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Abstract—Predominant thermal comfort provision technolo-
gies are energy-hungry, and yet they perform crudely because
they overlook the requisite precursors to thermal comfort. They
also fail to exclusively cool or heat the parts of the body
(e.g., the wrist, the feet, and the head) that influence the most
a person’s thermal comfort satisfaction. Instead, they waste
energy by heating or cooling the whole room. This research
investigates the influence of neck-coolers on people’s thermal
comfort perception and proposes an effective method that delivers
thermal comfort depending on people’s heart rate variability
(HRV). Moreover, because thermal comfort is idiosyncratic and
depends on unforeseeable circumstances, only person-specific
thermal comfort models are adequate for this task. Unfortunately,
using person-specific models would be costly and inflexible for
deployment in, e.g., a smart building because a system that uses
person-specific models would require collecting extensive training
data from each person in the building. As a compromise, we
devise a hybrid, cost-effective, yet satisfactory technique that
derives a personalized person-specific-like model from samples
collected from a large population. For example, it was possible to
double the accuracy of a generic model (from 47.77% to 96.11%)
using only 400 person-specific calibration samples. Finally, we
propose a practical implementation of a real-time thermal com-
fort provision system that uses this strategy and highlighted its
advantages and limitations.

Index Terms—thermal comfort model, humanized computing,
smart building, heart rate variability, energy conservation

I . I N T R O D U C T I O N

Despite a century of research on thermal comfort, the
technologies for its provision leave much to be desired [1],
[2]. By definition, thermal comfort is “the condition of mind
that expresses satisfaction with the thermal environment and
is assessed by subjective evaluation [3]”. Paradoxically, most
thermal comfort provision technologies (e.g., air conditioning
units) ignore this idiosyncratic nature of thermal comfort;
instead, they provide neutral thermal conditions to all occupants
of the buildings. Unfortunately, this strategy is inefficient and
has many well-known flaws highlighted in, e.g., [4], [5]: First, a
one-size-fits-all strategy cannot work well because of individual
differences (e.g., age, gender, and physiological makeup) that
influence how each person perceives thermal comfort [6].
Second, there is no rationale for providing “thermal neutral”
conditions (i.e., conditions in which people feel neither warm
nor cool [7]). In reality, people prefer non-neutral conditions
[7]–[9]. Moreover, there is a mounting suspicion that thermal
neutrality is pernicious because it may be a root cause of
sick building syndrome (SBS) [10], [11]. Third, achieving
thermal neutrality is costly and necessitates immoderate energy
consumption [2]. Forth, only a few parts of the body (e.g., head,
wrists, and feet) are mostly responsible for thermal comfort.

For example, in uniform environmental conditions, when it is
cold, a person’s feet and hands feel colder than other parts
of the body. On the contrary, the cold environment does not
affect the thermal sensation on the head, which usually feels
warmer than the rest of the body and require a relatively lower
temperature to achieve a satisfactory thermal comfort [12].
However, air conditioning units do not exclusively direct the
heat to these crucial parts of the body. Instead, they inefficiently
cool or warm an entire room and regardless of the number
of people available in the room. Lastly, current international
thermal comfort standards are unambitious (they expect a mere
80% satisfaction rate [7]). Consequently, many luminaries in
the field [1], [2], [5], [7] argue for a paradigm shift in how
thermal comfort is provided.

