
HAL Id: cea-01809216
https://cea.hal.science/cea-01809216

Submitted on 28 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the user-role reachability problem in ARBAC
with role hierarchy

Anh Truong, Dai Hai Ton That

To cite this version:
Anh Truong, Dai Hai Ton That. Solving the user-role reachability problem in ARBAC with role
hierarchy. ACOMP 2016 - 2016 International Conference on Advanced Computing and Applications,
Nov 2016, Can Tho City, Vietnam. pp.3-10, �10.1109/ACOMP.2016.011�. �cea-01809216�

https://cea.hal.science/cea-01809216
https://hal.archives-ouvertes.fr

Solving the User-role Reachability Problem in
ARBAC with Role Hierarchy

Anh Truong
Faculty of Computer Science and Engieering

Ho Chi Minh City University of Technology, Vietnam

Email: anhtt@hcmut.edu.vn

Dai Hai Ton That
CEA LIST Institute, CEA Saclay

Paris Saclay University, France

Email: daihai.tonthat@cea.fr

Abstract—Access Control is becoming increasingly important
for today’s ubiquitous systems since it provides mechanism to
prevent sensitive resources in the systems against unauthorized
users. In access control models, the administration of access
control policies is an important task that raises a crucial analysis
problem: if a set of administrators can give a user an unau-
thorized access permission. We consider the analysis problem
in the context of the Administrative Role-Based Access Control
(ARBAC), the most widespread administrative model. One of
the main assumptions of current analysis techniques is that the
role hierarchy is constant and thus can be abstracted away that
results in the bad scalability of analysis techniques. In this paper,
we introduce three reductions to enable an available analysis
technique, namely ASASPXL, to handle the user-role reachability
problem with the presence of role hierarchy. An extensive
experimentation reports the superiority of our reductions in
comparison with the approach used in the literature.

I. INTRODUCTION

Modern information systems contain sensitive information

and resources that need to be protected against unauthorized

users who want to steal it. The most important mechanism

to prevent this is Access Control [1] which is thus becom-

ing increasingly important for today’s ubiquitous systems. In

general, access control policies protect the resources of the

systems by controlling who has permission to access what

objects/resources.
Role-Based Access Control (RBAC) [2] is one of the most

widely adopted access control models in the real world. In

RBAC, access control policies specify which users can be

assigned to roles which, in turn, are granted permissions to per-

form certain operations in the system. Usually, RBAC policies

need to be evolved according to the rapidly changing environ-

ments and thus, it is demanded to have some mechanisms

to control the modification of the policies. Administrative

RBAC [3] (ARBAC) is the corresponding widely used admin-

istrative model for RBAC policies. The main idea of ARBAC

is to provide certain specific users, called administrators,

some permissions to execute operations, called administrative

actions, to modify the RBAC policies. In fact, permissions

to perform administrative actions must be restricted since

administrators can only be partially trusted. For instances,

some of them may collude to, inadvertently or maliciously,

modify the policies (by sequences of administrative actions)

so that untrusted users can get sensitive permissions. Thus,

automated analysis techniques taking into consideration the

effect of all possible sequences of administrative actions to

identify the safety issues, i.e. administrative actions generating

policies by which a user can acquire permissions that may

compromise some security goals, are needed.

Several automated analysis techniques (see, e.g., [4], [5],

[6], [7], [8], [9]) have been developed for solving the user-

role reachability problem, an instance of the safety issues, in

the ARBAC model. One of the the main assumptions of such

techniques is that the role hierarchy is constant and can be pre-

processed by the approach proposed in [10]. However, this

approach results in an exponential number of administrative

actions considered in the analysis that negatively affects the

performance of analysis tools.

In this paper, we introduce three reductions to enable an

available analysis technique, namely ASASPXL, to handle

the user-role reachability problem with the presence of role

hierarchy. The main idea is to transform an ARBAC system

with role hierarchy to an equivalent one without role hierarchy

and then use available analysis techniques to analyze the

system. The experimental results show that the performance of

one of the proposed reductions is superior to the other two and

much better than the approach proposed in [10]. The reason for

this is that the number of administrative actions considered in

the analysis is reduced significantly by using our reductions

that allows for the generation of reachability problems with

smaller state spaces.

