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Abstract—We consider a light-weight method which allows 

to improve the explainability of localized classification 

networks. The method considers (Grad)CAM maps during the 

training process by modification of the training loss and does not 

require additional structural elements. It is demonstrated that 

the (Grad)CAM interpretability, as measured by several 

indicators, can be improved in this way. Since the method shall 

be applicable on embedded systems and on standard deeper 

architectures, it essentially takes advantage of second order 

derivatives during the training and does not require additional 

model layers. 
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I. INTRODUCTION 

The training of possibly weak features and the improved 
interpretability of the obtained result by self-supervised 
reinforcing is a recent problem in the design of localized 
classification networks.  

[1] propose the idea of self-attention distillation (SAD) 
and show that the training process of weak features can be 
supported in a self-learning way. SAD is a self-supervised 
method which exploits attention maps extracted from the 
network during training. Every convolutional layer is enriched 
by an additional attention layer. An appropriate extension of 
the loss function guarantees the consistency of the attention 
maps between the different layers. In this way, also the 
ordinary layers are enforced to build strong feature detectors 
early during the training. 

SAD shows its performance in the detection of weak 
features with extended and directional shapes such as lane 
markings and is especially designed for networks with few 
layers. In the sequel, we propose a method inspired by SAD 
to strengthen the representation of deeper networks and to 
improve the explainability of the network. 

With the success of deep neural networks, the need arose 
to explain why a network works well in a particular 
application. Explainability methods aim at gaining deeper 
insights for this reasoning [2]. As an important subclass of 
models we consider the class of localizing networks (such as 
convolutional networks) with softmax output trained to 
classify samples containing singular objects of these classes.  

GradCAM [3] and related methods (including class 
activation maps (CAM) [11], GradCAM++ [10] etc.) are 
designed to explain how the classification works by localizing 
regions of activation. They are model agnostic and in the 
framework of [1] characterized as sensibility-based methods. 
These methods give considerable insights into the localization 
of activations in a specific network layer of a trained network 
and are proven to work well in practice.  

While CAM requires the presence of a global pooling 
layer after the convolutional layers, GradCAM overcomes this 
restriction by using gradients of the class scores with respect 
to the activation maps as weights which are combined with the 
activation maps itself to obtain a localized map of attentions 
which are responsible for the decision for the specific class.  

Our method is designed to encourage localized GradCAM 
activation maps. The interpretability of the CAMs even for 
weaker features is fostered by pushing the gradient in a 
direction that produces more distinct class activation maps. 
Since the method shall be applicable on embedded systems 
and on standard deeper architectures such as Resnet [5], it 
essentially takes advantage of second order derivatives during 
the training and does not require additional model layers 
which would lead to an increased inference time.  

The main contribution of this work is the concept to 
modify the training loss by a term based on novel GradCAM-
related measures which evaluate the explainability of 
localized classification networks without adding additional 
layers to the network. It is demonstrated that various measures 
addressing different aspects of the CAM interpretability are 
concurrently improved. The price of the interpretability 
improvement is a moderate performance degradation. The 
balance between these two targets can be adjusted by a hyper-
parameter.  

II. RELATED WORK 

Apart from the CAM methods, a lot of other features and 
methods such as the SHAP family (Shapely Additive 
explanations, [6]) have recently been proposed to give insights 
into the classification performance of convolutional nets.  

SAD methods [1] improve the classification performance 
and the interpretability by the introduction of a self-supervised 
attention mechanism.  



 

 

The probably most closely related and highly effective 
approach are Attention Branch Networks (ABN) [7] which 
add layers in attention branches in the network reproducing 
and optimizing CAM features. In this way, CAM features are 
not only used for visualization but also to optimize the 
interpretability of the network.  

III. METHODS 

A. CAM Interpretability Measures 

Interpretability is often defined as the ability of a human 
to understand the result a neural network outputs [8]. A key 
point in the context of localized networks such as 
convolutional networks is the ability to separate contents from 
attention. This kind of partitioning allows to investigate which 
regions and which contents in these regions are responsible for 
the classification result. Explainability methods in this context 
shall produce a map of relevant locations given an input, the 
network structure and the resulting output.  

