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Abstract—Whilst a majority of affective computing research
focuses on inferring emotions, examining mood or understanding
the mood-emotion interplay has received significantly less atten-
tion. Building on prior work, we (a) deduce and incorporate
emotion-change (∆) information for inferring mood, without
resorting to annotated labels, and (b) attempt mood prediction for
long duration video clips, in alignment with the characterisation
of mood. We generate the emotion-change (∆) labels via metric
learning from a pre-trained Siamese Network, and use these in
addition to mood labels for mood classification. Experiments eval-
uating unimodal (training only using mood labels) vs multimodal
(training using mood plus ∆ labels) models show that mood
prediction benefits from the incorporation of emotion-change
information, emphasising the importance of modelling the mood-
emotion interplay for effective mood inference.

Index Terms—Mood inference, Emotion change, Siamese net-
work, Contrastive Loss, Teacher-student network, Unimodal,
Multimodal

I. INTRODUCTION

Over the past two decades, there has been an enormous
increase in the research on inferring affective states (charac-
terised by emotions, moods, etc.) from unimodal and multi-
modal data. Several studies emphasise on the importance of
emotional regulation for the successful functioning of human
mind [2], [3], as they play an indispensable role in ratio-
nal decision-making, perception, attention, and other diverse
cognitive functions [4]. While the terms emotion and mood
are often used synonymously, the two affective phenomena
are distinct in terms of duration, intensity, attribute, and
behavioural impact. Emotion is a short-term affective state,
lasting for at most a few minutes, and is typically elicited by a
contextual event/stimulus. On the contrary, mood is considered
to be a long-term diffuse affective state lasting for hours, which
may emerge without an apparent cause [5].

Akin to emotions, mood has an impact on cognitive pro-
cesses like human creativity, evaluative judgement, and mem-
ory retrieval, etc [4]. Mood is also known to generate cognitive
bias and influence human emotion recognition [6]. Going
further, mood disorders like depression and bipolar disorder
result in the impairment of emotional processing abilities [7],
altered facial expression understanding [8], and olfactory
perception [9]. Recently, the focus of numerous studies is
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on building emotionally-aware systems to better understand
human behaviour, and facilitate enhanced human-computer
interactions. Advancements in machine learning techniques
have enabled automatic emotion recognition from unimodal
and multimodal data, for instance, facial expressions [10],
physiological signals [11]–[13], videos [14], etc. Although
substantial progress has been made in psychology to under-
stand mood, negligible work has focused on computationally
inferring mood. Furthermore, the psychology literature recog-
nises an association between emotions and mood [15]; theories
state that despite being distinct mechanisms, they affect one
another repeatedly and continuously. Nevertheless, hardly any
research has been devoted towards computationally modelling
the mood-emotion interplay for mood inference.

Preliminary studies on mood recognition [16], [17] infer
mood via body posture and 3D pose data in a controlled
setting. As a step towards in-the-wild mood prediction, [18]
uses deep learning to perform mood classification on affective
videos. It observes that mood prediction improves on utilising
emotion-change information. The premise in [18] is the exis-
tence of continuous emotion (valence) labels along with mood
annotations during the training and testing phases. Reliance on
continuous emotion labels represents a significant overhead, as
these labels may not be available in real-world settings.

This work is inspired by and extends the idea proposed
in [18], and obviates the need for ground-truth emotion labels
by deducing emotional change information and utilising it for
mood inference. Our mood inference framework is illustrated
in Fig. 1. Specifically, emotion change is modelled in terms of
emotional (dis)similarity between a pair of video frames via
a Siamese Network with contrastive loss.

We present mood inference results on the AffWild2
database [1], where (a) video mood labels are derived as
in [18]; (b) pseudo emotion-change (∆) labels are derived via
a pre-trained Siamese Network; (c) a 3-dimensional Convolu-
tional Neural Network (3D-CNN) with a ResNet18 backbone
and projection head is trained with mood labels; (d) a 3D-
CNN with ResNet18 backbone and branched projection heads
is trained with both mood and ∆ labels, and (e) a Teacher-
Student (TS) network [19] is employed, where the teacher
distills the privileged ∆-specific knowledge to the student for
mood inference.

