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Abstract—Affective robotics research aims to better under-
stand human social and emotional signals to improve human-
robot interaction (HRI), and has been widely used during the
last decade in multiple application fields. Past works have
demonstrated, indeed, the potential of using affective robots
(i.e., that can recognize, or interpret, or process, or simulate
human affects) for healthcare applications, especially wellbeing.
This paper systematically review the last decade (January 2013
- May 2022) of HRI literature to identify the main features
of affective robotics for wellbeing. Specifically, we focused on
the types of wellbeing goals affective robots addressed, their
platforms, their shapes, their affective capabilities, and their
autonomy in the surveyed studies. Based on this analysis, we
list a set of recommendations that emerged, and we also present
a research agenda to provide future directions to researchers in
the field of affective robotics for wellbeing.

Index Terms—survey, affective computing, robots, affective
robotics, wellbeing

I. INTRODUCTION

The number of people with wellbeing related concerns
has increased in the last decade. In addition, the current
COVID-19 pandemic has exacerbated this growth leading to
societal changes (such as social isolation and work-from-home
arrangements) that have severely impacted mental and physical
wellbeing. This has resulted in a more urgent need to support
people’s wellbeing.

Affective robotics is a promising venue to support peo-
ple and help improve their wellbeing. Affective robots can
recognize human emotions and show affective behaviors [1],
key factors for a successful interaction to promote human
wellbeing. Also, past works have largely used affective robots
to improve and maintain both mental (e.g., to aid the evaluation
of children’s wellbeing related concerns [2], cognitive therapy
for people with dementia [3]), and physical human wellbeing
(e.g., to promote exercise activities for the elderly [4]).

However, making an affective robot that is able to recognize,
interpret, process and simulate human affect is still an open
challenge, because of the several technical challenges (e.g.,
adaptation to human behavior, personalization of the interac-
tion), and the social and ethical implications of developing and
deploying such robots.

This paper aims at investigating the current state of the art of
affective robots for wellbeing. Specifically, our main research
questions is: “How have affective robots been used to promote

people’s wellbeing, and to what extent are their affective
capabilities suitable to promote wellbeing?”. We focused on
the following sub-questions:

• RQ1. What are the wellbeing goals of affective robots?
• RQ2. What are the affective robots’s platforms (e.g., Nao,

Pepper) that have been used for wellbeing?
• RQ3. What are the shapes (humanoid, non-humanoid,

animal-like) of the affective robots for wellbeing?
• RQ4. What are the affective capabilities (e.g., emotion

recognition) that the affective robots for wellbeing are
endowed with?

• RQ5. What are the levels of autonomy (non-autonomous,
semi-autonomous, autonomous) of the affective robots for
wellbeing?

To answer our research questions, we run a scoping lit-
erature review following the PRISMA schema [5] to avoid
any bias in the identification, screening, eligibility or inclusion
phases. We reviewed the last decade (from January 2013 to
May 2022) of HRI literature to provide a detailed picture of
affective robotics for wellbeing field.

This paper contributes the following:
1) we provide the community with a scoping review of the

last decade of HRI works in the affective robotics for
wellbeing field;

2) from the data synthesized, we formulate a list of recom-
mendations for future research in affective robotics;

3) we identify a research agenda for the affective robotics
research field to promote wellbeing.

The rest of the paper is structured as follows.First, Section
II defines affective robotics. Next, Section III, IV, and V are
dedicated to the scoping review; describing the methodologies,
presenting the main findings, and discussing those findings
respectively. We then present our limitations and future works
in Section VI and conclude the paper in Section VII.

II. DEFINITION OF AFFECTIVE ROBOTICS AND
CHALLENGES

With the term affective robotics, previous work has referred
to the use of affective computing in human-robot interaction.
In fact, authors in [1] defined affective robots as “robots that
can recognize human emotions and show affective behaviors”.
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Also, in [6], they claimed that affective robotics focus on “un-
derstanding human socio-emotional signals to enhance HRI”.
Paiva et al. [7] defined the affective loop of emotional robots
as composed of emotion adaptation, emotion expression, and
emotion synthesis. However, we acknowledge that having a
robot that is able to adapt, express, and synthetise emotions is
still difficult, due to several open challenges.