The paper is organized as follows. Section II introduces

the RBAC, ARBAC models, and the related analysis problem.

Section III briefly introduces the automated analysis tool

ASASPXL and the model checking technique underlying it.

The three reductions to enable ASASPXL to handle the user-

role reachability problem with the presence of role hierarchy

are described in Section IV. Section V discusses the dynamic

role hierarchy and how to extend our reductions to solve

the user-role reachability problem in the context of dynamic

role hierarchy. Section VI summarizes our experiments and

Section VII concludes the paper.

II. USER-ROLE REACHABILITY PROBLEM

A. Role-Based Access Control

In Role-Based Access Control (RBAC), access decisions are

based on the roles that individual users have as part of an

organization. The process of defining roles is based on a

2016 International Conference on Advanced Computing and Applications

978-1-5090-6144-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ACOMP.2016.27

3

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. User and Permission Assignments; and Role Hierarchies

careful analysis of how an organization operates. Permissions

are grouped by role name and correspond to various uses of a

resource. A permission is restricted to individuals authorized

to assume the associated role and represents a unit of control,

subject to regulatory constraints within the RBAC model. For

example, within a hospital, the role of doctor can include

operations to perform diagnosis, prescribe medication, and

order laboratory tests; the role of nurse can be limited to a

strict subset of the permissions assigned to a doctor such as

order laboratory tests.

We formalize a RBAC policy as a tuple (U,R, P, UA,
PA,�) where U is a set of users, R a set of roles, and P a

set of permissions. A binary relation UA ⊆ U ×R represents

a user-role assignment and a binary relation PA ⊆ R × P
represents a role-permission assignment. A user-role assign-

ment specifies the roles to which the user has been assigned

while a role-permission assignment specifies the permissions

that have been granted to a role. A partial order � on R is

a role hierarchy of the policy, where r1 � r2 means that r1
is more senior than r2 for r1, r2 ∈ R, i.e., every permission

assigned to r2 is also available to r1.

A user u is an explicit member of role r when (u, r) ∈ UA
while the user u is an implicit member of role r if there exists

r′ ∈ R such that r′ � r and (u, r′) ∈ UA. A user u has
permission p if there exists a role r ∈ R such that (r, p) ∈ PA
and u is a (explicit or implicit) member of r.

Example 1 Consider an RBAC policy describing a depart-
ment in a university as depicted in Figure 1. The top-left table
is the user-role assignment, the top-right is the role-permission

assignment, and the bottom is an example of role hierarchies
(The role at the tail of an arrow is more senior than the one
at the head).

Let us consider the user Charlie: he is an explicit member
of role Faculty because the tuple (Charlie,Faculty) is in the
user-role assignment UA. Additionally, role Faculty has been
assigned to permissions AssignGrades , ReceiveHBenefits ,
and UseGym . Thus, Charlie can assign grades, receive
benefits and use the gym through the role Faculty .

Let us consider the role hierarchy: role Faculty is more
senior than role UEmployee (i.e., Faculty � UEmployee).
Therefore, Charlie is an implicit member of role UEmployee,
and thus he can also use all permissions assigned to role
UEmployee.

B. Administrative RBAC (ARBAC)

Access control policies need to be maintained according

to the evolving needs of the organization. For flexibility and

scalability in large distributed systems, several administrators

are usually required and there is a need not only to have a

consistent policy but also to ensure that the policy is modified

by administrators who are allowed to do so.

Several administrative frameworks have been proposed on

top of the RBAC model to address these issues. One of

the most popular administrative frameworks is Administrative

RBAC (ARBAC) [3] that controls how RBAC policies may

evolve through administrative actions that update the UA and

PA relations (e.g., actions that update UA include assigning

or revoking user memberships into roles).