Consistent with [18], we observe that mood prediction
performance improves when emotion similarity information is
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Fig. 1. Study Overview: (1) We consider the publicly available AffWild2 [1] video dataset for automated mood inference. (2) A mood label is derived for the
video, aligning with the characterisation of mood as a long-term affective state. (3) Our study also seeks to automatically capture affective emotion-change
(∆) information over shorter durations (time windows). (4) We generate pseudo-emotion-change (∆) labels via metric learning obviating the need for valence
annotations. (5) We then incorporate the generated ∆ labels to automatically infer the mood class as positive, negative or neutral.

incorporated, emphasising the prominence of short-term affect
(emotion-change) for long-term affect (mood) inference. To
summarise, the main contributions of this work are as follows:

1) We propose to infer mood employing emotional sim-
ilarity, which models emotion change between a pair
of images. To this end, we train a 3D-CNN with
two branches, which are respectively trained via video
frames annotated with mood and ∆ labels.

2) We weakly label the AffWild2 [1] dataset, by generating
∆ labels for video frame pairs using a pre-trained
Siamese Network with contrastive loss.

3) Assessing various models, we demonstrate that incor-
porating emotion-change (∆) information via emotion
similarity benefits mood recognition and enhances mood
prediction performance. Similar trends are observed in
the experiments employing ground truth ∆GT labels.

4) Through an ablation study, we verify the effectiveness
of the various components of the proposed mood clas-
sification framework outlined in Fig. 1.

II. RELATED WORK

In this section, we present studies examining the affective
phenomena of emotion and mood (Sec. II-A), the various
affective databases available for affect inference, and machine
learning studies examining mood inference (Sec. II-B). The
motivation for this study given the literature context is pre-
sented in Sec. II-C.

A. Emotion, Mood and their Interconnectedness

While there are multiple definitions of emotion, the follow-
ing characterisation appears to be consistent. Emotion is con-
sidered to be an episode of neurophysiological and cognitive
change in response to an external or internal stimulus [20].
The concepts of emotion and mood are distinguished based
on the factors of duration, trigger, intensity, and behavioural
impact [21]. The former are short-term, lasting for a few
seconds and are elicited based on stimulus events. The level
of response to the stimuli and the corresponding emotional
expression is recognised to be of relatively high intensity [22].

In contrast, moods are considered to be enduring affective
states, lasting for hours or even days without being instantiated
by a stimulus. They are regarded to be diffuse with low levels
of intensity [21].

The human physiological state and mind are both influenced
by and reflective of mood, as it directly influences human
health and well-being. Besides having an impact on evaluative
judgements, mood also governs memory retrieval [23]. Mood-
congruency, which refers to the match between a person’s
mood and his/her thoughts [24], is observed in [25], where
the authors examine mood effects on emotion recognition.
Happy mood impedes the recognition of mood-incongruent
sad emotions, while sad mood obstructs the recognition of
happy emotions. The interplay between mood and emotion
is described by the mood-emotion loop [23], a theory which
proposes that mood and emotion are distinct mechanisms
forming a loop, and are reciprocally influencing one another.

B. Computational Studies on Mood

Most research on affective state inference has focussed on
emotions, as opposed to mood. Likewise, the prevailing af-
fective databases to aid behavioural and computational studies
with various modes of data predominantly target emotions.

1) Databases: Audio-visual databases, such as AFEW
[26], DECAF [27], Ascertain [13] etc., comprise videos
of emotional episodes with categorical emotion annotations,
namely, happy, sad, fear, disgust, anger, surprise, and neutral.
RECOLA [28], AFEW-VA [29], AffWild2 [1], etc., manifest
continuous emotion annotations of valence (degree of pleas-
antness or unpleasantness) and arousal (degree of excitement
or calmness). These databases, designed by considering factors
such as recording environment, duration, and annotation type,
best suit emotion inference tasks. The test set of the AVEC
2013 challenge, annotated for the level of depression, is
one of the few databases with mood annotations. However,
depression, a mood disorder, is not a commonly observed
mood state. EMMA [30] is an acted video database recorded
in a controlled setting with mood annotations.



