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Abstract—The possibility of recognizing diverse aspects of hu-
man behavior and environmental context from passively captured
data motivates its use for mental health assessment. In this paper,
we analyze the contribution of different passively collected sensor
data types (WiFi, GPS, Social interaction, Phone Log, Physical
Activity, Audio, and Academic features) to predict daily self-
report stress and PHQ-9 depression score. First, we compute
125 mid-level features from the original raw data. These 125

features include groups of features from the different sensor
data types. Then, we evaluate the contribution of each feature
type by comparing the performance of Neural Network models
trained with all features against Neural Network models trained
with specific feature groups. Our results show that WiFi features
(which encode mobility patterns) and Phone Log features (which
encode information correlated with sleep patterns), provide
significative information for stress and depression prediction.

Index Terms—depression prediction, stress prediction, Digital
Phenotyping, feature importance

I. INTRODUCTION

Wearable devices and smartphones have enabled the collec-

tion of large amounts of data that reflect human behavior pat-

terns. This has given rise to a field called Digital Phenotyping,

which attempts to quantify behavior using passively captured

mobile data [1]. This field has gained interest in mental health

diagnosis due to its ability to capture behaviors and habits like

sociability, physical activity, mobility, sleep, among others [2].

Mental health conditions are highly prevalent. However, the

diagnosis and management of these conditions face limitations

like barriers in seeking help or reliance on self-reports during

short clinical visits [3]. Hence, Digital Phenotyping can be a

potential tool to support decisions in a clinical setting.

Extensive research in Digital Phenotyping aims to predict

mental states or mental disorders, but there are still a lot

of open questions. One of them is understanding well what

type of data is actually relevant for mental health assessment.

From the Machine Learning perspective, most of the solutions

do not provide sufficient information about which factors or

what types of features contribute to the model’s inference of

certain mental state or disorder. As a consequence, it is difficult

for mental health specialists to rely on model’s predictions to

evaluate or intervene in patient diagnosis [2].

In this work, we study the contribution of different data

types, coming from different sensors and sources of infor-

mation, like GPS, WiFi, or phone logs for predicting mental

health states using deep learning models. Concretely, we focus

on two particular tasks: prediction of the depression score

and prediction of the self-report stress level. We use the

StudentLife dataset [4] for this study. StudentLife is one of

the few public and available datasets for Digital Phenotyping.

Inspired by the feature analysis done in [5], we study the

importance of features by analyzing the performance of a

neural network trained with all the features extracted from

passive sensing data or trained just using a group of features.

We can gain insight into which features are more relevant for

predicting depression or stress. Until now, we have not found

a previous study that evaluates the importance of features for

prediction of the depression score and prediction of the stress

level using the StudentLife dataset. In our analysis, we find

the WiFi features, which represent the mobility patterns of a

student, are the most discriminant for the neural models for

both prediction tasks. Additionally, phone log features show

higher discrimination information for stress level classification.

For reproducibility purposes, our feature extraction and models

can be found in our public code repository1.

A. Related Work

Our study is conducted on the StudentLife dataset [4],

which includes data from 48 students from Dartmouth College

passively monitored during a 10-week academic term. The

dataset contains passive sensing data from different sensors

and an Ecological Momentary Assessment (EMA) component

that provides self-reported data such as clinical survey re-

sponses, daily stress, sleep hours, mood, and exercise, among

1https://github.com/cristinabustos16/digitalPhenotyping featuresAnalysis
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others. The StudentLife dataset has been widely used to study

depression diagnosis [6], [7] sedentary behavior prediction

and activity recommendation [8], food purchase prediction [9],

recommendations for improving academic performance [10],

mood monitoring [11] and stress level prediction [12]–[14]

Stress level prediction on the StudentLife dataset has been

approached in different studies. It was first explored in [15],

authors categorized the stress level into below-median, median

or above-median based on the user’s median, and use a

Fully Connected Network with mobility and temporal features.

Later, Shaw et al. [12] utilized 24-hour histograms of passive

data and Long-Short-Term-Memory (LSTM) autoencoder to

transform temporal data into a vector representation, then

trained a personalized multi task neural network on a reduced

sample of 23 students. Furthermore, stress prediction has been

addressed as a binary classification problem, as seen in [13],

where authors used LSTMs on the last 2-12h of sensor data

to predict between stress / not stress.