Formalization. Usually, administrators may only update the

relation UA while PA and � are assumed constant. This is

because a change in PA and/or � implies a change in the

organization (see [6] for more detail). From now on, we focus

on situations where U and R are finite, P plays no role, and

thus, a RBAC policy is a tuple (U,R,UA,�).
Since administrators can be only partially trusted, adminis-

tration privileges must be limited to selected parts of the RBAC

policies, called administrative domains. An administrative

domain is specified by a condition defined as follows:

Definition 1 A pre-condition C is a finite set of expressions
of the forms r or r where r ∈ R.

A user u ∈ U satisfies a pre-condition C with respect to a

role hierarchy � if, for each � ∈ C, u is a member of r with

respect to � when � is r or u is not a member of r with respect

to � when � is r for r ∈ R. We say that r is a positive role

and r is a negative role in C. Notice that the role membership

must consider both explicit and implicit users (i.e., a user u
is a member of role r if u is an explicit or implicit member

of r) because of role hierarchy �.

Permission to assign users to roles is specified by a ternary

relation can assign containing tuples of the form (Ca, C, r)
where Ca and C are pre-conditions, and r a role. Permission

to revoke users from roles is specified by a binary relation

can revoke containing tuples of the form (Ca, r) where Ca
is a pre-condition and r a role. The relation can revoke is

4

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

only binary because simple pre-conditions are useless when

revoking roles (see, e.g., [6]). In both cases, we say that

Ca is the administrative pre-condition, C is a (simple) pre-
condition, r is the target role, and a user ua satisfying Ca
is the administrator. When there exist users satisfying the

administrative and the simple (if the case) pre-conditions of

an administrative action, the action is enabled.

ARBAC transition system. We define an ARBAC transition

system as a tuple (α0, ψ) where α0 is the initial RBAC policy

(U,R,UA0 ,�) and ψ is the (disjoint) union of the sets of

administrative actions can assign and can revoke (i.e., ψ :=
(can assign, can revoke)). A state of an ARBAC transition

system is a tuple α where α is a RBAC policy. Since the

administrative actions depend on and affect only the relations

UA and �, in the following, we abbreviate a RBAC policy

(U,R,UA,�) as (UA,�). We define the effect of executing

an administrative action in ψ by defining a binary relation →ψ

on the states of the ARBAC system as follows:

Definition 2 (UA,�) →ψ (UA′,�) iff there exist users ua
and u in U such that either:
• there exists (Ca, C, r) ∈ can assign , ua satisfies Ca,
u satisfies C (i.e. (Ca, C, r) is enabled), and UA′ =
UA ∪ {(u, r)} or

• there exists (Ca, r) ∈ can revoke , ua satisfies Ca (i.e.
(Ca, r) is enabled), and UA′ = UA \ {(u, r)}.

A run of the ARBAC transition system (α0, ψ) is a (pos-

sibly infinite) sequence (UA0 ,�), (UA1 ,�), ..., (UAn ,�), ...
of states such that (UAi ,�)→ψ (UAi+1 ,�) for i ≥ 0.

Example 2 Consider the RBAC policy with the UA relation
and role hierarchy depicted in Figure 1 and an admin-
istrative action ({PCMember}, {UMember}, Student) ∈
can assign , i.e., the administrative pre-condition is Ca =
{PCMember}, the simple pre-condition is C = {UMember},
and the target role is Student .

User Alice satisfies the pre-condition Ca because
(Alice,PCMember) ∈ UA. User Eve satisfies the pre-
condition C because he is an explicit member of role
UEmployee that is more senior than role UMember (e.g.,
(Fred,UEmployee) ∈ UA and UEmployee � UMember .
As a sequence, the administrative action is enabled.

We can update the current UA to UA′ = UA ∪
{(Eve,Student)} by executing the following instance of the
administrative action specified above: administrator Alice
(who has role PCMember) assigns role Student to user Eve.

C. The User-role Reachability Problem

Normally, policy designers and administrators want to fore-

see if the interactions among administrative actions, as seen in

the Example 2, can lead the system to conflict states violating

the security requirements of the organization (e.g., the security

requirements forbid a user being assigned to some sensitive

roles). Thus, they need to analyze access control policies in

order to discover such violation. This problem is called as the

user-role reachability problem and is defined as follows.