2) Computational Approaches: In [17], the authors use
body posture and head movement features to capture the
affective state while listening music. A vertical position of the
head is observed in a positive mood and a downward position
otherwise. A 3-dimensional pose tracker is used in [16] to infer
physical attributes and the mood of the person by capturing
walking motions. The authors of [31] perform automatic mood
recognition from recognised emotions, and show that clustered
emotions in the valence-arousal space are better predictors of
a single mood as compared to multiple moods within a video.

Mood prediction using various 3D-CNNs are performed
in [18] using the AFEW-VA [29] dataset. Utilising the valence
annotations, the authors compute the valence differential to
infer mood and demonstrate that incorporating valence change
improves mood prediction performance. Although this study
is a promising step towards automatic mood inference, only
video clips of very short duration (≈ 0.04 seconds) are
considered, which may not adequately depict subject mood
in the video.

C. Novelty of our Study

A thorough examination of the literature reveals the follow-
ing: (a) While significant research has been conducted to infer
emotions automatically, mood inference and modelling the
mood-emotion interplay have been neglected from a compu-
tational perspective; (b) Existing affective databases are richly
annotated for emotions, while labelled data for mood inference
are sparse; and (c) Existing studies, which infer mood using
emotions, require continuous valence annotations and consider
clips of very short duration (≈ 0.04 seconds) for this purpose.

Differently, this study uses deduced emotional similarity
information in lieu of valence-differential (∆) labels, obviating
the need for ground truth ∆ annotations. This setting resem-
bles real-world scenarios where valence annotations may not
be accessible for inferring mood. This work proposes to (1)
deduce emotion change (∆) labels using a Siamese Network
trained with contrastive loss, and (2) incorporate ∆ labels for
inferring mood. In addition, ablation studies are performed to
empirically examine the effect of different components of the
proposed mood inference framework.

III. DATABASES AND LABEL GENERATION

This section describes the databases considered in this study
as well as the labelling procedure.

A. AffWild2 Database

We consider AffWild2 [1], a publicly available affective
video database with continuous dimensional (valence, arousal)
and categorical emotion annotations for performing mood
classification. AffWild2 comprises 564 in-the-wild videos col-
lected from YouTube. There are a total of 2,816,832 frames
with 455 subjects (277 male, 178 female). The videos are
annotated by four experts for continuous valence and arousal
values, and the average of the four raters is considered as
the final rating, while three experts annotated the categorical
emotion labels. The valence and arousal annotations are in

Fig. 2. Siamese network for modelling emotion-change (∆).

the range [−1, 1], and the emotional categories are happy,
sad, disgust, anger, fear, surprise, neutral, and other. The
frames with annotated values outside this range are discarded
as suggested by the dataset providers. The partitioning of the
database into training, validation and test sets is done in a
subject-independent manner, so that every subject is present in
one of the three partitions. This partitioning results in 341, 71
and 152 videos respectively in the training, validation and test
sets. The validation set is utilized for evaluating our proposed
approach, as the test set has not been released.

B. Mood labels

Since current in-the-wild affective video databases lack
mood annotations, as the closest alternative, we utilize valence
annotations to assign mood labels for each video in the
AffWild2 database, as done in [18]. The three mood categories
considered are positive (+1), negative (-1), and neutral (0).
As mood denotes a long-term affective state [4], the most
persistent valence value (maximum number of consecutive
frames) is considered for assigning a mood label. Mood label
is assigned to −1, 0, or +1 if the valence values for maximum
number of consecutive frames respectively lie in the range
[−1,−0.3), [−0.3, 0.3], and (0.3, 1].