In our previous research, we proposed a thermal comfort
provision method that aimed to solve some of the above
limitations. We argued that, since thermal comfort is a subjec-
tive psychological sensation and that thermoregulation leads
to discernible physiological changes [13], it would be more
efficient to provide thermal comfort based on variations in
a person’s physiological signals. We revealed [14] that a
change in a thermal environment led to detectable fluctuations
in people’s heart rate variability (HRV) and introduced an
energy-efficient thermal comfort provision technique that uses
people’s physiological changes due to their surrounding thermal
environments to provide a personalized thermal comfort [15].
We also developed a proof of concept machine learning-enabled
apparatus that delivers, in real-time, a personalized thermal
comfort [16]–[18]. The system uses people’s photoplethysmo-
gram (PPG) signals to estimate their thermal comfort level.
While we have not yet completed the development of the whole
system, at its completion, we anticipate that the system shall
deliver optimum thermal comfort based variation in people’s
physiological signals and that it shall minimize the energy
consumption depending on, e.g., the number of people in the
room, their comfort level, and depending on the outside weather.
At the moment, this system performs crudely because it uses
a generic thermal comfort prediction model and does not take
into consideration the physiological differences between its
users. In this paper, we aim to improve these limitations.

I I . M E T H O D S

A. HRV datasets

We used a thermal comforts dataset described in [19]. We
collected the dataset by exposing eleven subjects to three
experiments. In the first experiment, we placed the subjects
in a very hot environment (32°C) and they wore adjustable
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(from 18°C up to 28°C) custom-made neck-coolers. In the
second experiment, we put the subjects in the same very hot
conditions, but in this case, they did not wear any neck-coolers.
In the third experiment, we placed the subjects in a hot (29°C)
environment and, like in the previous case, the subjects did not
wear any neck-coolers. During the experiment, we recorded
each subject’s interbeat interval (IBI) using myBeat heart rate
sensor (Union Tool co.). We also recorded the subject’s skin
temperature on the chest, on the arm and the lower leg, on
the neck and measured his/her sweating rate using SNT-200
sweat meters (Rousette Strategy, Inc.). The IBI signal was
sampled at 1kHz. Other sensors were recorded at 1 sample
per minute. The subject regularly self-evaluated their thermal
comfort level, their thermal sensation, and their sweat level on
a 10-scale visual analog scale (VAS). All experiments lasted
for at least 90 minutes.

B. Feature extraction
We computed various heart rate variability (HRV) features

1

using the standards and algorithms proposed by the Task
Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology [20]. We
first extracted an inter-beat interval (IBI) signal from the peaks
of the electrocardiogram (ECG) signal of each subject. Then,
we computed each HRV feature on a moving window as
follows: We used a five-minute array of IBI to compute the
first HRV index. Then, a new IBI sample is appended to the
IBI array while the oldest IBI sample is removed from the
beginning of the IBI array. The new resulting IBI array is used
to compute the next HRV index. We repeated this process until
the end of the entire IBI array.

C. Model training and evaluation
We utilized the subject’s self-assessment to develop re-

gression models that estimate each subject’s thermal comfort
level. We also classified the individual’s comfort based on the
experiment conditions of their thermal environment. We used
various machine learning algorithms (Table I) to train and
evaluate three thermal comfort prediction models:

TA B L E I : Thermal comfort models and their key hyperparameters

Model Hyperparameters

AdaBoost estimator=DecisionTree(max depth=64), n estimators=50
Bagging estimator=DecisionTree(max depth=64), n estimators=50

ExtraTrees n estimators=100, max depth=64
RandomForest n estimators=100, max depth=64

XGBoost n estimators=50, max depth=64, subsample=0.8

• generic model—to assess how the model would perform
in predicting the thermal comfort of new unseen subjects,
(i.e., the subjects whose HRV samples were not part of the
training set), we validated the performance of the generic
model using a leave-one-subject-out (LOSO) approach.
This method consists of using the data of one subject as a

1refer to Table I and to subsection I-A in the supplementary material

Algorithm 1: M O D E L C A L I B R AT I O N

Input: machine learning algorithm hm

Data:
• HRV samples samplegeneric of n persons
• Calibration HRV samples samplecalibration that belong

to q unseen persons such that q� n

Output: trained calibrated model hm′
/* mix the calibration samples and the

generic samples */
D′ ←− ∅
D′ ←− shuffle(samplegeneric ∪ samplecalibration)
/* train the model hm on dataset D′ */
hm′ ←− hm(D′)
return hm′

test set and the data of the remaining subjects as a training
set.

