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Abstract—We propose an automatic method to measure
depression severity from body movement dynamics in
participants undergoing treatment for depression. Participants
in a clinical trial for treatment of depression were interviewed
on up to four occasions at 7-week intervals with the clinician-
administered Hamilton Rating Scale for Depression. Body
movement was tracked using OpenPose from full-body video
recordings of the interviews. Gram matrices formulation was
used for body shape and trajectory representations from each
video interview. Kinematic features were extracted and encoded
for video based representation using Gaussian Mixture Models
(GMM) and Fisher vector encoding. A multi-class SVM was
used to classify the encoded body movement dynamics into
three levels of depression severity: severe, mild, and remission.
Accuracy was high for severe depression (68.57%) followed
by mild depression (56%), and then remission (37.93%). The
obtained results suggest that automatic detection of depression
severity from body movement is feasible.

Index Terms—Gram matrices, body movement, dynamics,
depression severity.

I. INTRODUCTION

Depression is one of the most common psychiatric disor-
ders worldwide. According to the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) behavioral indicators
of depression include reduced facial expressiveness, decreased
vocal intensity and speech, inability to sit still, pacing, hand-
wringing, and slowed body movements [DSM-5]. Yet, often
these indicators are not taken into account in depression
severity assessment that relies almost entirely on patients’
verbally reported symptoms in clinical interviews. To improve
depression severity assessment, automatic and objective as-
sessment of depression from behavioral signals has emerged
as a powerful option.

Most previous efforts in automatic assessment of depression
severity have focused on facial expression [1], [2], voice
quality and timing [3], and head pose [1], [2], [4]. For
instance, Hdibeklioglu and colleagues [1] proposed a state
of the art multimodal (face, head, and voice) deep learning
based approach to detect depression severity in participants
undergoing treatment for depression. The dynamics of facial,
head, and vocal prosody was important for the measurement
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of depression severity, but one could not say whether the
dynamics of those measures was increasing, decreasing, or
varying in some non-linear way. To overcome that limitation,
Kacem and colleagues [2] proposed a method to measure
depression severity from facial and head movement dynamics
using affine-invariant barycentric and Lie algebra representa-
tion, respectively. Consistent with clinical data, the extracted
kinematic features revealed that the velocity and acceleration
of facial movement strongly mapped onto depression severity
symptoms [2].

Although body movement also changes with depression
severity (e.g., inability to sit still, slowed body movement
[DSM-5]), the communicative functions of body movement
dynamics in relation to depression severity have been fairly
unexplored using automatic approaches. One notable excep-
tion is [5]. In [5], the authors investigated body movement for
the detection of depression. To do so, the authors extracted
the relative orientation and radius of body parts as well as
the holistic body motion measured using space-time interest
points [6]. The two set of descriptors were then fused to train
a support vector machine (SVM) classifier for the detection
of presence from the absence of depression. From a clinical
perspective, it is also critical to measure change over time
in depression severity. In the continuity with the initial efforts
listed above, we investigated the discriminating power of body
movement dynamics for depression severity assessment.

Compared with previous efforts, including ours [1], [2], we
focused on the unique contribution of body movement dynam-
ics in clinically relevant participants in treatment of moderate
to severe depression. The combination of body movement with
other modalities (e.g., face and head [1], [2]) are subject to
future work. To capture changes in the dynamics of body
movement that would reflect the psychomotor retardation and
agitation of depressed participants, Gram matrices formulation
is used for body shape and trajectories representation. Rele-
vant kinematic features are then extracted from body shape
trajectories (i.e., velocities amics and accelerations). Gaussian
Mixture Models (GMM) combined with an improved fisher
vector encoding are then used to obtain a single vector repre-
sentation for each sequence (i.e., clinical interview). Finally,
a multi-class SVM with a Gaussian kernel is used to classify
the encoded body movement dynamics into three depression
severity levels: severe, mild, and remission. To the best of



our knowledge, this is the first time that depression severity
rather than only presence from absence of depression has been
measured automatically from body movement dynamics. The
proposed approach is illustrated in Fig. 1.

II. PARTICIPANTS

Fifty-seven participants with moderate to severe depression
(34 women, 23 men) were recruited from a clinical trial
for treatment of depression [1]. At the time of the study,
all met DSM-4 criteria [7] for Major Depressive Disorder
(MDD). Data from 49 participants was available for analysis.
Participant loss was due to change in original diagnosis (e.g.,
severe suicidal ideation) and methodological reasons (e.g.,
missing or corrupted video recordings). Symptom severity was
evaluated on up to four occasions at 1, 7, 13, and 21 weeks
post diagnosis and intake by four clinical interviewers (the
number of interviews per interviewer varied) [1].

