 is the

5https://py-feat.org/

Fairness by Gender
IASLab Male Acc Female Acc Fairness

w/
labels

Domain-aware 91.5 (2.3) 97.3 (1.0) 94.0 (2.8)
Domain-unaware 89.4 (2.3) 94.7 (2.1) 94.4 (3.4)

w/o
labels

Cross Entropy Baseline 90.2 (3.5) 96.1 (2.8) 93.8 (2.1)
Positive Matching (ours) 92.8 (1.0) 95.3 (1.7) 97.1 (2.3)
Spectral Decoupling 89.4 (2.3) 92.4 (2.1) 95.5 (2.8)
Spectral Decoupling + Ours 88.9 (0.9) 91.4 (2.7) 96.4 (2.1)

RAF-DB Male Acc Female Acc Fairness
w/
labels

Domain-aware 82.1 (0.5) 85.6 (0.7) 95.9 (1.0)
Domain-unaware 84.8 (0.5) 87.2 (0.3) 97.3 (0.5)

w/o
labels

Cross Entropy Baseline 84.7 (0.7) 87.4 (0.4) 96.9 (1.1)
Positive Matching (ours) 83.8 (0.7) 87.4 (0.5) 96.0 (1.1)
Spectral Decoupling 81.8 (0.7) 85.0 (0.8) 96.3 (0.4)
Spectral Decoupling + Ours 82.2 (0.8) 85.1 (0.6) 96.5 (1.5)

TABLE II
OVERALL GENDER FAIRNESS MEASURE FOR IASLAB (TOP) AND

RAF-DB DATASET (BOTTOM). VALUES ARE AVERAGED OVER 5 RUNS
WITH STANDARD DEVIATION IN PARENTHESIS. BEST SCORES AMONGST

THE APPROACHES WITHOUT BIAS LABELS ARE GIVEN IN BOLD.

indicator function, then this worst-case ratio, the Fairness
Score, is given by:

F = min
ak∈K\{ad}

{ 1
Nak

∑N
i=1 1(ŷi=yi|A=ak)

1
Nad

∑N
i=1 1(ŷi=yi|A=ad)

}
(4)

D. Comparison Methods

We compare our approach with two classes of approaches:
mitigation approaches that require labels of the protected
attribute like race and gender, and mitigation approaches that
do not require these labels. We note that our Positive Matching
Contrastive Loss method does not require these labels.

1) Mitigation approaches that require bias-labels:
• Domain-aware. Instead of a (# of class)-way classifier,

this approach trains a (# of classes × # of groups)-way
classifier to make the model aware of the bias labels
(“fairness by awareness” [18], [40]). We replace the final
classification layer of the vanilla model to accommodate
for the increased classification categories. In the case of
IASLab, this becomes a 14-class classification (7 emotion
classes × 2 gender groups), while in the case of RAF-DB,
this becomes a 42-class classification (7 emotion classes
× 2 gender groups6 × 3 races).

• Domain-unaware. We follow [7] and use gradient re-
versal on the domain classification to make the model
unlearn the domain features. For IASLab, we classify the
gender (2-way classification) and RAF-DB we classify
both gender-race combined labels (6-way classification6).

2) Mitigation approaches that do not require bias-labels:
• Baseline (Cross Entropy Loss). This is the standard

baseline, which uses a Cross-Entropy Loss to predict
facial expressions LCE . This is also our approach without
the Positive Matching Loss (Eqn. 3 without Lpos-match).

• Spectral Decoupling. This method [3] mitigates bias
without the need of bias labels. A L2 penalty is added

6RAF-DB has an “unsure” category for gender, but to be in-line with
existing approaches, we only consider male and female.

https://py-feat.org/


Fairness by Gender, broken down by Emotion
IASLab Neutral Anger Disgust Fear Happiness Sadness Surprise
# of training samples 159 155 162 170 170 172 166
Female : Male ratio 66 : 34 64 : 36 66 : 34 64 : 36 64 : 36 66 : 34 59 : 41

w/
labels

Domain-aware 100.0 (0.0) 81.1 (9.7) 93.8 (4.7) 82.6 (11.8) 100.0 (0.0) 91.5 (5.4) 98.6 (2.9)
Domain-unaware 95.4 (6.2) 72.1 (19.5) 87.8 (9.6) 83.4 (10.1) 96.7 (6.7) 90.2 (3.3) 95.7 (5.7)

w/o
labels

Cross Entropy Baseline 96.9 (3.8) 77.3 (15.9) 86.0 (8.0) 95.1 (6.1) 100.0 (0.0) 87.3 (6.3) 97.1 (3.5)
Positive Matching (ours) 96.9 (3.8) 87.1 (10.7) 91.8 (3.6) 80.1 (7.0) 100.0 (0.0) 91.5 (5.4) 97.1 (3.5)
Spectral Decoupling 90.8 (3.1) 80.0 (10.0) 84.0 (13.6) 90.3 (10.2) 100.0 (0.0) 88.9 (7.8) 84.3 (8.3)
Spectral Decoupling + Ours 92.3 (0.0) 81.1 (9.7) 78.0 (4.0) 91.8 (6.2) 100.0 (0.0) 95.1 (4.1) 84.3 (11.4)