Definition 3 A pair (ug, Rg) is called a (RBAC) goal for
ug ∈ U and Rg a finite set of roles. The cardinality |Rg|
of Rg is the size of the goal.

Definition 4 Given an initial RBAC policy (UA,�),
a goal (ug, Rg), and administrative actions
ψ = (can assign, can revoke); (an instance of) the
user-role reachability problem, identified by the tuple
〈(UA,�), ψ, (ug, Rg)〉, consists of checking if there exists
a finite sequence (UA0 ,�), (UA1 ,�), ..., (UAn ,�) (for
n ≥ 0) where (i) (UAi ,�) →ψ (UAi+1 ,�) for each
i = 0, ..., n − 1 and (ii) ug is a member of each role of Rg
in (UAn ,�).

In real scenario, subtle interactions between administrative

actions in real policies may arise that are difficult to be

foreseen by policy designers and administrators. Thus, auto-

mated analysis techniques are thus of paramount importance

to analyze such policies and answer the user-role reachability

problem. The analysis techniques we will present in the

following will be able to establish this automatically for the

problem in ARBAC.

III. MODEL CHECKING MODULO THEORIES AND THE

REACHABILITY PROBLEM

Model Checking Modulo Theories (MCMT). MCMT [11]

is a framework to solve reachability problems for infinite state

systems that can be represented by transition systems whose

set of states and transitions are encoded as constraints in first-

order logic. Several systems have been abstracted using such

symbolic transition system such as parametrised protocols,

sequential programs manipulating arrays, timed system, etc

(see again [11] for an overview).

MCMT framework uses a backward reachability procedure

that repeatedly computes the so-called pre-images of the set

of goal states, that is usually obtained by complementing a

certain safety property that the system should satisfy. Then,

the set of backward reachable states of the system is obtained

by taking the union of the pre-images. At each iteration of

the procedure, the procedure checks whether the intersection

between the set of backward reachable states and the initial

set of states is non-empty (i.e., safety test) or not (i.e., the

unsafety of the system: there exists a (finite) sequence of

transitions that leads the system from an initial state to one

satisfying the goal). Otherwise, when the intersection is empty,

the procedure checks if the set of backward reachable states

is contained in the set computed at the previous iteration

(fix-point test) and, if yes, the safety of the system (i.e. no

(finite) sequence of transitions leads the system from an initial

state to one satisfying the goal) is returned. Since sets of

states and transitions are represented by first-order constraints,

the computation of pre-images reduces to simple symbolic

manipulations and testing safety and fix-point to solving a

particular class of constraint satisfiability problems, called

Satisfiability Modulo Theories (SMT) problems, for which

scalable and efficient SMT solvers are currently available (e.g.,

Z3 [12]).

5

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

ASASPXL. In [13], it is studied how the MCMT approach

can be used to solve (variants of) the user-role reachability

problem in ARBAC transition system with out role hierar-

chy. On the theoretical side, it is shown that the backward

reachability procedure described above decides (variants of)

the user-role reachability problem. On the practical side, ex-

tensive experiments have shown that an automated tool, called

ASASPXL [13], has a good trade-off between scalability and

expressiveness. The analysis tool ASASPXL is build on top of

MCMT, the first implementation of the MCMT approach [11],

that gives some advantage. First, we only need to write a

translator from instances of the user-role reachability problem

to reachability problems in MCMT input language, a routine

programming task. Second, MCMT has been developed and

extensively used for the past years. It is thus more robust

and offers a higher degree of confidence. Third, we can re-

use some features of a better engineered incarnation of the

MCMT approach that can be exploited to significantly improve

performances. An exhaustive experiment in [13] has shown

that ASASPXL is superior to the state-of-the-art analysis tools

such as MOHAWK [14], VAC [8], and PMS [9].

The structure of ASASPXL is depicted in Figure 2. It takes

as input an instance of the user-role reachability problem and

returns reachable, when there exists a finite sequence of ad-

ministrative operations that lead from the initial RBAC policy

to one satisfying the goal, and unreachable otherwise. To

give such results, ASASPXL firstly pre-processes the original

user-role reachability problem by module Heuristics that helps

to refine the original problem to speed up the analysis in the

module MCMT (see [13] for more details). Then, it translates

the refined user-role reachability problem to the reachability

problem in MCMT input language (module Translator). Next,

ASASPXL invokes the model checker MCMT to verify the

reachability of the problem. Finally, according to the answer

returned by the model checker (in the data storage Explored
Policies), ASASPXL refines it and returns reachable or

unreachable as its output (module Refinement).