We hypothesize that a decision is the better interpretable 
the more localized and sharp the map of the true class 𝑐 is. A 
(Grad)CAM map 𝑀 in which all feature locations take equally 
part to the result does not give much information (except the 
pure existence of the feature), whereas a single activated 
feature pixel is a strong explanation. We therefore propose 
three measures to quantify the local CAM interpretability: 

 

 The CAM entropy 𝑐𝑒, 

 𝑐𝑒(𝑀): = − ∑ 𝑀̅𝑖𝑗 ln 𝑀̅𝑖𝑗  

with the normalized map 𝑀̅𝑖𝑗 =
𝑀𝑖𝑗

∑𝑀𝑘𝑙
, and the map 

pixel indices 𝑖𝑗 and 𝑘𝑙 respectively, 

 The CAM ellipsoidal area 𝑐𝑎,  

 𝑐𝑎(𝑀): = √𝜆1𝜆2 , 

with 𝜆𝑘 being the eigenvalues of the covariance matrix 
of the two-dimensional probability function defined by 

𝑀̅, and 

 The CAM dispersion 𝑐𝑑, 

 𝑐𝑑(𝑀): =
𝜎𝑀

2

𝜇𝑀
2  

for the variance 𝜎𝑀
2  and the mean value 𝜇𝑀 of all CAM 

values in (the flattened) 𝑀.  

 

The three measures address fundamentally different 
properties. The entropy measures the amount of activated 
areas (independent of the neighborhoods), the ellipsoidal area 
measures the concentration of the activated area, and the 
dispersion the uniqueness of the decision. A lower CAM 
entropy, a lower CAM ellipsoidal area and a higher CAM 
dispersion are indicators of more distinct and sharper CAMs. 

The CAM dispersion is an important indicator for the 
uniqueness of the decision. Observe that in classical 
GradCAM visualizations the activation values are rescaled 
and offset shifted [3], 

𝑀𝑣𝑖𝑠𝑢𝑎𝑙 =
𝑀 − min (𝑀)

max(𝑀) − min (𝑀)
  . 

This normalization is a crucial point in the interpretation 
process of (Grad)CAMs: Since the minimum is not known in 
advance, it is needed to obtain the required visual 
representation. On the other hand, the rescaling masks  gradual 
differences in 𝑀 and may suggest a distinct decision of the net 
even though the CAM dispersion is very low.   

B. Network Loss and Training 

We assume a classical convolution classification network 
consisting of a stack of convolutional layers with activations 

𝐴𝑘 = (𝐴𝑖𝑗
𝑘 )

𝑖𝑗
 and a stack of subsequent dense layers with 

output logits vector 𝑦 (in front of the softmax activation). The 
network is trained by optimizing the cross-entropy loss 
function 𝑙train = 𝑙train(𝑦true, 𝑦pred). 

Gradient activation maps for a specific class 𝑐  are 
computed by [3] 

 𝐿𝐺𝐶𝐴𝑀
𝑐 = relu(∑ 𝛼𝑘

𝑐  𝑘 𝐴𝑘). 

The weights 𝛼𝑘
𝑐  are obtained by global average pooled 

gradients of the class score (the inference result before the 
softmax) with respect to the activations, 

 𝛼𝑘
𝑐 =

1

𝑍
∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑖𝑗    . 

with a constant 𝑍. Observe that the necessary gradients can be 
computed by standard backprop.  

To foster the explainability of the model and the sharpness 
of Grad-CAM maps during training, we modify the training 
loss 𝑙𝑡𝑟𝑎𝑖𝑛 with an entropy loss term (remember that the CAM 
entropy requires the normalized map) by 

  𝑙 = 𝑙train + 𝛽 𝑐𝑒(𝐿𝐺𝐶𝐴𝑀
𝑐 )   

It is remarkable that application of the usual optimization 
algorithms such as gradient descent or Adam now leads to a 
second order method. 

It turns out that the CAM entropy reduces the size of the 
active area in the activation maps and sharpens the maps. The 
ordinary loss function maximizes the classification accuracy 
and hence prevents the active area from tattering or infinitely 
shrinking. The more complex interpretability measures 𝑐𝑎 
and 𝑐𝑑 could also be used here. Experiments show that the 
optimization results with the measures 𝑐𝑎  and 𝑐𝑑  are only 
slightly better than the results obtained by using 𝑐𝑒 at the price 
of significantly greater computational effort. The results (see 
next section) indicate that optimizing one of these three 
measures also optimizes the others. 