First, affective robotics research has to understand the
fundamental mechanisms of human behaviour in real-life
circumstances - including nonverbal behavioural cues - and
model these for human-inspired behaviours in robots. Second,
robots are expected to dynamically adapt to human behaviour,
meeting the needs of each individual and personalising their
behavior accordingly. Third, although affective robots take
advantage of the advances in affective computing, the general-
isation of those results into real-world context is not straight-
forward because of the controlled settings usually adopted for
creating datasets that inform those affective models. All those
challenges make it even more difficult to design affective and
intelligent social robots that can support people in promoting
their wellbeing.

Alongside these technical challenges, researchers must also
consider the social and ethical implications of developing and
deploying such robots, at both the individual and societal
levels.

In this survey, we refer to the term affective robots as robots
that can recognize, interpret, process, or simulate human
affect.

III. METHOD

This survey aims to understand how affective robots have
been used to promote people’s wellbeing. To address this
research question, we followed the PRISMA schema [5] to
identify, screen, select, and include the surveyed papers. The
steps of this process are shown in Fig. 1.

Fig. 1. PRISMA schema for this survey.

A. Search Query

We identified the surveyed papers searching in the ACM
Digital Library, IEEE Explore, and Scopus databases. To iden-
tify the search query, we exploited the SPIDER [8] framework.
We used similar queries for different databases (i.e., they differ

only for the database’s search requirements). For the sake of
clarity, we present an example of the Scopus search query as
follows:

TITLE-ABS-KEY ( ( "affective robotic*" OR
"social robot*" OR "emotional robot*" OR
"socially assistive robot*" ) AND
( "wellbeing" OR "well-being" OR
"mental health" OR "health" ) )
AND PUBYEAR > 2012

We collected the papers to review by searching via queries
in the databases selected, then we removed the duplicates and
stored all the resulted references into a CSV file.

B. Eligibility Criteria

We followed the guidelines of [9] for selecting papers in
engineering to identify the set of inclusion and exclusion
criteria for this survey.

We included the papers that:
• address wellbeing or health (both physical - defined as

“mantaining healthy quality of life”, such as eating well,
exercising, getting enough sleep, staying hydrated - and
mental);

• employ a physical robot with affective or emotional
capabilities (i.e., affective robot);

• model or analyse affective capabilities of a robot;
• have their title, abstract, and keywords containing at

least one keyword describing such technology and one
keyword from the Search Query Keywords.

We excluded the papers that:
• were published before January 2013 and after the day of

actual running of the research, i.e., May 16, 2022;
• are not in English;
• employ a virtual robot (e.g., in VR, or on mobile-based

applications);
• do not involve human-robot interaction in any form (e.g.,

running study, analysis data of HRI);
• are not in peer-reviewed journals and conference proceed-

ings;
• are surveying another topic or theoretical papers;
• are inaccessible to the authors;
• do not report the details necessary to evaluate their

eligibility.

C. Selection Process

We first screened the papers collected at a high level, and
then we selected the ones to include in this survey after in-
depth analysis. One reviewer screened the titles and abstracts
based on the eligibility criteria listed in Section III-B. The full
text of the remaining papers was analyzed and assessed by two
reviewers.

D. Data Extraction and Analysis

To extract data from the surveyed papers, we assigned a
variable to each of the five research questions. The types of
the variables were either categorical (e.g., robot’s autonomy)



TABLE I
CORRESPONDENCE BETWEEN THE RESEARCH QUESTIONS AND
VARIABLES, TYPES OF VARIABLE FOR THE EXTRACTED DATA.

Research Variables Type
Questions

RQ1 Robot’s Goal (e.g., assess/train mental Qualitative
wellbeing)

RQ2 Robotic Platform (e.g., NAO, Pepper) Categorical
RQ3 Robot’s Shape (e.g., humanoid) Categorical
RQ4 Robot’s Affective Capabilities Qualitative
RQ5 Robot’s Autonomy (e.g., non- or semi- Categorical

or fully- autonomous )

or qualitative (e.g., robot’s goal). Tab. I collects the variables
assigned to each research question. For the categorical data, we
defined a priori the classes based on previous literature, e.g.,
for the robot’s autonomy variable we identified three classes
- non-autonomous, semi-autonomous, and fully-autonomous -
based on [10]. While for the qualitative data we exploited
pattern-based method to extract main themes of the surveyed
papers.

IV. RESULTS

Following the PRISMA schema, 25 papers were included in
this review. The following sections collect the data synthesized
and the corresponding research questions addressed. Tab. IV
collects the survey results.