IV. SOLVING THE USER-ROLE REACHABILITY PROBLEM

WITH ROLE HIERARCHY

The analysis tool ASASPXL (and all state-of-the-art analysis

tools mentioned in Section III) assumes that the role hierarchy

relation� is constant and thus can be ignored when solving the

user-role reachability problem (As the result, the role member-

ship considers only explicit users instead of both implicit and

explicit users as in Section II-B). In the following, we describe

three reductions that pre-process away role hierarchies so that

(an adapted version of) the technique in ASASPXL can be used

to solve user-role reachability problem.

The first reduction, namely RA, is an adaptation of the

approach proposed in [10] and applied to ASASPXL. The

second one, namely RL, proposes a solution that aims to avoid

the exponential explosion in size of the user-role reachability

problem resulting from the application of RA. The last one RM

exploits a feature of the analysis technique inside ASASPXL

to atomize chains of the additional administrative actions

generated in RL, thereby reducing significantly the possible

interleavings to solve the user-role reachability problems.

A. Abstract Reduction RA

In [10], the authors propose an approach to analyze ARBAC

policies with role hierarchies that applies a preprocess module

to abstract away role hierarchy in the original user-role reach-

ability problem and then using an available analysis technique

to solve the problem. The main idea of the preprocess module

is to replace each action in the original set of administrative

actions ψ by a set of additional actions with respect to the

hierarchies of roles being present in the pre-conditions of

the original action. We adapt this approach to ASASPXL as

follows.

Let consider the user-role reachability problem with role

hierarchy 〈(UA,�), ψ, (ug, Rg)〉 as defined in Section II-C

and the following abbreviations:

• Senior(r) stands for a set of all senior roles of r with

respect to hierarchy �
• Senior(r) stands for a set of all senior roles of r with

respect to hierarchy � but is written in negative form ri
where ri is a senior role of r

• Senior(C) = Senior(r1)×Senior(r2)× ...×Senior(rk)
where C = {r1, r2, ..., rk} ⊆ R

The abstract reduction RA works as follows.

Step 1 Processing negative roles in pre-conditions:

– For each tuple (Ca, C, r) ∈ can assign:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �.

∗ for each negative role r occurring in C: replace

r with Senior(r) with respect to role hierarchy

�.

– For each tuple (Ca, r) ∈ can revoke:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �
Step 2 Processing positive roles in-preconditions:

– For each (Ca, C, r) ∈ can assign:

∗ Let C+
a = {r1a, r2a, ..., rka} denote the

set of all positive roles in Ca and C+ =
{r1, r2, ..., rl} denote the set of all positive

roles in C. Let C−a and C− denote the set of

all negative roles in Ca and C, respectively

∗ for each tuple (r′1a, r
′
2a, ..., r

′
ka) ∈

Senior(C+
a) and tuple (r′1, r

′
2, ..., r

′
l) ∈

Senior(C+): add to ψ the administrative ac-

tion ({r′1a, r′2a, ..., r′ka} ∪C−a , {r′1, r′2, ..., r′l} ∪
C−, r)

– For each (Ca, r) ∈ can revoke:

∗ Let C+
a = {r1a, r2a, ..., rka} denote the set of

all positive roles in Ca and C−a denote the set

of all negative roles in Ca

6

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. ASASPXL architecture

∗ for each tuple (r′1a, r
′
2a, ..., r

′
ka) ∈

Senior(C+
a): add to ψ the administrative

action ({r′1a, r′2a, ..., r′ka} ∪ C−a , r)
Step 3 Processing the goal (ug, Rg):

– For each set R′g ∈ Senior(Rg): create a new user-

role reachability problem without role hierarchy

〈(UA), ψ, (ug, R′g)〉
– The answer for the original user-role reachability

problem is reachable iff one of the new problems

〈(UA), ψ, (ug, R′g)〉 returns reachable

The main idea underlying Step 1 is to guarantee that a user

satisfying a negative role r must not be assigned to any senior

role of r while Step 2 exploits all possible associations of

positive roles with respect to role hierarchy. We emphasize

that solving the original user-role reachability problem with

role hierarchy is now equivalent to solving a set of new user-

role reachability problems without role hierarchy (Step 3). The

idea is to ensure that if a role senior to rg ∈ Rg (in the goal

(ug, Rg) of the original problem) is reachable, then also rg is

reachable.