• person-specific model—unlike a generic model, a person-
specific model is developed by training and testing the
model exclusively on the data of the same person. We
used a 10-folds cross-validation approach to evaluate the
performances of each model.

• hybrid model—the generic model performs poorly because
of individual differences in how people express thermal
comfort. On the other hand, person-specific models would
be costly to deploy in buildings because they would
require acquiring and labeling the training data for each
occupant of the building. We propose a hybrid method
to mitigate this limitation. In a nutshell, the technique
(Algorithm 1) consists of adding a few person-specific
samples (they are referred to as “calibration samples” in
the remaining of this paper) collected from previously
unseen people into a generic thermal comfort model
trained on a large group of people. In this paper, we tested
the method with q = 3 on various algorithms (Table I)
—and their performances are similar. Nevertheless, all the
relevant results in this paper are based on the predictions
of Extremely Randomized Trees (ExtraTrees) models
because they performed the best.

I I I . R E S U LT S

A. The effect of the neck-coolers on thermal comfort

For most subjects, wearing the neck-coolers improved how
they felt about the thermal environments:
• As shown in Figure 1, the subjects expressed having a

better thermal comfort level and a lower sweating rate
when they wore the neck-coolers compared to when they
did not, but the results of their thermal sensation is not
conclusive (the median of the thermal sensation with or
without the neck coolers is the same). Nevertheless, in
all cases, wearing the neck-coolers was not sufficient to
offset the impact of the 29°C temperature gap between
the very hot and the hot environment.

• For all subjects, the skin temperatures and the neck
temperatures decreased when they wore the neck-coolers

https://www.kaggle.com/qiriro/comfort
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F I G U R E 1 : Perceived thermal comfort and sweating rate
In general, the subjects(N=11 subjects) had a higher thermal comfort level
and believed their sweating rate was lower when they wore the neck-coolers
compared to when they did not wear any neck-coolers. However, wearing the
neck-coolers did not affect their thermal sensation significantly.

(P < 0.001). However, there is no conclusive evidence
of the impact of the neck-coolers on the sweating rate
because only the data of 8 subjects were statistically
significant (P < 0.05). Furthermore, similarly to the
previous case, the influence of the neck-coolers was
not strong enough to negate the temperature differences
between a 32°C and a 29°C environment (Figure 2).
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F I G U R E 2 : Mean (11 subjects, 8350 samples) temperatures and sweating
rate —The recorded sensor data indicator that the neck-coolers reduced all
subjects’ skin temperature, and their neck temperature (P < 0.001).
However, for the sweating rate, only 8 subjects’ sweat rate is statistically
significant (P < 0.05).

• As for the subjects’ HRV(Figure 3), as we had previously
shown in a different experiment [14], the heart rate (HR)
increased in hottest environments, the pNN50 was lowest
in the hottest environment and the Very Low Frequency
(VLF) band in the HRV power spectrum was highest

in the coldest environment (P < 0.001). In particular,
when the subjects wore the neck-coolers, their pNN50
signal is consistently and conspicuously higher than their
counterpart pNN50 signal when they did not wear any
neck-coolers. According to our previous research [14], this
observation implies that, with the neck-coolers, subjects’
heart beating patterns reflected that of a lower-temperature
environment. Other HRV indices (especially the HR) seem
to follow this pattern (P < 0.001), albeit abstrusely and
inconsistently.
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F I G U R E 3 : Mean (11 subjects, 94094 samples) Heart Rate Variability
(HRV)—The HRV changes depending on the thermal environment. Strikingly,
it seems that, when the subjects wore the neck-coolers, their heart beating
patters (especially for the pNN50) were similar to the heartbeat pattern they
would have if they were in slightly lower temperature environment.