A. Affective Robot’s Goal (RQ1)

Fig. 2. Affective robot’s goal (RQ1) in the surveyed papers among January
2013 to May 2022

Overall, 17 studies used affective robots to promote mental
wellbeing, in 8 studies the robot was used for physical
wellbeing. Fig. 2 details the robot’s goal, and specifically, we
identified 9 different goals for affective robots that promote
wellbeing among the surveyed papers. Eight studies focused
on physical wellbeing. Five of the studies (20%) focused
on physical stimulation to promote physical wellbeing. Two
studies (8%) explored the use of affective robots to promote
healthy food (or drink) for physical wellbeing. One study (4%)
used the affective robot to detect fall. Then, the remaining 17
studies focused on promoting mental wellbeing. 11 studies
(44%) aimed to provide an emotional support - including

reducing stress or anxiety - to promote mental wellbeing of the
participants. 2 (8%) investigated affective robots to facilitate
cognitive stimulation promoting mental wellbeing. 1 of the
studies (4%) aimed at promoting self-disclosure by using an
affective robot. One study (4%) adopted affective robots to
assess participants via clinical interviews. One study (4%) used
the robots to entertain participants. Finally, one study (4%)
exploited the affective robot to provide a mindfulness session.

To sum up, to date the HRI community focused more on the
application of affective robotics to promote mental wellbeing.
Some of them exploited affective robots to facilitate physical
wellbeing as well.

B. Affective Robot’s Platform (RQ2)

Fig. 3. Affective robot’s platform (RQ2) in the surveyed papers among
January 2013 to May 2022

From the surveyed studies, we identified 17 different robotic
platform, as depicted in Fig. 3. Specifically, 5 of the studies
(19.5%) used a Nao robot, 3 studies (11%) Pepper, 2 studies
(7.5%) Cozmo, 2 studies (7.5%) Reeti, one study (3.7%) Alice,
one study (3.7%) PR2, one study (3.7%) a non-humanoid robot
by Hoffman [34], one study (3.7%) Stevie, one study (3.7%)
Darwin-mini, one study (3.7%) Blossom, one study (3.7%)
Jibo, one study (3.7%) Side-bot, one study (3.7%) Emarv-4,
one study (3.7%) IRS, one study (3.7%) Huggable, and one
study (3.7%) a 3D printed social robot.

Those results show that the HRI community is gradually
exploring different robotics platforms that are now more avail-
able in the market. Still, the robotics platforms from SoftBank
(Nao and Pepper) are the most commonly used within the HRI
community.

C. Affective Robot’s Shape (RQ3)

To cluster the affective robot’s shape of the surveyed papers,
we used the definition by [35] and [36], who defined the robot
agent shape as bio-inspired (e.g., animal-like, humanoid), and
non bio-inspired (artificial, i.e., showing artificial characteris-
tics, and functional, i.e., performing specific functional tasks).

Among the survey papers, 16 out of 26 (65%) used a bio-
inspired robot (note that one study [16] adopted two robotics
platforms). Particularly, 14 studies (54%) adopted humanoid



TABLE II
RESULTS FROM THE 25 SURVEYED PAPERS COLLECTED BY RESEARCH QUESTIONS. PW: PHYSICAL WELLBEING, MW: MENTAL WELLBEING

Ref RQ1 RQ2 RQ3 RQ4 RQ5
[11] Emotional Support (MW) Hoffman robot Non-humanoid Movement Autonomous
[12] Cognitive Stimulation (MW) Nadine Humanoid Emotion Recognition Autonomous
[13] Emotional Support (MW) Sato Humanoid Semantic Understanding Autonomous
[14] Cognitive Stimulation (MW) Stevie Humanoid Facial Expressions Semi-autonomous
[15] Mindfulness (MW) Pepper Humanoid Facial Expressions and Movement Non-autonomous
[16] Self-disclosure (MW) Darwin mini Humanoid Semantic Understanding Autonomous
[17] Physical Stimulation (PW) Nao and Poppy Humanoid Facial Expressions and Movement Semi-autonomous
[18] Assessment Via 3D printed robot Humanoid Emotion Recognition Autonomous