C. AffectNet Database

In order to automatically generate the emotion change (∆)
labels, we employ the AffectNet [32] dataset to train a Siamese
Network (described in Sec. III-D). AffectNet, an affective
database curated for automatic facial emotion recognition
tasks, comprises around 420,300 facial images captured under
natural conditions. Twelve experts annotated the data with
continuous valence and arousal values, and eight emotion
categories (happy, sad, disgust, anger, fear, surprise, neutral,
and contempt). Partitioning the dataset with the criteria of
having 500 images for each of the nine emotion categories
in the validation set, results in 287,151 and 4500 images in
the training and test sets respectively.

D. Emotion Change (∆) Labels

This work seeks to eliminate the need for valence annota-
tions (as proposed in [18]) to generate ∆ labels. Differently,
we propose to use a Siamese Network with contrastive loss to
deduce emotion-change (∆) between video frames in terms of
similarity (little change in emotion) or dissimilarity (significant



change in emotion). A Siamese network is a neural network
that discriminates if a pair of input data samples are similar or
dissimilar [33]. Multiple emotion-related tasks have employed
a Siamese network, and observed promising performance [34],
[35]. We use contrastive loss in the Siamese network, which
learns a similarity metric that minimises the distance between
similar image pairs, while maximising the distance between
dissimilar pairs. Distance between the pairs is compared to
a margin value, and the contrastive loss function enforces a
smaller distance between similar pairs, and a larger distance
between dissimilar pairs.

1) Siamese Network: In this study, similarity refers to little
or no change in the emotional facial expression between a pair
of frames. Fig. 2 shows the architecture of the Siamese net-
work, which comprises identical sub-networks for classifying
the input frames as similar or dissimilar. Each sub-network
involves an EmoFAN [36] network as the encoder, E(·), which
maps the input image to a vector. We employ a pre-trained
EmoFAN model as it has demonstrated high performance in
emotion recognition tasks. For two images x1 and x2 we
obtain, v1 = E(x1) ∈ RDE and v2 = E(x2) ∈ RDE , where
DE = 256. The embeddings v1 and v2 are concatenated,
v = v1∥v2 ∈ RDC , where DC = 512. v is fed into a projection
head P (·), which maps it to a vector, u = P (v) ∈ RDP ,
where DP = 2. P (·) is a Multi-Layer Perceptron (MLP) with
three fully connected (fc) layers, comprising 256, 128, and 2
neurons, respectively. The neurons in the last fc layer refer to
the two classes, similar and dissimilar. The inputs to the fc
layers are normalised with zero mean and unit variance, before
feeding to the ReLU activation.

2) Contrastive Loss: As opposed to using the cross-entropy
loss, LB, alone for binary classification (similar/dissimilar), we
additionally consider using the contrastive loss, LC , given by,

LC =
1

N

N∑
i=1

yi(1− di) + (1− yi)max(0, di −m) (1)

where N is the batch size, yi is the label indicating whether
the two input samples are similar (1) or dissimilar (0), di is
the cosine distance between the embeddings v1 and v2, and
m is the margin. The total loss is given by,

LT = λLB + (1− λ)LC (2)

where λ is a training hyperparameter.
3) Deducing the ∆ Label: The Siamese network is trained

on the images in the AffectNet database. The groundtruth la-
bels for the Siamese network yi are derived as 1 if the emotion
categories of the input pair are the same, 0 otherwise. The
network is trained for 40 epochs, using the Adam optimiser
with the learning rate decreased by a factor of 10 for every
10 epochs, with the initial learning rate as 0.0001. The batch
size is set to 64, with the dropout rate as 0.3, margin m in the
contrastive loss set to 0.25, and λ set to 0.5.

The Siamese network achieves an accuracy of 68%. This
model is used to generate ∆ labels for the AffWild2 video
frame pairs.