Example 3 Consider an ARBAC system (α0, ψ) where α0 =
(UA0 ,�).

Let U = {Alice,Bob, Charlie,David, Eve, Fred,Greg},
R = {PC (PCMember), FA(Faculty), TA, ST (Student),
UE (UEmployee), UM (UMember),PT (PTEmployee)},
and �= {(TA � ST), (PC � FA), (PC � PT), (UE �
UM)}. The goal is (Eve, {ST ,UM }).

The set ψ of administrative actions contains:

({PC}, {UM ,ST},PT) ∈ can assign (1)

({FA},ST) ∈ can revoke (2)

Consider action (1) (the other actions will be processed in
a similar way):

Step 1 of RA transforms action (1) ∈ ψ to the following
action:

({PC}, {UM ,ST ,TA},PT) (3)

by replacing the negative role ST with the set Senior(ST) =
{ST ,TA}.

Step 2 of RA adds the following administrative actions to
ψ:

({PC}, {UM ,ST ,TA},PT) ∈ can assign (4)

({PC}, {UE ,ST ,TA},PT) ∈ can assign (5)

Notice how the original role UM is replaced with its senior
UE (e.g., (UE � UM)) in action (5).

The user-role reachability problem 〈(UA0 ,�
), ψ, (Eve, {ST ,UM })〉 will be transformed to 4 user-
role reachability problems without role hierarchy:

〈(UA0), ψ, (Eve, {ST ,UM })〉 (6)

〈(UA0), ψ, (Eve, {TA,UM })〉 (7)

〈(UA0), ψ, (Eve, {ST ,UE})〉 (8)

〈(UA0), ψ, (Eve, {TA,UE})〉 (9)

because of tuples (TA � ST) and (UE � UM) in role
hierarchy � �

B. Linear Reduction RL

It is easy to see that the reduction RA, in the worst case,

results in an exponential number of additional administrative

actions in ψ (cf. Step 2 of RA). As shown in [13], the number

of administrative actions is the main source of complexity in

solving the user-role reachability problem. Moreover, solving a

single original user-role reachability problem (with hierarchy)

now becomes to solving a set of new user-role reachability

problems (user-role reachability analysis for ARBAC policy is

PSPACE-complete [6]). The crucial observation to avoid this

is the following: if a user is assigned to a role r1 and (r1 �
r2) ∈�, we can assume that the user is also assigned to role r2.

In this case, we say that the user is implicitly assigned to role

r2. This suggests to transform each tuple in the role hierarchy

� to a new administrative action of type can assign hier
(similar to those of type can assign) such that when a user

is assigned to a role r, he can be “implicitly” assigned to any

junior role of r by executing the new actions. As we need

only one additional action per tuple in role hierarchy �, it is

easy to see that the number of such actions is linear in the

cardinality of �.

The effect of explicit and implicit role memberships must

be handled carefully. In fact, if a user u is assigned to a role

r by a can assign action (explicit role membership), u then

can be implicitly assigned to any junior role of r by executing

the can assign hier actions mentioned above (implicit role

membership). Now, if u is revoked from r by executing a

can revoke action, then the role membership must be handled

such that also all the junior roles of r that have been implicitly

assigned to u must be revoked. Intuitively, to do this, we need

7

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

to keep track of all the junior roles implicitly assigned to

every user that is a computationally heavy task. To avoid this

problem, we modify the structure of RBAC policies defined

in Section II by adding a new relation UAH ⊆ U × R.