Interviews were conducted using the Hamilton Rating Scale
for Depression (HRSD) [8]. HRSD is a clinician-rated multiple
item questionnaire to measure depression severity and re-
sponse to treatment. HRSD scores of 15 or higher are generally
considered to indicate moderate to severe depression; scores
between 8 and 14 indicate mild depression; and scores of 7
or lower indicate remission [9] [1].

Participant and interviewer were sitting face-to-face during
the entire interview (see Fig. 2). Interviews were recorded
using three hardware synchronized analogue cameras and two
unidirectional microphones (see Fig. 2). Audio data was not
used in the current paper. For video data, one camera recorded
the interviewer’s shoulders and face from approximately 15
degrees to the participant’s right. Two additional cameras were
positioned approximately 15 degrees to the interviewers left
and right (see Fig. 2). One camera recorded the participants
face and one camera recorded a full body view (see Fig. 2).
In the current work, we used the data recorded from the full
body view camera digitized at a frame rate of 29.97 fps (see
Fig. 2). Using these data and the cut-off scores of depression
severity described above, we defined three ordinal depression
severity classes: moderate to severe depression, mild depres-
sion, and remission (i.e., recovery from depression). The final
sample from the body camera view was 89 available full
body recorded sessions from 49 participants: 35 moderate to
severely depressed, 25 mildly depressed, and 29 remitted.

III. AUTOMATIC BODY TRACKING

We used a real-time fully-automatic multi-person 2D body
tracker (OpenPose, [10]) to track body parts’ locations. Open-
Pose uses a non-parametric representation (key-points asso-
ciation that encodes both position and orientation of human
limbs) to learn the association between body parts’ locations
(i.e., Head, Shoulders, Elbows, Wrists, Hips, Knees, and
Ankles, see Fig. 3) and individuals present in a given image.
The tracker encodes global context, allowing a greedy bottom-
up parsing step that maintains high accuracy of body parts
tracking while achieving real time performance, irrespective of
the number of people in the image [10]. OpenPose reliability

has been evaluated with state-of-the-art accuracy on multiple
public benchmarks [10]. Table I reports the proportions of
tracked video frames for each body point for all data. Valid
tracking was lower for points 10 and 13 (left ad right ankles,
respectively). Self-occlusion (occluded ankles) contributed to
tracking failure of points 10 and 13.

Because we are interested in body points only, tracked
points 14, 15, 16, 17 (i.e., eyes, nose, and ears, respectively)
were not used for analyses. Because points 10 and 13 are
usually not detected, they were not used for analyses. This
resulted in skeletons of 12 body joints used for the analysis
of body movement dynamics in participants in treatment for
moderate to severe depression (for a more detailed description
of the data please see section Participants).

IV. MODELING BODY MOVEMENT DYNAMICS USING
GRAM MATRICES FORMULATION

Evolutionary theories of depression highlights symptoms
of psychomotor retardation and agitation [11], [12]. We
used dynamic measures of body movement to capture aspects
of psychomotor retardation and agitation in participants in
treatment for moderate to severe depression.

A. Frame Based Body Shape Representation

Body movement dynamics is represented using the time
series of the coordinates of the 12 tracked body points (i.e.,
p1 = (x1, y1), . . . , p12 = (x12, y12)) during each video
sequence (see section Automatic Body Tracking). Each video
sequence is thus characterized by a set of landmark configu-
rations {Z0, . . . , Zτ}, where τ is the duration in frames of the
video sequence (interview). Each configuration Zi (1 ≤ i ≤ τ)
is an n × d, where d = 2 and n = 12, matrix of rank
d encoding the positions of n distinct landmark points in
d dimensions. We seek to measure the dynamic changes of
the curves formed by the landmark configurations invariant to
rotation and translation. To do so, we computed the matrix of
pairwise distances between the landmarks of the same body
shape (at a given frame). The measured distances are then
centered by subtracting the landmarks center of mass referred
to as p0. We then compute the Gram matrices as the squares
of all measured centered distances such as:

G = ZZT = 〈pi, pj〉, 1 ≤ i, j ≤ n , (1)

The Gram matrices of the form ZZT , where Z is an n× d
matrix of rank d, are characterized as n × n positive semi-
definite matrices of rank d. Conveniently, the Riemannian
geometry of the space of these matrices, called the positive
semidefinite cone S+(d, n), was well studied in [13]–[17].