RAF-DB
# of training samples 1979 538 569 208 3831 1536 1020
Female : Male ratio 50 : 46 65 : 33 58 : 39 57 : 41 59 : 38 53 : 28 48 : 41

w/
labels

Domain-aware 96.9 (2.1) 91.9 (5.5) 86.6 (6.7) 79.8 (7.8) 96.9 (0.6) 92.4 (3.2) 91.7 (2.3)
Domain-unaware 96.4 (0.8) 92.2 (4.2) 95.3 (4.0) 81.0 (10.8) 97.6 (0.9) 93.8 (1.7) 94.3 (3.2)

w/o
labels

Cross Entropy Baseline 97.6 (1.7) 89.4 (2.4) 90.6 (4.1) 79.9 (8.0) 96.7 (0.8) 95.0 (3.8) 92.9 (1.5)
Positive Matching (ours) 97.5 (1.0) 92.7 (3.7) 90.8 (3.4) 82.9 (6.4) 96.8 (1.2) 95.3 (2.4) 91.1 (1.1)
Spectral Decoupling 96.1 (2.8) 89.4 (3.1) 93.9 (2.9) 75.8 (8.4) 96.5 (1.0) 93.3 (3.7) 87.6 (1.1)
Spectral Decoupling + Ours 95.2 (2.7) 85.4 (3.8) 87.6 (7.5) 68.5 (13.5) 96.6 (1.1) 92.4 (1.7) 87.6 (1.7)

TABLE III
GENDER FAIRNESS MEASURE FOR EACH EMOTION CLASS FOR IASLAB (TOP) AND RAF-DB (BOTTOM). VALUES ARE AVERAGED OVER 5 RUNS WITH

STANDARD DEVIATION IN PARENTHESIS. BEST SCORES AMONGST THE APPROACHES WITHOUT BIAS LABELS ARE GIVEN IN BOLD. RATIO VALUES
CORRESPOND TO PERCENTAGE OF SAMPLES BELONGING TO THAT GROUP IN TRAINING DATASET.

to the loss term, and training is the same as the vanilla
model. Hyper-parameters in this model are the penalty
coefficient, set to 2e-05, and the annealing steps, set
based on when the vanilla model overfits (400 steps
for IASLab and 3,500 for RAF-DB). In addition, we
also implemented Spectral Decoupling with our method
(Spectral Decoupling + Positive Matching Loss).

V. RESULTS AND DISCUSSION

We first consider how the various methods perform on
gender fairness, in Table II. Recall that the Fairness score (Eqn.
4) is the ratio of the minimum classification accuracy within
each group to the maximum accuracy, and values closer to 1
indicate more similar performances across groups. To orient
the reader, the baseline model using Cross Entropy Loss (i.e.,
with no bias mitigation), achieves a 90.2% accuracy for males
and 96.1% accuracy for females on the IASLab dataset; the
fairness score is thus 90.2/96.1 = 93.8%. Compared to this, our
Positive Matching Contrastive Loss method yielded a greater
fairness of 97.1%, and was the best performing of all methods.
If we examined the fairness for specific emotion classes (Table
III), our method also achieves the best fairness for 5 of the 7
classes, and for sadness, Spectral Decoupling plus our Positive
Matching loss achieves the best fairness.

For gender fairness on the RAF-DB dataset, we find that
neither our method, nor most of the other methods we tried
(except for Domain-unaware), improved overall fairness be-
yond the Cross Entropy Baseline (96.9%). When we took
a closer look at the performance on RAF-DB for specific
emotion classes, in Table III, we find that out of the seven
classes, our method yielded the best fairness for four classes
(anger, fear, happiness and sadness).

If we next consider fairness by race (only in the RAF-DB
dataset), in Table IV, the best performing method that does not
use bias labels is the Spectral Decoupling of [3] augmented

with our Positive Matching Contrastive Loss, which achieves
a Fairness of 98.6%. When we consider fairness for specific
emotion classes, we again find that our approach achieves the
best fairness on four of the seven classes, (neutral, anger,
disgust and fear), and for surprise, Spectral Decoupling plus
our Positive Matching loss achieves the best fairness.