Now, the relation UA is required to record only explicit role

memberships (i.e., those resulting by executing can assign
actions) while the new relation UAH record both the explicit

and implicit ones.

Before describing the reduction RL, we introduce the new

administrative action of type can assign hier as follows.

Definition 5 An administrative action of type can assign hier

is of the form (rs � rj) where rs and rj are roles in R

Moreover, to handle the effect of explicit and implicit role

memberships, we need to modify the relation →ψ defined in

Definition 2 in Section II-B as in the following. We note that

a state of ARBAC transition system is modified by adding the

new relation UAH and removing relation � (since all tuples

in � are transformed to can assign hier actions):

Definition 6 (UA,UAH) →ψ (UA′,UAH ′) iff there exist
users ua and u in U such that either:

• there exists (Ca, C, r) ∈ can assign , ua satisfies Ca,
u satisfies C (i.e. (Ca, C, r) is enabled), UA′ = UA ∪
{(u, r)}, and UAH ′ = UAH ∪ {(u, r)} or

• there exists (Ca, r) ∈ can revoke , ua satisfies Ca (i.e.
(Ca, r) is enabled), UA′ = UA \ {(u, r)}, and UAH ′ =
UA′ or

• there exists (rs, rj) ∈ can assign hier , u satisfies {rs},
and UAH ′ = UAH ∪ {(u, rj)}.

We note that the satisfiability of a user to a pre-condition

is now with respect to relation UAH instead of UA as in

Section II-B. We also emphasize that can assign actions

update both UA and UAH while can assign hier ones

update only UAH . Additionally, can assign hier actions do

not require an administrator to be executed, it only requires

to check that there exists a user u who is member of senior

role rs to add the tuple (u, rj) to UAH . An action of type

can revoke removes a tuple from UA and then sets UAH
to the updated value (i.e., after the removal of the tuple) of

UA. The need of resetting UAH to UA after removing a

tuple arises from the observation that removing an explicit role

membership invalidates all the implicit ones in UAH related

to it.

We are ready to define the linear reduction RL as follows:

Step 1 Processing negative roles in pre-conditions:

– For each tuple (Ca, C, r) ∈ can assign:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �.

∗ for each negative role r occurring in C: replace

r with Senior(r) with respect to role hierarchy

�.

– For each tuple (Ca, r) ∈ can revoke:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �
Step 2 Processing tuples in role hierarchy �:

– For each tuple (rs � rj) ∈�:

∗ add a can assign hier action (rs � rj) to the

set of administrative actions ψ

As argued above, the number of additional actions resulting

by applying RL is linear to the number of tuples in role

hierarchy �. Moreover, RL does not need to refine the goal in

the original user-role reachability problem as in the reduction

RA (cf. Step 3 in RA) and thus, avoid solving a set of (refined)

reachability problems.

Example 4 Consider the ATRBAC system in Example 3 and
�= {(TA � ST), (PC � FA), (PC � PT), (UE � UM)}.

After using Step 1 to process negative roles in administrative
actions as in Example 3, the reduction RL adds to the set ψ
the following can assign hier actions:

(TA � ST), (10)

(PC � FA), (11)

(PC � PT), (12)

(UE �UM), (13)

�

C. Composite Reduction RC

The reduction RL reduces significantly the number of ac-

tions added to the set ψ to simulate the role hierarchy �.

However, the sequences of can assign hier actions used to

obtain junior roles may negatively affect the performances

of analysis tools. In fact, if the depth of role hierarchy �,

i.e., the longest chain of the form (r1 � r2), (r2 � r3), ...,

(rn � rn+1) for (ri � ri+1) ∈ � with i = 1; ...;n, is large,

we need to execute a long sequence of can assign hier
actions (r1 � r2), (r2 � r3), ..., (rn � rn+1) to implicitly assign

the user to the most junior role. To avoid this problem, we

exploit a feature of the analysis technique underlying the tool

ASASPXL to “combine” the affect of the long sequence of

can assign hier actions into an atomic administrative action.

The main idea is to design a new version of action type

can assign hier, namely m can assign hier, such that a

user can be assigned to all the junior roles of a given role in

one shot.