We could also encourage the maps of the other classes to 
produce weaker results by adding the negative loss terms if it 
is known that only the true class is present in the sample.  

The hyper-parameter 𝛽  is crucial for a well-adjusted 
performance of the model. While 𝛽 = 0  gives the best 
accuracy, a greater value of 𝛽 results in more localized and 
better explainable models. In practice, the performance drop 
at moderate 𝛽-values is small. 

 



 

 

IV. EXPERIMENTS 

A. Setup 

We use the convolutional part of the Resnet50 architecture 
[5] with its 50 layers and 23.5 million weights pretrained on 
imagenet as testbed. Two dense layers are added to the 
average pooled and flattened output. The first dense layer with 

300 outputs is endowed with relu activation functions and the 
second with a softmax.  

We use the boxes of the PASCAL VOC 2012 dataset [9], 
resized at 192x192 pixels, as training and test data. The dataset 
contains 20 object classes. Since there may be several object 
boxes, we draw for each epoch and sample one box at random 
from each sample. The object classes are significantly 

 

 

 

 
                               

Fig. 1. Accuracy (upper left), CAM entropy (upper right), CAM ellipsoidal area (lower left) and CAM dispersion (lower right) of the network trained with 

𝛽 = 100 for training (blue) and test  (red) data. The x-axes show the training steps. Best viewed in color. 

  
Fig. 2. Accuracy (upper left), CAM entropy (upper right), CAM ellipsoidal area (lower left) and CAM dispersion (lower right) of the network trained with 

𝛽 = 0 for training (blue) and test  (red) data. The x-axes show the training steps. Best viewed in color. 

 



 

 

unbalanced, no measure is taken to rebalance or re-weight the 
data. There are 16551 training samples and 4952 test samples 
with up to 12 objects in the dataset. 

The network is trained for 30 epochs with the Adam 
optimizer at a constant learning rate of 0.001. The used loss 
function is given by equation (6). A batch size of 20 is chosen. 
All three interpretability figures (1)-(3) are collected for the 
training and the test data during training at reasonable 
frequencies. 

B. Results 

Fig. 1 shows the learning curve of the training and the test 
accuracy of the regularly trained network ( 𝛽 = 0 ). 
Furthermore, the interpretability figures are depicted. While 
the ellipsoidal area almost remains constant after the very 
short initialization phase, the entropy slightly decreases. The 
most significant change is visible in the dispersion which 
enlarges from 0.1 to 0.2. We can therefore state that the 
activation areas are settled very early. The further training 
adapts the weights between features at these locations and the 
classification logits.  

We then repeat the training with a loss function extended 
by the CAM entropy 𝑐𝑒 as an additive term (with a large  𝛽 =
100 for demonstration purposes). Fig. 2 depicts a significantly 
different situation. A part of the learning effort is now put into 
an improved CAM interpretability, the training and the test 
accuracy curves are shallower and exhibit a slightly worse 
performance. The mean ellipsoidal activation area is reduced 
by 20 % and the dispersion is enlarged by the factor 6. This 
training therefore continuously adapts regions and the 
associated contents processing. The networks learns to watch 
more precisely and to decide with more determination. 

Fig. 3 depicts a sample of the test data set and the 
GradCAM visualization in both cases. Observe that the 
activated area in the case 𝛽 = 100 is significantly smaller and 
sharper. There are considerable differences in the GradCAMs 
as summarized in Tab. 1. Observe that the dispersion (and 
hence the sensitivity between the activated and the irrelevant 
region) is substantially higher. The relative difference 
between inactivated and activated regions is 33% for 𝛽 = 0 
and 114% for 𝛽 = 100. The net focuses more on the most 
meaningful parts (in this case the snout and the eyes). 

The computation was performed on an nVidia 1080Ti 
graphics card with Tensorflow2. One epoch took (including 
test step and logging) with the conventional loss 4:35 min and 
with the loss extension 8:22 min. 

V.  CONCLUSION 

We investigated the possibility to foster the CAM 
interpretability of a network purely by modification of the loss 
function. For this purpose, we introduced three GradCAM-
based interpretability measures and used the GradCAM 
entropy as additional loss term. An experiment utilizing 
Resnet50 and PASCAL VOC data demonstrated the 
feasibility. 
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