One point of discussion is that the datasets do not have
balanced gender and race ratios. For IASLab, the Female:Male
ratio is 64:36 (Table I), while for RAF-DB it is a little closer
at 57:43 (if we remove those with unknown labels), but still
has more Female than Male faces. The racial distribution
in the RAF-DB dataset is also heavily imbalanced, with
almost 77% of the faces being Caucasian, 15% Asian, and
only 8% African-American (and these are just three of many
races). While overall the fairness scores seem high, these
imbalances do translate to some troubling fairness values when
we examine specific classes. For example, for race in RAF-DB
and considering the classification of fear, the baseline cross
entropy method achieves a Fairness Score of 49.5%, which
suggests that the true positive rate for identifying fear in one
race is half that of identifying fear in another. (Our method
does not improve fairness for this particular class either).

Finally, we consider the impact of bias mitigation strategies
on classification performance. Intuitively, we might expect
that optimizing for two objectives (i.e., a fairness objective
in addition to classification accuracy) may result in lower
classification performance. We can see in Table V that this
is indeed the case for RAF-DB, where all the bias mitiga-
tion strategies underperformed the cross entropy baseline on
classification accuracy. The Domain-Unaware method overall
had the smallest drop in accuracy (-0.3%), and our Positive
Matching method had the smallest drop in accuracy among
the strategies that do not require labels (-0.4%). For the
IASLab dataset, we observed that, in fact, the Domain-Aware



Fairness by Race (RAF-DB)
Caucasian Acc African-American Acc Asian Acc Fairness# of training samples 7420 767 1494

w/
labels

Domain-aware 84.2 (0.4) 84.5 (1.2) 83.4 (0.9) 98.0 (0.6)
Domain-unaware 86.1 (0.3) 86.8 (1.0) 86.2 (0.7) 98.6 (1.3)

w/o
labels

Cross Entropy Baseline 86.3 (0.3) 88.6 (1.0) 86.5 (1.1) 96.9 (0.9)
Positive Matching (ours) 85.8 (0.2) 87.8 (1.0) 87.0 (0.8) 97.6 (0.9)
Spectral Decoupling 83.8 (0.8) 84.7 (1.0) 84.4 (1.0) 97.7 (0.8)
Spectral Decoupling + Ours 84.0 (0.2) 84.4 (1.0) 84.6 (0.5) 98.6 (0.4)

Neutral Anger Disgust Fear Happiness Sadness Surprise
Ca : Af : As ratio* 72 : 11 : 17 86 : 5 : 9 77 : 5 : 18 84 : 5 : 12 76 : 8 : 16 75 : 7 : 18 84 : 7 : 9

w/
labels

Domain-aware 93.9 (3.2) 69.0 (10.6) 63.0 (9.8) 58.9 (13.6) 97.3 (0.9) 89.7 (4.0) 80.6 (11.8)
Domain-unaware 94.4 (2.7) 69.9 (3.0) 66.9 (10.6) 48.8 (9.9) 98.1 (1.5) 84.5 (3.3) 83.3 (7.1)

w/o
labels

Cross Entropy Baseline 93.8 (2.6) 68.6 (7.2) 62.3 (7.6) 49.5 (6.8) 96.5 (1.7) 92.8 (4.9) 80.4 (3.8)
Positive Matching (ours) 95.2 (3.2) 72.8 (8.9) 69.4 (15.2) 47.3 (9.6) 96.1 (1.5) 92.8 (3.0) 78.2 (3.9)
Spectral Decoupling 93.5 (2.4) 64.0 (10.6) 60.9 (6.5) 36.6 (14.8) 96.9 (2.0) 90.0 (3.6) 76.5 (7.2)
Spectral Decoupling + Ours 90.1 (3.7) 65.6 (7.4) 64.8 (7.6) 41.8 (9.3) 95.3 (2.1) 90.9 (2.1) 81.3 (7.5)

TABLE IV
RACE FAIRNESS MEASURES FOR THE RAF-DB DATASET, ACROSS ALL CLASSES (TOP) AND BROKEN DOWN BY INDIVIDUAL CLASSES (BOTTOM).
VALUES ARE AVERAGED OVER 5 RUNS WITH STANDARD DEVIATION IN PARENTHESIS. BEST SCORES AMONGST THE APPROACHES WITHOUT BIAS

LABELS ARE GIVEN IN BOLD. *CA=CAUCASIAN, AF=AFRICAN-AMERICAN, AS=ASIAN. (THE RATIO VALUES FOR FEAR IS OVER 100 DUE TO
ROUNDING.)