Clinical Interviews (MW)
[19] Emotional Support (MW) Nao Humanoid Facial Expressions and Movement Non-autonomous
[20] Physical Stimulation (PW) Cozmo Humanoid Facial Expressions and Movement Autonomous
[21] Emotional Support (MW) Jibo Humanoid Movement Autonomous
[22] Emotional Support (MW) Nao Humanoid Facial Expressions and Movement Semi-autonomous
[16] Emotional Support (MW) Emarv4 and Blossom Non-humanoid and Animal-like Facial Expressions and Movement Non-autonomous
[23] Fall Detection (PW) Side-bot Humanoid Facial Expressions Autonomous
[24] Physical Stimulation (PW) Reeti Non-humanoid Facial Expressions and Movement Non-autonomous
[25] Food Promotion (PW) Cozmo Non-humanoid Facial Expressions and Movement Semi-autonomous
[26] Physical Stimulation (PW) Pepper Humanoid Emotion Recognition Autonomous
[1] Emotional Support (MW) Pepper Humanoid Facial Expressions and Movement Semi-autonomous

[27] Emotional Support (MW) IRS Animal-like Facial Expressions and Movement Semi-autonomous
[28] Emotional Support (MW) PR2 Not-humanoid Movement Semi-autonomous
[29] Food Promotion (PW) Reeti Non-humanoid Facial Expressions Autonomous
[30] Emotional Support (MW) Alice Humanoid Facial Expressions and Movement Semi-autonomous
[31] Emotional Support (MW) Huggable Animal-like Facial Expressions and Movement Non-autonomous
[32] Entertainment (MW) Nao Humanoid Facial Expressions and Movement Semi-autonomous
[33] Physical Stimulation (PW) Nao Humanoid Facial Expressions and Movement Non-autonomous

Fig. 4. Affective robot’s shape (RQ3) in the surveyed papers among January
2013 to May 2022

affective robots, while 3 studies (11%) employed animal-
like affective robots. The remaining studies (9 out of 26,
35%) adopted affective robots with non-humanoid shape. Fig.
4 depicts the results of the affective robot’s shape for the
surveyed papers.

In summary, those findings show that HRI researchers
opted for affective robots with bio-inspired shape (specifically
humanoids), just a few of them investigated the non bio-
inspired shapes.

D. Affective Capabilities (RQ4)

We clustered the affective capabilities of the robots included
in the surveyed papers into four main classes (see Fig. 5):
emotion recognition, semantic emotional understanding, facial
expressions, and emotional movements.

11 out of the surveyed studies endowed the robot with
both facial expression and emotional movement capabilities.
Particularly, 14 studies (39%) equipped the robot with the

Fig. 5. Affective robot’s capabilities (RQ4) in the surveyed papers among
January 2013 to May 2022

capability of expressing emotional movements, while 15 out of
25 (42%) endowed the robots with the capability of expressing
emotion through facial expressions. 4 studies (11%) adopted
robots that were able to automatically recognize emotions in
participants. Finally 3 studies (8%) used robots that were able
to semantically understand the participants’ emotions.

To sum up, our findings show that the HRI community has
mainly focused on endowing their robots for wellbeing with
the capability of expressing emotions (via facial expressions
or movements). More recently, the HRI researchers started
to equip their robots with automatic user affect detection
capabilities to promote wellbeing.

E. Affective Robot’s Autonomy (RQ5)

To identify the level of autonomy of the robots, we followed
the definition provided by [10], in case the authors did not
provide any detailed specifications.



Fig. 6. Affective robot’s autonomy (RQ5) in the surveyed papers among
January 2013 to May 2022

Among the surveyed studies, 6 of them (25%) adopted a
non-autonomous affective robots where the researcher acted
as “wizard” in the interaction (aka, Wizard-of-Oz method). 9
of the studies (37.5%) exploited a semi-autonomous affective
robot. For example, in [14], the robot could automatically
execute the task interaction, but the research controlled its
navigation in the care center. The other 9 studies (37.5%)
adopted a fully autonomous affective robot (see Fig. 6).

Our findings showed that the HRI community is moving to-
wards more autonomous robots, despite some researchers pre-
ferring to exploit tele-operated robots (i.e., non-autonomous)
to better control the design variables in their studies.

V. DISCUSSION

The next sections will discuss the results gathered in this
survey. Specifically, we extrapolated a set of recommendations
that we list in Section V-A and a research agenda in Section
V-B

A. Recommendations

We list a set of observations and subsequent recommenda-
tions as follows.