Predicting depression using the StudentLife dataset has been

addressed by dividing the depression score into two classes

(depressed/not depressed). For example, in [16], [17] authors

computed features from the GPS sensor data (e.g. location

variance, speed mean, total distance, cluster of locations, cir-

cadian movement, entropy and heuristic that indicates the time

spent at home). Saeb et al. [17] found the mobility features

grouped in blocks of 2-weeks are significantly correlated with

the depression score. In [16], authors extract mobility features

with an autoencoder and then use an SVM classifier on top

of these features. Colbaugh et al. [7] used GPS, WiFi, screen

lock, light sensor, and microphone data, while Kim et al. [6]

used the screen lock and unlock data for the last 2-weeks.

II. FROM PASSIVE DATA TO FEATURES

Inspired by the hierarchical framework introduced by Mohr

et al. [18], which transforms raw data into informative mid-

level features (e.g. location, exercise, bedtime, phone usage

patterns, and social activity), we compute a collection of 125

informative features, representing the student’s daily informa-

tion divided into three periods as defined by Wang et al. [4]:

day (9 am - 6 pm), night (12 am - 9 am), and evening (6 pm -

12 am). We divided the features into groups according to the

sensor or/and behavior patterns representation. We excluded

data contained in the EMA like self-reported sleep hours,

exercise patterns, because we analyze the model performance

mostly using passive data. The rest of this section describes

the features we computed:

WiFi (36 features): WiFi data tracks the student’s con-

nection time to different locations on the campus (over 60

different locations), reflecting their mobility patterns. We

compute two summary variables: the number of different lo-

cations visited and the variance in time spent at each location.

Additionally, we include 3 variables representing the time

spent in the student’s three most visited locations, typically

reflecting their homestay and classroom building. Furthermore,

we include 7 variables that indicate the time spent in the 7

most frequently visited locations for all students.

GPS (30 features): From the GPS data, we compute and

aggregate the maximum distance, the total distance, distance

variance, mean speed, speed variance, area of the convex hull

that contains all the visited coordinates, and the total time

spent indoors and outdoors. Notice that this information is

complementary to just identifying frequented locations, which

are already encoded with the WiFi features.

Social (9 features): We computed number of SMS, calls,

app usages, Bluetooth contacts, and the total time in seconds

the student spend in a phone conversation.

Phone Log (14 features): These features provide informa-

tion about the duration in seconds of the smartphone in certain

state: phone charging time, phone lock time, and light sensor

(time in a dark environment).

Activity (12 features): These features encode the time spent

doing physical activity: running, walking, and stationary.

Audio (9 features): These features represent the time the

student spent in silent, conversational or noisy environment.

Academic (13 features): We include the academic perfor-

mance information (GPA), the interaction with the campus

website like the number of views, contributions, questions,

notes and answers. We also add variables such as days to the

nearest deadline, daily class hours, and the day of the week.

III. NEURAL NETWORK ARCHITECTURES

A. Modeling daily self-reported stress level

We predict daily stress levels based on current (and past)

passive data. We rescale the original stress data that comes

in a 1-5 scale into 3 stress levels: below-median (low stress),

median (medium stress) and above-median (high stress). We

compute the median separately for each individual, as done

in [15]. We test 3 different problem configurations: binary

low versus high classification (L-H); binary low and medium

versus high classification (LM-H); and multiclass classification

(low/medium/high). We train two types of neural networks: a

Fully Connected Network (FCN) that takes passive data from a

single day as input; and a Recurrent Neural Network (LSTM)

that takes data from 5 past days and predicts the stress of the

last day. The FCN is composed by 3 layers (57, 35, 3), each

one followed by ReLU activation and a dropout layer (0.35,

0.15, 0.15). The recurrent network is composed by a LSTM

layer with 50 nodes and a dropout of 0.2, followed by a fully

connected layer of 15 neurons with ReLU activation. We order

chronologically the data, used the 80% first days of the study

for training and the last 20% for testing. For this task, we also

add an extra one-hot encoded variable indicating the user.

B. Modeling depression score (PHQ-9)

For predicting depression, we used the PHQ-9 (Patient

Health Questionnaire), a self-report measure of depression

symptom severity, with scores ranging from 0 to 27 (each

item scored from 0 to 3). In total, 38 students applied for the

PHQ-9 at the end of the study. For this purpose, we created

a FCN with Root Mean Square Error (RMSE) loss to predict

the depression score. The FCN is composed by 3 layers (128

neurons) each one followed by ReLU activation function and



TABLE I
STRESS LEVEL CLASSIFICATION. RESULTS (F1 AND ACCURACY) FOR BINARY L-H , BINARY LM-H, AND MULTICLASS WITH FCN -TOP- AND LSTM

-BOTTOM- MODELS. BEST AND SECOND BEST RESULTS PER EACH MODEL (ROW) AND MARKED IN BOLD FACE.