E. Generating input samples for mood inference

The AffWild2 dataset comprises videos of long duration,
with an average length of ≈ 3 minutes (minimum duration
of 0.03 minutes, maximum duration of 26.22 minutes). From
each video, using a sliding window approach, we generate
clips with a stride s, where each clip is a collection of sampled
frames. Each clip c is of temporal length t, which refers to the
duration of the clip (number of frames). Constructing clips by
including all the frames in c increases the computational load
and time substantially. Hence, to address this computational
impediment, we significantly reduce the number of frames in c,
and sample n frames at equal intervals of time. Clips generated
from each video contain frames from the parent video alone,
and no frames from other videos.
c is assigned the mood label of its parent video, implying

all clips generated from a source video are assigned the same
mood label. To generate the ∆ label for c, the first frame and
the last frame of c are fed to the trained Siamese Network
(described in Sec. III-C). The model returns 0 or 1 as the
∆ label, by evaluating the dissimilarity or similarity of the
emotion displayed in this pair of frames. Hence, each clip is
associated with a mood label ∈ {0, +1, -1}, and a ∆ label ∈
{0, 1}.

IV. MOOD CLASSIFICATION APPROACH

The capability of 3D-CNNs to capture the temporal depen-
dencies in the input data, along with spatial information, has
resulted in their extensive usage. ResNet18-3D [37] (R3D),
a 3D variant of the ResNet architecture, is commonly used
as a backbone network in many 3D-CNN architectures for
facial emotion inference [38], [39]. Leveraging the interplay
between mood and emotions, we utilise the mood and ∆ labels
to perform mood classification. The various models used in
this study are described as follows.

A. ResMood

Fig. 3 (left) shows ResMood, a model trained with mood
labels alone, which consists of a ResNet18-3D, R3D(·), as
the backbone and a projection head, P (·). The backbone maps
each input sample x to a representation vector, v = R3D(x) ∈
RDB , where DB = 1024. The projection head P (·) further
maps v to a vector z = P (v) ∈ RDP , where DP = 3.
P (·) is instantiated as a Multi-Layer Perceptron (MLP), with
three fully-connected (fc) layers comprising 512, 256, and 3
neurons, respectively. The 3 neurons in the last fc layer denote
the three mood classes, positive, negative, and neutral. The
inputs to each layer in the MLP are normalised batch-wise
with zero mean and unit variance before feeding them to the
ReLU activation function.

B. ResMoodEmo

Fig. 3 (left) shows ResMoodEmo, a model for performing
mood classification trained with both mood and ∆ labels. Dis-
tinct from ResMood, ResMoodEmo is composed of R3D(·)
as the backbone, and two projection heads PM (·) and P∆(·),
branching out for mood and ∆ classification, respectively.



Fig. 3. (Left) The architecture of ResMood is shown within the inner dashed rectangle. The outer dashed rectangle represents ResMoodEmo. (Right) The
architecture of the TS-Net. (Best viewed in colour).

R3D(·) maps an input x to a vector v = R3D(x) ∈ RDB ,
where DB = 1024. Further, the projection PM (·) maps v to
a vector z1 = PM (v) ∈ RDM , and P∆(·) maps v to a vector
z2 = PM (v) ∈ RD∆ , where DM = 3 and D∆ = 2, respec-
tively. PM (·) and P∆(·) are both configured as MLPs with
three fc layers, but differing in the number of neurons in the
last layer. As PM (·) is the branch used for mood classification,
the last fc layer has 3 neurons for classifying the three mood
classes positive, negative, and neutral, whereas P∆(·) used for
classifying ∆ labels has two neurons denoting the similar and
dissimilar classes. In both projection heads, the inputs to each
layer are normalised with zero mean and unit variance prior
to being input to the ReLU activation function. Compared to
ResMood, ResMoodEmo has an additional branch after the
R3D(·) to incorporate the emotion change (∆) information.
The losses of each branch LM and L∆ are summed up and
the cumulative loss L = LM + L∆ is optimised.