Overall Emotion Classification Performance
IASLab Acc F1 ∆CE

w/
labels

Domain-aware 95.4 (0.9) 95.4 (1.0) +1.2
Domain-unaware 93.0 (1.5) 93.0 (1.6) -1.2

w/o
labels

Cross Entropy Baseline 94.2 (2.8) 94.2 (2.9) -
Positive Matching (ours) 94.5 (0.9) 94.5 (0.9) +0.3
Spectral Decoupling 91.4 (1.2) 91.4 (1.2) -2.8
Spectral Decoupling + Ours 90.6 (1.8) 90.6 (1.8) -3.6

RAF-DB Acc F1 ∆CE

w/
labels

Domain-aware 84.1 (0.5) 83.9 (0.5) -2.4
Domain-unaware 86.2 (0.3) 85.9 (0.3) -0.3

w/o
labels

Cross Entropy Baseline 86.5 (0.3) 86.3 (0.3) -
Positive Matching (ours) 86.1 (0.3) 86.1 (0.2) -0.4
Spectral Decoupling 84.0 (0.7) 83.8 (0.6) -2.5
Spectral Decoupling + Ours 84.1 (0.2) 83.9 (0.2) -2.4

TABLE V
OVERALL EMOTION CLASSIFICATION PERFORMANCE FOR IASLAB (TOP)
AND RAF-DB (BOTTOM) USING ACCURACY AND WEIGHTED F1 SCORE.
VALUES ARE AVERAGED OVER 5 RUNS WITH STANDARD DEVIATION IN

PARENTHESIS. BEST SCORES AMONGST THE APPROACHES WITHOUT BIAS
LABELS ARE GIVEN IN BOLD. ∆CE DENOTES THE ACCURACY

DIFFERENCE OF A GIVEN METHOD WITH THE CROSS ENTROPY BASELINE,
WHICH HAS NO BIAS MITIGATION.

method increased classification accuracy by 1.2%, and our
Positive Matching method had the largest increase in accuracy
among the strategies that do not require labels (0.3%). Thus,
especially compared to the other bias mitigation strategies
that do not require labels, our proposed method not only
increases fairness scores of the model, but also maintains
classification performance compared to the standard (un-bias-
mitigated) classifier.

VI. LIMITATIONS AND FUTURE WORK

Our main premise is that a valid approach to bias mitigation
is to guide the model to focus on a set of task-relevant
features instead of protected attributes. In the specific case of
facial expression recognition, we can appeal to many decades
of work in psychology to suggest that there may be some

desirable task-relevant features such as facial Action Units.
However, there is evidence that socio-cultural variations exist
within the expressions associated with similar emotions. For
instance, [41] found significant differences in AU06 and AU12
intensities across gender, race, and age for happy emotion.
Similarly, there is evidence that people across cultures regulate
their display of emotions differently leading to variations
in emotion intensities displayed [42], [43]. In the future,
understanding the effects of these differences can help further
reduce irrelevant intra-class variations leading to fairer models.

Also, generalising this approach to other domains would re-
quire tailored, specific domain knowledge, which may have to
be hand-crafted, or perhaps extracted from external knowledge
bases. There is plenty of evidence suggesting that incorporat-
ing domain-relevant context into deep-learning models leads
to better performance [44]–[48], and in this work we show that
using domain knowledge could also help build fairer models.

Future work could more deeply study the quality of the
task-relevant features, for example by varying the type/number
of the AUs used, or including other external knowledge
sources. While we analyzed the performance of our method
on specific emotion classes, another important future direction
is to understand how we can extend this approach to optimize
for fairness in specific classes, which is especially important
in cases where we have larger number of classes that may
be more closely confusable, such as in fine-grained emotion
classification [49]–[52].

VII. CONCLUSION

In this work, we introduced feature-based Positive Matching
Contrastive loss which reduces (equality of opportunity) bias
in facial expression recognition models by explicitly guiding
the model towards task-relevant features—Facial Action Units.
Our method aims to bring the hidden representations of
positive samples (samples with same emotion label) closer
together according to their similarity in task-relevant features



(Action Units). Our approach was able to improve fairness
at minimal cost to classification performance when compared
to existing bias mitigation methods in two commonly used
facial expression recognition datasets. This work is a step
towards developing fairer machine learning models which is
in turn important for the ethical deployment of these models
in society.

ETHICAL STATEMENT

Machine learning models have been widely deployed in
multiple settings that directly affect peoples’ lives, and has
been shown to be biased by race for emotion recognition [25].
There is a pressing need to study bias mitigation strategies,
especially in facial expression recognition. Our work is a step
in this direction, by offering a way to improve fairness without
the need to use labels of the protected attributes (such as race
and gender labels), by guiding the model to focus on features
that are directly relevant to the task at hand.
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