B. Thermal comfort prediction

The nervous system is a crucial player in people’s ther-
moregulation [13]. For example, a reduction in a person’s skin
temperature leads to thermogenesis, shivering, and an increase
in his neck muscle activities. On the contrary, when the skin
temperature increases, there is vasodilation and transpiration
to bolster heat loss (Figure 4). From this observation, we had
previously shown [14] that it is possible to apply machine
learning algorithms on a person’s fluctuation in his physiologi-
cal signals and to predict his thermal comfort in real-time [16].

We applied regression and classification machine learn-
ing algorithms on the HRV dataset as described in subsec-
tion II-C. We found that person-specific models achieved a
suspiciously too good to be true performance (accuracy =
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F I G U R E 4 : A simplified illustration of thermoregulation
The brain’s hypothalamus checks a person’s core temperature and kickoff the
thermogenesis or heat dissipating processes depending on whether the person
feels hot or cold.

99.98 ± 0.01, RMSE = 0.04 ± 0.01)2. As shown in
Figure 5, this superb performance is, however, only half
the story of the real performance of the models3. Indeed,
when we tested the same models on the unseen subjects
(i.e., the subjects whose HRV samples were not part of
the training set), the performance significantly decreased
(accuracy = 55.8± 0.98%,RMSE = 3.50± 0.83,R2 < 0).
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F I G U R E 5 : Performance of the person-specific versus the generic model
For all subjects (N=11 subjects), the person-specific models achieved a near-
perfect prediction. However, due to the differences in how each subject
physiologically responds to thermal comfort, the generic model performed
crudely.

As unlikely as it seems, the models’ poor performance on the
unseen subjects (i.e., the subjects whose data were not used for
training the model) is arguably not a fruit of model overfitting
because of four reasons. First, we used a large training dataset
(364788 samples, 66 HRV features, size ≈ 430MB). Although
a large training set does not override overfitting, in most cases, a
large train set is more diverse and reduces overfitting. Second,
we tested numerous ensemble machine learning algorithms
(e.g., Table I) of various complexity, and they achieved an
outstanding cross-validation performance, but they flopped

2see Table II and Table III in the supplementary material.
3see Table IV and Table V in the supplementary material.

when tested on the unseen subjects. Even a weak person-
specific model that underfits the dataset performed better than
the best person-independent model. As an illustration, a person-
specific classification adaptive boosting model with a decision
stump (i.e., a one-level decision tree) achieved a 56% accuracy.
Its regression counterpart had 2.27 and 0.12 RMSE and R2

respectively. Third, all our models are based on ensemble
machine learning algorithms, which, while they can overfit in
some cases, are designed to reduce the likelihood of overfitting.
Finally, and most importantly, we evaluated the models using
a cross-validation approach, and we obtained prediction with
low standard deviations between the 10 folds.

The poor performance on the unseen subjects is, however,
not completely unexpected. Thermal comfort is intrinsically an
idiosyncratic psychological sensation that depends on factors
that are unique to each person [6]. Thus, it is not possible for a
model to generalize on new unseen subjects. We confirmed this
phenomenon by investigating the influence of the individual
differences to the performance of the models. We added a
control prediction feature, the subject id, to the datasets. The
subject id served as an indicator of the owner of each sample in
the dataset. We computed and compared the rank of all features
in the dataset and found that the subject id was always the
most important feature. Similarly, we used a Recursive Feature
Elimination (RFE) approach and found that the subject id was
always among the most important feature.

C. Thermal comfort model calibration

The poor performance of the generic model highlights the
limitation of the system we had previously proposed. A practi-
cal thermal comfort prediction system that uses our approach
needs to take into consideration the individual differences in
how each person expresses thermal comfort. The system should,
for example, use only person-specific models. This approach,
however, is redundant, problematic, time-consuming, and very
expensive to deploy in the real world because it would require
to collect, label, and train extensive new data for every person
in the building. Also, once the models are deployed, there is
no guarantee they would work as expected because thermal
comfort is affected by unpredictable factors [1], [6].