B. Video Based Body Shape Trajectories

The dynamic changes of body joints movement are charac-
terized by parametric trajectories on the Riemannian manifold
of positive semi-definite matrices of fixed-rank (see Fig.1.a).
More specifically, let βG : I → S+(d, n) defines a curve
(I denotes the time domain, e.g., [0, 1]) to model the spatio-
temporal evolution of elements on S+(d, n). Given a sequence



Fig. 1. Overview of the proposed approach, (a) Automatic landmark detection for each frame of the video and Gram matrix computation, (b) Building
trajectories on S+(2, n) and Bezier curve smoothing, (c) Kinematic features extraction, (d) Depression severity classification.

Points 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
% of tracked data 99 99 99 99 99 99 99 99 99 86 46 99 82 39 99 99 81 99

TABLE I
PROPORTION OF SUCCESSFULLY TRACKED FRAMES FOR EACH BODY POINT (USING OPENPOSE)

Fig. 2. Face-to-face clinical interview setup.

of landmark configurations {Z0, . . . , Zτ} represented by their
corresponding Gram matrices {G0, . . . , Gτ} in S+(d, n), the
corresponding curve is the trajectory of the point βG(t) on
S+(d, n), when t ranges in [0, 1].

Body shape points trajectories are characterized by the
curves obtained by connecting all successive Gramian repre-
sentations of shapes Gi and Gi+1, 0 < i ≤ τ − 1, by pseudo-
geodesics in S+(d, n). Modeling a sequence of landmarks as
a trajectory on S+(d, n) showed very promising results when

Fig. 3. Overview of OpenPose Targeted Body Points [10].

the data are well acquired (i.e., without tracking errors or
missing data) [18], [19], [20]. To account for both missing
data and tracking errors we apply a curve fitting algorithm (as
”smoothing” on Bezier curves [21]) on the trajectories of the
Gram matrices in the manifold. More precisely, the trajectories
in the manifold are considered as Bezier curves and can be
generalized with the De Casteljau algorithm (see Fig.1.b).

To do so, let’s consider the positive, semi-definite, of fixed



rank matrices S+(d, n). Our goal is to approximate a Bezier
curve B to data points d0, ..., dt, with t the number of points
composing the trajectories. The control points estimated for the
curve are chosen such that B is close the the data points and
the mean squared acceleration is small. Therefore, the Bezier
curves are composed of t Bezier functions. Let p0, ..., pt ∈
S+(d, n) denotes the endpoints of each Bezier curve and let
(b−i , b

+
i ) ∈ S+(d, n) × S+(d, n) denotes the right and left

control points of pi. Fig.1.b illustrates Bezier curve estimation.

V. KINEMATIC FEATURES AND FISHER VECTOR
ENCODING

A. Kinematic Features

Because videos of interviews varied in length, the extracted
body curves (of different videos) vary in length. This variation
in the obtained curves’ lengths could introduce distortions
in feature extraction. To overcome this problem, we apply
a cubic spline interpolation to the obtained C(t) curves.
This step results in smoother and shorter curves of fixed
length. We set empirically the new length of the curve given
by spline interpolation to 5000 samples for body curves.
Then, we compute the velocities by computing the tangent
vectors between successive frames. These can be obtained
using the logarithm map with respect to the Riemannian
metric of S+(d, n) introduced in [17]. More specifically, given
two successive Gram matrices C(t) = Gt = ZtZ

T
t and

C(t+1) = Gt+1 = Zt+1Z
T
t+1 at time t and t+1, respectively,

the velocity is a vector at the tangent space of C(t) and is
given by,

VC(t) = logC(t)(C(t+ 1)) = Zt+1Q
∗ − Zt, (2)

where Q∗ is the optimal 2× 2 rotation aligning Zt+1 and Zt
which can be efficiently computed using SVD. By doing so,
the velocities will lie on different tangent spaces, i.e., each
of them belongs to the tangent space of the current frame.
As a solution, we use the parallel transport provided in the
Manopt Toolbox [22] in order to transport all the velocities to
the tangent space of a common reference frame. After that, we
compute the acceleration AC(t) =

∂2C(t)
∂t2 from the transported

velocities after reducing their dimensions (see Fig.1.c). Finally,
body shapes, velocities, and accelerations are concatenated as:

KC(t) = [C(t);VC(t);AC(t)] , (3)

B. Fisher Vector Encoding

Our goal is to obtain a single vector representation from the
kinematic curves KC(t) for depression severity assessment.
Following [23], we used the Fisher Vector representation using
a Gaussian mixture model (GMM) distributions [24] (see
Fig.1.d). Assuming that the observations of a single kinematic
curve are statistically independent, a GMM with c components
is computed for each kinematic curve by optimizing the
maximum likelihood (ML) criterion of the observations to the
c Gaussian distributions. To encode the estimated Gaussian
distributions in a single vector representation, we use the