First (from RQ1), we found that the surveyed papers ex-
ploited affective robots to promote either mental (e.g., [12],
[13], [37]) and physical wellbeing (e.g., [17], [20]). Specifi-
cally, we observed that affective robots that addressed men-
tal wellbeing adopted both expressive behaviors (e.g., facial
expression, emotional movements) and emotion recognition
capabilities (e.g., semantic understanding), while the affective
robots for physical wellbeing mostly were endowed with
expressive capabilities only. Also, our results showed that the
authors who focused on affective robots for physical wellbeing
opted mostly for human-like shape. The humanoid shape is
extremetely important when delivering physical exercise, so
that human participants can replicate the robot movements,
as in [17]. On the other hand, affective robots for mental
wellbeing used both humanoid and non-humanoid robots to
deliver tasks that can aid the emotional support [16] or the
cognitive stimulation [14]. Finally, most of the papers on
physical wellbeing chose an automated or semi-automated
affective robot, while the one that focused on mental wellbeing
exploited both autonomous and non-autonomous robots with
Wizard-of-Oz approach

Second (from RQ2 and RQ3), we found that most of the
surveyed papers adopted a bio-inspired robot form, especially
humanoid (e.g., [1], [26]). Past works demonstrated that the
human-like appearance of the robot influences the expectations
of the users. For example, participants attributed human-like
behaviors to humanoid robots, because they associated their
shape with their functionalities [38]. On the other hand, the
remaining papers in the review adopted a non-humanoid shape.
In fact, a previous work [38] showed that participants who
were asked to rank different robotic platforms (e.g., Jibo,
Pepper, Miro) provided contradictory responses. Some of the
participants preferred more humanoid robot shape, while other
chose an abstract shape as the most suitable to be a robotic
coach delivering wellbeing interventions.

Then (from RQ4), our results showed that the affective
capabilities of the robots focused more on generating expres-
sive behaviors (e.g., [24], [27]). Just few of them (e.g., [22])
displayed capabilities of affect detection. In the context of
promoting wellbeing, having a robot that is endowed with
the capabilities of both affect synthesis and affect detection
is a key factor for a successful interaction. In fact, in [38],
the authors reported that participants, in a participatory design
study, remarked the need to endow the wellbeing robot coach
with both the capabilities of emotion/empathy generation and
emotion detection to be able to adapt to users.

Finally (from RQ5), we found that most of the surveyed
papers adopted autonomous or semi-autonomous affective
robots, that is likely because of the advance in the fields
of natural language processing [39], computer vision [40],
and speech recognition [41] in the last decade. Despite the
increasing interest in autonomous robots, many researchers
exploited non-autonomous robots that are directly controlled
or tele-operated by a human operator. This method allows
researchers to overcome technical issues, that can compromise
the interaction and the user’s perception, and unpredictable
events, typical of user studies.

As a result of these observations we provide the following
four recommendations:

• Recommendation 1 - We recommend to use autonomous
humanoid robots to deliver exercises that promote phys-
ical wellbeing to enable users to imitate the robot move-
ment, and endow the robots with detection capabilities to
check the user’s affective state during the activity. To pro-
mote mental wellbeing, we suggest that the researchers
design the affective robot as autonomous and endowed
with both affect expression and detection capabilities.
Both humanoid and non-humanoid shape can be exploited
depending on the task or exercise that the robot has to
deliver.

• Recommendation 2 - We recommend to choose the
shape of the affective robot to employ in the study
according to its functionalities. For example, in physical
rehabilitation, it could be more useful to use a humanoid
robot that can display movement to perform physical
exercises, while for reducing loneliness in elderly, an



animal-like shape could be more appropriate to resemble
the function of a pet-companion. Both humanoid and non-
humanoid robots seem to be appropriate for delivering
mental wellbeing exercises.

• Recommendation 3 - We then recommend to endow
the affective robots with both capabilities of generating
expressions and detecting the affective state of their user
to be able to deliver wellbeing exercises in more effective
and adaptive ways.

• Recommendation 4 - We recommend to lean toward the
autonomous affective robots to advance further the field
of robotics and provide evidence of the efficacy of real
robots in the real world.