In our previous studies [21], we proposed a model calibration
technique which incorporates a few samples from unseen
people into a generic model trained on the data of a large group
of people. In a nutshell, the technique (Algorithm 1) consists of
adding a few person-specific calibration samples collected from
previously unseen people into generic data collected from a
large group of people. In this study, the success of the proposed
method hinges in the fact that humans share a similar response
to thermal discomfort [13]. However, every person possesses
unique factors that supersede this generic response to thermal
comfort [6]. From this observation, we hypothesis that adding
a few person-specific calibration samples to the training data of
the generic model would increase its performance because the
new calibrated model would be able to capture the “uniqueness”
of the new unseen people. When we applied this approach to
the thermal comfort prediction, we observed that it improved

https://www.kaggle.com/qiriro/comfort
https://www.kaggle.com/qiriro/comfort
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F I G U R E 6 : Model calibration —without the calibration samples, the
models performed poorly. However, their performance steadily improved when
they were calibrated with a few person-specific samples

the performance of the generic model considerably (Figure 6)4.
• The classification model’s performance steadily increased

when the calibration samples were added. For example,
the accuracy increased from 48% to 82% when we used
100 calibration samples and culminated in a 96% accuracy
when we used 400 calibration samples.

• Similarly, for the regression model, the RMSE decreased
from 3.65 to 1.09 when we used 400 calibration samples.
At the same time, its R2 coefficient improved from a futile
R2 = −0.69 to a satisfactory R2 = +0.84

It is imperative to note that it only took a small fraction of the
calibration samples to increase the performance of the generic
models trained on a large dataset. In this study, we added
400 samples to dramatically increase the performance of the
generic models that we had trained on approximately 270000
samples. For most people, it would only take 5 to 6 minutes
to collect the required 400 HRV calibration samples.

I V. T H E R M A L C O M F O R T P R O V I S I O N

One of the pillars of responsive, intelligent buildings (IBs)
is to respond to each occupant’s need and to maximize his
comfort and well-being with a minimal negative impact on
the environment [22]. Although there is a need for extensive
studies to validate our findings, the results in this study
corroborate with those in our previous studies and suggest
that it could be possible to design an affect-aware thermal
comfort provision system that self-adjust to meet the needs of
every person in the building. Furthermore, as we discussed
in our previous paper [15], such a system would provide
a higher quality thermal comfort and requires lower energy.
An archetype of such a system is shown in Figure 7. As
already argued by other researchers [2], [23]–[26], personalized
comfort models do provide better thermal comfort and require
lower energy. For example, Pasut and his co-authors [26]
showed that a personalized heated/cooled chairs and a fan
were able to provide satisfactory thermal comfort to 90% of
the users. Furthermore, the whole setup consumed 50% less

4see Table VI and Table VII in the supplementary material.

energy compared to a central air-conditioning system. Our
proposed method improves their approach one step further
because it directly estimates the thermal comfort from the
person’s physiological response to the thermal environment
and adjusts the thermal environment accordingly. Furthermore,
in case the system misjudge a person’s thermal comfort, the
person could adjust the temperature according to his liking.
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Energy vs. thermal
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H
eatable
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Office lights

Machine learning

F I G U R E 7 : Proposed comfort provision system.
A person’s photoplethysmogram (PPG) signal is recorded using a wristband
device (e.g., an Empatica E4). The device periodically sends the PPG signal to
a computing device which computes and pre-processes (e.g., data cleaning, re-
balancing and dimension reduction) the HRV features and sent them to a remote
server where they are used to predict the person’s thermal comfort. The server
then uses constrained optimization algorithms to activate suitable actuators
(e.g., neck-cooler, a fan, and heated/cooled chair) to deliver an optimum and
personalized thermal comfort using the least possible energy. In case the
system miscalculates the person’s thermal comfort, the user could adjust the
temperature; thus, implicitly giving calibration samples that could be used to
personalize the system to his liking further. This feedback is used to train a
personalized stress prediction model, which is published and consumed as a
RESTful API. When the model deteriorates, it is automatically updated based
on the periodic self-evaluations the system received from its users.