TABLE II
OVERALL DEPRESSION SEVERITY ASSESSMENT WITH AND WITHOUT

CURVE FITTING

Method Accuracy
Gram without curve fitting (89 sequences) 42.89

Gram with curve fitting (89 sequences) 54.17

TABLE III
DEPRESSION SEVERITY ASSESSMENT RESULTS

Remission Mild Severe
Remission 37.93 12 11.42

Mild 17.24 56 20
Severe 44.82 32 68.57

improved fisher vector encoding, which is suitable for large-
scale classification problems [25]. This step is performed for
kinematic curves KC(t) separately. The number of Gaussian
distributions c are chosen by a a leave-one-subject-out cross-
validation and are set to 9 and the fisher vectors dimension is
12× 2× 2× 2× 9 = 864.

The set of encoded dynamic features are then fed to a multi-
class SVM with a Gaussian kernel to classify the extracted
body movement dynamics into different depression severity
levels (see Fig.1.d).

VI. RESULTS

We seek to discriminate three levels of depression severity
(moderate to severe, mild, and remission) from body move-
ment dynamics. To do so, we used leave-One-Subject-Out
cross validation scheme. Performance was quantified using the
mean accuracy over the three levels of depression severity.
A multi-class SVM was used to classify the encoded body
movement dynamics into three levels of depression severity.

To evaluate the reliability and effectiveness of curve fitting,
we first compared the overall classification results with and
without curve fitting. As shown in Table II, Gram with
curve fitting performed better than without curve fitting. The
obtained results can be explained by the fact that curve fitting
smooths the curves without modifying the velocity and the
acceleration of body movement.

Table. III shows the confusion matrix for depression severity
assessment using body movement dynamics. Misclassification
was more common between adjacent categories (e.g., Mild and
Severe) than between distant categories (e.g., Remission and
Severe). Consistent with previous findings, using the dynamics
of facial and head movements [1], [2], highest accuracy was
found for Severe depression (68.57%) compared to Mild
(56%) and Remission (37.93%). The assessment of the unique
contribution of different body joints movement for depression
severity assessment is work in progress.

We evaluated the possible interpretability of the proposed
kinematic features (i.e., KC(t) in Eq. 2) for depression severity
assessment. To do so, we compute the l2-norm of velocity and
acceleration intensities for body (i.e., VC(t) and AC(t)) curves
for each video. Since each video is analyzed independently,



we compute the histograms of the velocity and acceleration
intensities over 10 samples (videos) from each level of de-
pression severity. This results in histograms of 50000 velocity
and acceleration intensities for each depression level.

Fig. 4. Histograms of velocity and acceleration intensities for body move-
ments.

Fig. 4 shows the histograms of body velocity and accelera-
tion intensities. The level of depression severity is proportional
to the acceleration intensity of body movement. Acceleration
decreases as participants improve from severe to mild and
remission. Velocity on the other hand failed to vary systemat-
ically with change in depression severity. Previous automatic
based studies have found that depression severity is marked
by reductions in general facial expressiveness [2]. Velocity and
acceleration of facial expressiveness both increased as partici-
pants improved from severe to mild and then to remission [2].
On the other hand, our findings suggest that body movement is
highest during severe depression and decrease during mild to
remission. These results highlights symptoms of psychomotor
agitation (e.g., fast or repetitive body movements) and are con-
sistent with the observation that psychomotor agitation in body
movements (e.g., unable to sit still, fidgeting, hand-wringing)
in depression lessens as severity decreases (i.e., participants
become less agitated when remitted). While encouraging, our
results should be interpreted with caution given the unbalanced
distribution of depression severity scores. Future research,
with a larger sample, is needed to replicate our findings on
the relation between depression severity and the dynamics of
body movement. Finally, the next step will be to compare the
relative contribution of each body joint for depression severity
assessment and related dynamics changes during the course of
treatment.

Overall the obtained results show that depression severity
can be assessed from body movement dynamics. Because other
behavioral markers (e.g., face and head movement dynamics)
also showed discriminating power for depression severity
assessment [1], [2], the combination of different modalities
(i.e., face and head) with body movement dynamics is work
under progress.

VII. CONCLUSION

We proposed a space-time geometric representation of body
movement dynamics to measure depression severity. The pro-
posed approach model the temporal evolution of joint points
configurations as parameterized trajectories on the positive
semidefinite matrices of fixed-rank. The results of proposed
approach obtained in adults participants with history of chronic
depression show promising results.
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