C. Teacher-Student Network
Similar to [18], we employ knowledge distillation [19], a

technique used to transfer knowledge from a larger (teacher)
model to a smaller (student) model. In this method, the goal
is to train the student model to mimic the output probabilities
of the teacher model, in addition to the predicting the true
labels. Fig. 3 (right) presents the Teacher-Student Network
(TS-Net), where ResMoodEmo is used as the teacher model
(see Sec. IV-B), and ResMood is used as the student model
(see Sec. IV-A). The teacher model, trained with both mood
and ∆ labels, distills knowledge to the student, which is only
trained with mood labels. Since the performance of the student
model alone is evaluated, ∆ labels are not utilised during
the testing phase. The SoftMax layer of the student model
has a hyper-parameter called temperature (T ), which regulates
the softness of the output class probabilities. Using low
temperature values produces a sharper probability distribution,
facilitating the student to focus on the relative differences
in the probabilities of the classes. A weighted sum of the
distillation loss, LD, measuring the difference between the
outputs of the teacher and student models, and the student
loss, LS , a typical supervised loss is optimised in the TS-Net,
L = αLS +(1−α)LD, where α is a training hyperparameter.

D. Implementation details

All experiments are based on using the open-source library
PyTorch. The models are trained on Nvidia GeForce RTX
3090 GPU with 24GB memory. We use the videos with
cropped and aligned faces provided in the AffWild2 database.
To generate the input samples (see Sec. III-E), we set the
temporal length t = 100, with the number of frames in each
sample n = 5, and the stride s = 3. The models ResMood,
ResMoodEmo, and the TS-Net are trained using the Adam
optimiser with the learning rate reduced by a factor of 10 for
every 10 epochs, and the base learning rate set to 0.0001. The
models are trained for 30 epochs with a batch size of 128 and
the dropout rate is 0.5. In the TS-Net, we validated with the
temperature values ∈ {3, 5, 7} and α ∈ {0.05, 0.1, 0.15, 0.2},
as shown in Table VI.

V. RESULTS AND DISCUSSION

Due to an imbalance in mood classes in the test set, we
use weighted F1-score as the performance evaluation metric
in all our experiments. Table I shows the results of ResMood,
ResMoodEmo, and TS-Net. While ResMood is trained with
mood labels alone, ResMoodEmo is trained with both mood
and ∆ labels. In the TS-net, ResMoodEmo is the teacher
model, and ResMood is the student model, implying that the
teacher is pre-trained with both mood and ∆ labels, while the
student is trained with mood labels alone.

ResMoodEmo yields a higher F-score as compared to
ResMood, indicating that the ResMoodEmo learning tempo-
ral short-term emotion changes, better predicts mood than
ResMood, which only employs mood labels. Without resort-
ing to the valence differential for gathering emotion change
information as done in [18], training a Siamese Network
with contrastive loss, and generating the ∆ labels results in
a competitive performance in mood prediction. Further, by
using the emotion change labels, we are capturing variations
over a short duration simultaneously for characterising mood.
The results indicate that (local) emotion variations contribute
towards understanding the (global) mood.

A similar trend is observed in the TS-Net, as it yields a
higher F-score than the ResMood model. This shows that



TABLE I
PERFORMANCE RESULTS (WEIGHTED F-SCORE) OF THE MODELS.

Model Train labels F-score

ResMood Mood 0.65
ResMoodEmo Mood and ∆ 0.78

TS-Net Mood (Student) 0.78

TABLE II
ABLATION STUDY RESULTS WITH ∆GT LABELS

Model Train labels F-score

ResMood Mood 0.63
ResMoodEmo Mood and ∆GT 0.73

TS-Net Mood (Student) 0.66

the teacher, possessing the privileged knowledge concerning
emotion change, is able to effectively distil knowledge to the
student (ResMood) during the training phase. With the ∆
labels being implicitly given as soft labels from ResMoodEmo,
the performance of the student increases, as compared to the
standalone ResMood model. Cumulatively, these results show
that using the pseudo-emotion-change information enhances
the mood prediction performance.

For the Siamese Network trained on the AffectNet dataset,
generating effective ∆ labels from AffWild2 is crucial. The ob-
tained results show that the ∆ labels generated are reliable as
they improve mood prediction performance; the investigation
of an optimal architecture for the Siamese network is left to
future work. Overall, our results confirm that despite not using
the valence differential labels to denote emotion changes, per-
forming weak supervision using the ∆ labels in ResMoodEmo
and TS-Net improves mood prediction performance.