FCN

metric most freq. all features WiFi GPS Social phone log Activity Audio Academic

L-H
F1 48,3 61,1± 3,5 53,7 ± 3,9 46,8 ± 3,6 45,6 ± 3,2 55,6 ± 3,9 50,6 ± 2,9 50,4 ± 3,4 49,0 ± 2,7

Acc. 52,6 60,8 ± 3,2 53,4 ± 3,9 46,8 ± 3,4 45,5 ± 3,5 55,4 ± 3,8 50,4 ± 3,2 50,1 ± 3,6 48,8 ± 2,6

LM-H
F1 38,8 61,4 ± 3,8 55,8 ± 2,9 52,5 ± 3,2 50,6 ± 3,7 56,8 ± 3,0 53,7 ± 3,6 55,8 ± 3,6 52,4 ± 2,9

Acc. 40,1 64,7 ± 3,0 59,8 ± 2,4 58,6 ± 1,8 56,1 ± 2,6 60,5 ± 2,4 58,8 ± 2,7 59,9 ± 2,4 58,6 ± 2,1

Multiclass
F1 24,2 50,9 ± 3,2 43,8 ± 3,9 43,7 ± 2,4 40,0 ± 2,8 43,5 ± 2,5 43,5 ± 2,6 43,6 ± 2,3 42,9 ± 3,5

Acc. 32,3 51,9 ± 3,2 44,9 ± 2,4 44,8 ± 2,4 41,3 ± 2,9 44,8 ± 2,5 44,5 ± 3,0 44,5 ± 2,3 44,1 ± 3,4

LSTM

metric most freq. all features WiFi GPS Social Phone log Activity Audio Academic

L-H
F1 48,3 61,4 ± 5,0 57,5 ± 2,9 49,7 ± 2,9 48,8 ± 2,9 54,5 ± 4,9 51,8 ± 2,7 49,0 ± 3,1 48,8 ± 2,8

Acc. 52,6 61,5 ± 2,8 57,8 ± 2,7 49,7 ± 3,4 49,1 ± 3,0 55,9 ± 4,3 52,7 ± 3,0 48,7 ± 3,2 48,8 ± 2,6

LM-H
F1 38,8 58,5 ± 4,7 58,4 ± 4,2 53,7 ± 3,0 52,5 ± 2,6 59,0 ± 3,1 56,6 ± 4,2 55,3 ± 3,2 52,6 ± 3,5

Acc. 40,1 62,1 ± 2,1 62,3 ± 2,2 58,9 ± 2,2 57,4 ± 3,0 61,6 ± 1,6 61,1 ± 2,1 60,9 ± 1,7 58,6 ± 2,1

Multiclass
F1 24,2 52,4 ± 5,0 48,0 ± 2,8 43,6 ± 2,7 42,6 ± 2,4 48,5 ± 3,1 44,7 ± 3,0 44,1 ± 3,2 43,6 ± 3,9

Acc. 32,3 53,9 ± 2,8 49,9 ± 2,4 46,5 ± 2,7 46,4 ± 3,0 50,4 ± 1,6 47,5 ± 2,6 46,8 ± 3,4 44,1 ± 3,4

TABLE II
ROOT MEAN SQUARE ERROR (RMSE) FOR THE REGRESSION OF PHQ-9 DEPRESSION SCORE USING THE FCN MODEL. BEST AND SECOND BEST

RESULTS AND MARKED IN BOLD FACE.

mean all features WiFi GPS Social Phone log Activity Audio Academic

PHQ-9 regression 4.4 4,1 ± 4,4 3,5 ± 3,4 4,9 ± 3,9 4,7 ± 4,3 5 ± 4,1 4,9 ± 4,7 5,1 ± 4,2 4,9 ± 4,1

a dropout layer of 0.3. We perform leave-one-out evaluation,

training using 37 subjects and testing with one subject. The

input data consists of aggregated features representing the

mean and standard deviation of each feature over a period

of two weeks leading up to the end of the study.

IV. RESULTS AND DISCUSSION

The accuracy and F1 score for stress level classification are

reported in Table I. In turn, Table II reports the Root Mean

Square Error (RMSE) for the depression score regression. We

train each model with all 125 features, as well as with each

group of features separately. In all the cases we perform 50

rounds of training and testing with different random initializa-

tions of the model. The tables report the mean and standard

deviation results obtained per each performance measure. As a

baseline, we include the accuracy and F1 score for a classifier

that always predicts the most frequent stress level value for

each student and RMSE for a regressor that always predicts

the mean of all the PHQ-9 scores.