B. Research Agenda

Future research should focus on the design features of
affective robots to promote wellbeing. Specifically, much work
needs to be done to investigate which robot form is more
appropriate for which specific task (e.g., physical exercise,
cognitive stimulation) to guide researchers in the design choice
of the robotic platform. For instance, [42] demonstrated that
humans have a form function attribution bias which affects
their perception of the robots. People take a cognitive shortcut
to attribute the functionality of the robot using the visual
information. Within the HRI literature, many efforts have
been made to better understand how the robot’s form - in
terms of size, gender, and appearance - affects the user’s
perception of the robot [42]–[44]. However, future research
should specifically focus on better understanding how form
impacts user perception of the robots utilised for wellbeing
related applications, and how robot form can make a difference
in the efficacy of the delivered intervention.

Then, we believe that future research should focus on
empirical studies that adopt affective robots endowed with the
full spectrum of capabilities, i.e., to recognize, understand, and
generate expressions, to advance the affective robotics field,
providing also evidence on the current technology readiness
level for the real world. Deploying social robots in real
human-robot interaction settings is still an open challenge [45]
mainly due to the need for real-time processing capabilities
and the lack of computational power of the robotic platforms
available in the market. The lack of cross-fertilization between
affective computing and social robotics fields also contributes
to this problem [46]. Future efforts should focus on how to
overcome those technological limitations, for example, using
cloud computing, or using external/enviromental sensors, as
suggested in [46].

Finally, affective robotics should lean towards creating
and/or using autonomous robots. To this end, we acknowledge
that future research should address some of the technological
limitations related to robotic deployment [37]. In parallel to the
advances in computing power, the field of affective computing
has seen a rapid progress, however, there is still a lack of real-
time studies with robots endowed with, for example, affect
recognition capability that can adapt and personalize to each
user during the interaction [6]. A survey on 10 years of HRI

studies [47] showed that the most common types of Wizard
control employed were natural language processing and non-
verbal behaviors, including affective capabilities of the robot.
Also, the Wizard-of-Oz technique has been widely used in the
HRI community [48], because deploying autonomous robots
is an open problem. In fact, the main challenges are:

1) programming autonomous social behavior for a robot is
very difficult and time consuming;

2) researchers usually program human-robot interactions
as a one off experience, for a limited scope and very
short interaction durations (usually no longer than 20
minutes);

3) the off-the-shelf robotic platforms usually fail in meeting
the user expectations in terms of robot capabilities

To overcome those limitations, the next generation of HRI
works should focus on how to make robots more autonomous
using data-driven approaches to fully understand the dynamics
of human and autonomous robot interactions.

VI. LIMITATIONS AND FUTURE WORK

One of the main limitations of this survey is that the
screening of the papers have been conducted by a single
reviewer. This could have introduced bias into the paper
inclusion. We plan to involve at least one additional researcher
to provide a more solid method to include the papers to review.
Another issue is that the set of research questions explored are
limited. There are several aspects that we have not covered
in this paper that are known to impact HRI, such as context
[49]. With a deeper analysis, we can identify missing points
relevant for the HRI community that can further inform our
research agenda. The recommendations of this paper were also
mentioned previously in different articles in the literature but
we haven’t reported all of them. Moreover, many of these
recommendations are not based on the findings of the review,
but we grounded them on literature. Finally, in the recom-
mendations we haven’t mentioned the difficulties involved in
developing the affective robots that could have impacted the
works of the reviewed papers. In our future work, we will
extend this survey with a broader set of research questions
(e.g., study design, participant population etc.) addressing the
above-mentioned limitations.

VII. CONCLUSIONS

This paper reviewed the last decade (2013-2022) of HRI
literature on affective robotics for wellbeing utilising the
PRISMA schema. We aimed to understand how affective
robots have been used in previous studies to promote human
wellbeing and to what extent their affective capabilities were
useful. Our findings showed that the HRI community: i) fo-
cused mostly on affective robots to promote mental wellbeing,
ii) explored different robotic platforms, iii) opted for human-
like affective robots, iv) endowed robots mostly with the
capability of generating expressive behaviors, and v) adopted
mostly autonomous and semi-autonomous robots. The results
from this review enabled us to list a set of recommendation



guidelines and a research agenda for future research in the
affective robotics field.

ETHICAL IMPACT STATEMENT

We acknowledge that our paper did not survey the ethical
implications of using affective robots. However, this is out of
the scope of this paper. In our future work, we will address
also ethical concerns in the field of affective robotics that aims
to promote wellbeing.
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