A. Ablation Studies

To corroborate the above findings, we perform the following
ablation studies and examine the effectiveness of various
components of our approach.

1) Using Ground Truth Emotion-change (∆GT ) Labels:
The increase in the F-score using ResMoodEmo as compared
to ResMood, could be attributed to the contribution of the
∆ labels for mood inference or the implicit efficiency of the
Siamese Network. For better comprehension of the results, we
use the eight emotion labels available for each video frame in
the AffWild2 dataset to obtain ∆GT (similar or dissimilar)
labels. However, since not all videos have the categorical
emotion annotations, the total number of samples reduced from
191,552 to 53,026. These samples are obtained as described in
Sec. III-E. For each video sample, there is an assigned mood
label and ∆GT label (similarity between first frame and last
frame). The results of ResMood and ResMoodEmo are shown
in Table II. It is noteworthy that a similar trend to Table I
is observed here. This indicates that, (a) ∆ labels generated
by the Siamese Network are effective, as they result in a
competitive performance, (b) emotion information positively

contributes in mood inference in a dataset-agnostic manner
(∆ labels are deduced from the Siamese Network trained
using AffectNet, whereas the ∆GT labels are obtained from
AffWild2.), and (c) achieving a comparable result without
using the ∆GT highlights the robustness of the proposed mood
inference approach.

2) Number of Frames in the Input Video Sample: Table
III shows the results of varying the number of frames in the
input samples, while fixing the temporal length (t) to 100.
Temporal information plays a crucial role in examining mood,
and variation in the number of frames in each sample clarifies
if increasing the information provided to the model facilitates
mood inference. The performance of ResMoodEmo increases
when the number of frames are set to 3, 5, or 7, but decreases
when the number of frames is increased to 9. Using the TS-
Net, when the input samples have 3 frames, no change is
observed, while with 7 and 9 frames, the performance reduces.
Overall, the comparison shows that 5 frames in the input
sample maximally increases mood prediction performance.

3) Temporal Length (t) of the Sample: Table III presents
the results of varying t of the input samples while fixing the
number of frames (n) in each sample to be 5. Since mood is an
enduring affect, it is important to consider long sequences of
data for automatic mood inference. For t = 50, and t = 150,
the F-score obtained with ResMood increases, while the F-
score remains the same for t = 200, as compared to using
t = 100. Although varying t results in a comparable F-score
with ResMood, it decreases in ResMoodEmo and TS-Net with
lengths of 50, 150, and 200, as shown in the respective %
increase to ResMood columns of Table IV. The highest F-score
with ResMood and the least F-score with ResMoodEmo is
observed using t = 150. Since emotion is a short-term affect,
observing the changes in the emotion over longer sequence of
time causes a detrimental effect on mood inference.

4) Varying the Backbone Architecture: Table V reports
the results when the backbone architecture in the models is
changed. The F-score for ResMood increases slightly as the
depth of the ResNet increases. With ResNet18 and ResNet50,
a general trend of increase in the mood prediction performance
using ResMoodEmo and TS-Net is observed. Using ResNet34,
an increase in F-score is observed with ResMoodEmo as
compared to ResMood, but with TS-Net, the F-score remains
the same. ResNet18, a lighter architecture as compared to its
counterparts, results in the maximum F-score for ResMood-
Emo and TS-Net, and largest % increase from ResMood.

5) Temperature and α: The results with varying tempera-
ture (T ) and α values are shown in Table VI. For varying α,
as T increases, the F-score reduces. This is due to the fact that
high values of temperature soften the output class probabilities,
while with low temperature values, the relative differences in
the probabilities are captured. For T = 5 and T = 7, the
F-score either remains the same or increases as α increases,
while for T = 3, no general trend is observed. As described
in Sec. IV-C, α is the weight of the student loss function,
indicating that lower values of α imply a higher weighting for
the distillation loss, enabling the student model to get closer



TABLE III
ABLATION STUDY VARYING NUMBER OF FRAMES (n) IN THE INPUT SAMPLES. BEST RESULTS OBTAINED ARE HIGHLIGHTED IN BOLD.