Performance results for stress level classification. The

results in Table I show that, in general, the best performance

is obtained when using all the features. Surprisingly, for the

binary predictions the FCN model outperforms the LSTM,

suggesting that using passive sensor data from the same day

is more informative than incorporating data from the past 5

days. For the multi-class classification, the LSTM performs

better than FCN, indicating that more context from past days

is needed for a finer-grained classification problem.

Performance results for PHQ-9 regression. Table II shows

that the model trained with mobility features embedded in

WiFi data outperforms the model using all features. WiFi

features, in particular, also exhibit a lower standard deviation,

which supports the finding that these features have significant

relevance for predicting depression. This can be attributed to

the correlation between the time a person spends at home.

Feature importance. We observe that WiFi and Phone log

features exhibit higher performance when used as individual

group features, when compared to the other feature groups.

WiFi data captures the mobility patterns of students within the

experiment, while phone log features indirectly represent sleep

patterns through indicators such as phone charging and time

spent in the dark environment. These features also have lower

standard deviations, indicating their consistency and relevance.

On the contrary, social features show the worst performance

overall, suggesting that metrics like the number of calls or

SMS may not be highly influential for stress level prediction in

this dataset. However, we notice that social features represent

the smallest feature group, and their limited impact could be

due to their lack of information for stress prediction. The

results suggest that mobility patterns and sleep habits have

relevant information for stress prediction.

Comparison of stress level classification with previous

works. Previous studies on stress level classification with the

StudentLife dataset report results that are comparable with the

results obtained by our approach. For example, for the binary

stress level classification, In [13], an accuracy of 62.8% is

reported, while our model reaches from 60% to almost 65%.

Kadri et al [14] reports 93% but they are using active data

that can have a direct correlation with stress, so it is not

comparable with our approach. In particular, the state-of-the-

art results in multi class stress prediction with the StudentLife

dataset is obtained with a complex multitask architecture [12],



difficult to generalize to new unseen participants and using a

reduced subset of students. Furthermore, we have observed a

strong sensitivity to model initialization. For example, notice

that the standard deviations range from 1, 6 to 3, 9 in the case

of accuracy for the binary predictions. Unfortunately, none of

these previous works has published their code, trained models,

training-test data partitions or details on hyperparameters,

which does not allow us to reproduce their results and perform

a fair comparison. We encourage the practice of releasing code,

so the community can fairly reproduce the reported results.

Comparison of depression prediction with previous

works. Previous studies primarily focused on detecting de-

pression using the Studentlife dataset, and they mainly relied

on classification techniques [7]. However, our research takes a

complementary approach by focusing on regression analysis.

Our findings align with the results reported in [17], which

emphasize the significance of mobility features for detecting

depression. Again, we also notice that none of these previous

works released their code, trained models, or data partition

details, making reproducibility and comparison not possible.

Weaknesses. In our study, the number of features differs

depending on the group, and this might have an impact on the

amount of information each group of features might encode.

The encoded features are inspired by previous works, but

other additional features could be computed from the raw data,

which might also have an impact on the results.

V. CONCLUSIONS

In this study we use the StudentLife dataset to compare

the contribution of various passive data features for stress

level prediction and depression score regression. We found

that different feature sets exhibited varying performance levels

when tested with Neural Network models. WiFi features were

particularly informative for stress and depression prediction,

highlighting the importance of mobility patterns. Phone log

features has relevance in stress level prediction, indicating the

relation of sleep patterns and mental health states.

ETHICAL IMPACT STATEMENT

Our work focuses on evaluating the importance of different

sensor data features in predicting depression and stress in

students. Our analysis aims to contribute the understanding of

mental health states and enhancing interventions. However, we

acknowledge the limitations of our study and emphasize the

need for further research and validation before implementing it

in real-world diagnosis. It is crucial to recognize the complex-

ity of mental health disorders, which may not be fully reflected

in the data collected from wearable devices or smartphones. In

our experiments, we use a publicly available and anonymized

dataset where participants gave their consent for the collection

of personal data. However, this dataset is very small and

does not represent global student’s conditions and general

human behavior patterns. Therefore, larger, more balanced,

and diverse datasets are necessary for future research. Fur-

thermore, considerations such as privacy, data protection, and

participant well-being should be carefully addressed when

creating these datasets and training machine learning models.

Lastly, machine learning models should not be seen as a

replacement of the diagnosis provided by clinicians, but rather

serve as a supportive tool.
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