Although the proposed system has many advantages, its
deployment in real-world settings poses numerous challenges.
Notably, there is a need to collect the bio-signals unobtrusively,
and its deployment would certainly need substantial upfront
investment. Fortunately, there exist many enabling technologies
that would ease some of these challenges. For example, it could
be possible to use an Empatica E4 wristbands5 to collect the
PPG signals. Furthermore, it might be economical to use off-
the-shelf heatable ergonomic chairs, neck coolers, and fans
instead of designing custom-made components. Finally, the
design of the system might take advantages of the commercial
machine learning cloud frameworks to simplify the deployment
and maintenance of the machine learning models. For example,
in our proposed system (Figure 7), the designer could use the
IBM’s Watson Studio6 to manage the thermal comfort models,
including model calibration and deployment as a REST API.
Additionally, even though the deployment and maintenance
of the proposed system would require a significant upfront
investment, the investment might pay off itself because of
the expected energy-saving it would bring. Furthermore, the

5https://www.empatica.com/research/e4
6https://www.ibm.com/cloud/machine-learning

https://www.kaggle.com/qiriro/comfort


system could also double as a multipurpose system that uses the
office occupants’ physiological signals for preventive medicine
and stress management. The advantages of these spillovers
applications (preventive medicine and stress monitoring) are
good enough alone to offset the cost of the initial investment
because stress and sickness cost employers billions of dollars
to compensate for their workers’ sick leaves, lower productivity,
job absenteeism, and high employee turnover.

V. C O N C L U S I O N

The technologies for thermal comfort provision in the
buildings are ineffective in terms of the quality of the comfort
they provide and in terms of the energy they require. Our
research hinges on neuroscience and cardiology studies that
showed that thermally dis-comfortable environments yield
detectable changes in a person’s physiological signals, e.g., the
variability in a person’s heart beat-to-beat intervals. We used
these breakthrough to develop an intelligent thermal comfort
provision system that delivers the thermal comfort depending
on the fluctuations in a person’s photoplethysmogram (PPG)
signal. This system, however, used a generic thermal comfort
prediction model and did not take into account the uniqueness
in how each person expresses thermal comfort.

In this paper, we conducted experiments on 11 subjects doing
office work in three thermal environments and compared how
their thermal comfort would improve when they wore neck-
coolers. We found that the subjects expressed having a higher
thermal comfort when they wore the neck-coolers. Therefore,
using neck-coolers in the summers might save energy by
keeping the indoor temperature at relatively high temperatures
without compromising the occupants’ thermal comfort.

Moreover, because thermal comfort is a subjective psy-
chophysiological feeling that is influenced by many unpre-
dictable factors, generic thermal comfort prediction models
cannot work well. Instead, person-specific models do. Regret-
tably, the deployment of a system that uses person-specific
models would be costly and inflexible for deployment into real-
world buildings. In this paper, we proposed a model calibration
technique that incorporates a few calibration samples into the
training data of a generic model to increase its performance.
For example, when we added 400 calibration samples into
a 270000 samples training set, its accuracy increased from
47.7% to 96.1%. We also discussed a possible implementation
of a real-time thermal comfort provision system that uses our
techniques and highlighted its advantages and limitations.

S U P P L E M E N TA RY M AT E R I A L S
The supplemental material7contains:
• Method—Detailed description of Section II
• Table I—List of the heart rate variability (HRV) features (Section II-A)
• Table II and Table III—Performance of the person-specific models (Section III-B)
• Table IV and Table V—Performance of the generic models (Section III-B)
• Table VI and Table VII —Performance of the calibrated models (Section III-C)
• Table VIII and Table IX —Feature importance when the subject id feature is

added to the dataset (Section III-B)
• Plots comparing the performance of the different machine learning models
• The computed HRV dataset (Section II-A)
• The python source code to reproduce the key findings of this research

7freely available at https://www.kaggle.com/qiriro/comfort
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