Number of frames
ResMood ResMoodEmo TS-Net
F-score F-score % increase to ResMood F-score % increase to ResMood

3 0.67 0.68 +1.49 0.67 0
5 0.65 0.78 +20 0.78 +20
7 0.68 0.72 +5.88 0.65 -4.41
9 0.70 0.63 -10 0.52 -25.71

TABLE IV
ABLATION STUDY RESULTS FOR VARIOUS TEMPORAL LENGTHS (t) OF THE INPUT SAMPLE.

Temporal length
ResMood ResMoodEmo TS-Net
F-score F-score % increase to ResMood F-score % increase to ResMood

50 0.67 0.65 -2.99 0.66 -1.49
100 0.65 0.78 +20 0.78 +20
150 0.69 0.65 -5.80 0.64 -7.25
200 0.65 0.64 -1.54 0.64 -1.54

TABLE V
ABLATION STUDY RESULTS FOR VARIOUS BACKBONE ARCHITECTURES.

Backbone
ResMood ResMoodEmo TS-Net
F-score F-score % increase to ResMood F-score % increase to ResMood

ResNet18 0.65 0.78 +20 0.78 +20
ResNet34 0.66 0.70 +6.06 0.66 0
ResNet50 0.68 0.75 +7 0.75 +7

TABLE VI
ABLATION STUDY RESULTS FOR THE TS-NET WITH VARIOUS

TEMPERATURE AND ALPHA VALUES.

T/α 0.05 0.1 0.15 0.2

3 0.78 0.72 0.69 0.72
5 0.64 0.64 0.68 0.69
7 0.64 0.66 0.66 0.71

to the teacher model.
Overall, the ablation study results confirm that the generated

∆ labels are an effective alternative to ∆GT and produce
a comparable effect, as incorporating these labels improves
mood prediction performance.

VI. CONCLUSION

The aim of this study is to examine mood from a com-
putational perspective by incorporating emotion similarity
information. Different from prior studies, without using the
valence differential, this study proposes to use emotion change
information by employing a metric learning approach. To this
end, a Siamese network is trained using the AffectNet database
and the trained model is used to generate pseudo-∆ labels
for a pair of frames in the AffWild2 database. For mood
classification, we employ ResMood, a model trained with
mood labels alone, ResMoodEmo trained with mood labels

and ∆ labels, and TS-Net, a teacher-student network with
ResMoodEmo as the teacher to distil knowledge to ResMood.
Higher F-scores are observed with models trained with both
mood and ∆ labels as compared to models trained with mood
labels alone. This indicates that the emotion change labels are
generated effectively and contribute positively to the mood
prediction performance. Our claim is further confirmed by
similar trends when performing corresponding experiments
employing ∆GT labels.

ETHICAL IMPACT STATEMENT
This study aims at examining mood from a computational

perspective by using emotional similarity information. The
data for the study reuses publicly available databases, Af-
fectNet and AffWild2, to conduct computational modeling
experiments. This study is designed towards answering a
theoretical question regarding the interaction between mood
and emotion. While facial information is revealed from images
and videos in the databases, we neither use identity-specific
information, nor base our claims on a specific religion, race
or gender. The proposed framework is non-obtrusive, using
the images, and videos present in the databases. One of the
most crucial applications of this framework is in healthcare, to
detect early signs of mood disorders such as depression, and
monitoring the mood of the patients by observing their emo-
tional patterns. Other application include education, gaming
technology, marketing, etc [4].



Although we aim at developing robust mood inference
technology, as with any other affect recognition system, there
could be potential ethical concerns. Mood inference could
reveal sensitive information about an individual’s mental state,
and could be used against the person. Mood detection system
could be also used inappropriately to influence or manipulate
individuals’ behavior or emotions. Additionally, the use of
mood detection in contexts such as employment could lead
to discrimination or bias. Finally, we acknowledge that there
could be intrinsic bias, as we train our models on the databases
which may be biased towards facial expressions of individuals
from a specific location/culture.
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