Definition 7 An administrative action of type
m can assign hier is of the form (rs � C) where rs is
a role in R and C ⊆ R

The relation →ψ is similar to one defined in Definition 6

except the semantic of can assign hier actions is replaced

by that of m can assign hier as follows.

• there exists (rs, C) ∈ m can assign hier , u satisfies

{rs}, and UAH ′ = UAH ∪ {(u, rj)|rj ∈ C}.

8

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

We are now ready to define the composite reduction RC.

In the following, we use Junior(r) = {r′ | r is more senior

than r′} to denote the set of all junior roles of a given role r:

Step 1 Processing negative roles in pre-conditions:

– For each tuple (Ca, C, r) ∈ can assign:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �.

∗ for each negative role r occurring in C: replace

r with Senior(r) with respect to role hierarchy

�.

– For each tuple (Ca, r) ∈ can revoke:

∗ for each negative role r occurring in Ca: re-

place r with Senior(r) with respect to role

hierarchy �
Step 2 Processing tuples in role hierarchy �:

– For each role r ∈ R:

∗ If Junior(r) �= ∅ then add a

i can assign hier action (r � Junior(r)) to

the set of administrative actions ψ

Example 5 Consider again the ATRBAC system in Example 3
and �= {(TA � ST), (PC � FA), (PC � PT), (UE �
UM)}.

The reduction RC adds to the set ψ the following
m can assign hier actions:

(TA � {ST}), (14)

(PC � {FA,PT}), (15)

(UE � {UM }), (16)

Now, a user assigned to role PC can be implicitly assigned
to all junior roles of PC by executing m can assign hier

action (15) �

V. DISCUSSION

In Section IV, we introduce three reductions to enable avail-

able analysis technique to handle the user-role reachability

problem with the presence of role hierarchy. The main idea

is to transform an ARBAC system with role hierarchy to an

equivalent one without role hierarchy and then use available

analysis techniques to analyze the system. While proposed

reductions is only capable of transforming static role hierarchy,

i.e., role hierarchy � is assumed to be constant during the

analysis, that is usually happening in real scenario1, some

specific applications may require some modification to the role

hierarchy that is also supported by ARBAC framework in [3].

In such applications, role hierarchy � can be modified by

administrative actions that add or delete some tuples to/from

� (now we also call � as a dynamic role hierarchy). As

a result, the analysis techniques need to consider not only

1This is because role hierarchy closely reflects the structure of the or-
ganizations in which the policies are used, thus, the modifications to role
hierarchy should be rare as they imply substantial changes to the organizations
themselves.

the administrative actions modifying the relation UA but also

actions modifying the role hierarchy �.

In fact, we can use the idea of simulating the effect of

role hierarchy in the reductions RC and RL, e.g., using

can assign hier and m can assign hier actions, to design

an approach to solve the user-role reachability problem in the

context of dynamic hierarchy as follows: First, we represent

all possible role relationships (r1 � r2) by using a set

of can assign hier actions as in RL. Then, the effect of

administrative actions that modify the role hierarchy can be

simulated by enabling or disabling the execution of corre-

sponding can assign hier actions. For instance, adding a tu-

ple (r1 � r2) to role hierarchy will make the can assign hier
action (r1 � r2) enabled and vice versa. Because the role

hierarchy now is represented by a set of can assign hier
actions, it can be abstracted away and thus, it is possible to

reuse available analysis techniques such as ASASPXL to solve

the user-role reachability problem in the context of dynamic

hierarchy. The details of this approach and its implementation

is left as our future work.

VI. IMPLEMENTATION AND EXPERIMENTS

We implement three reductions RA, RL, and RC on top of

the analysis tool ASASPXL using Python. Basically, we build

a module named Pre-processing module containing three sub-

modules RA, RL, and RC and then put it in front of the module

Heuristics in the structure of ASASPXL depicted in Figure 2.

Now, ASASPXL takes as input an instance of the user-role

reachability problem with role hierarchy � and, depending

on the reduction used, it forwards the problem to RA, RL, or

RC accordingly to process the role hierarchy. Then, ASASPXL

solves the problem by using modules Heuristics, Translator,

MCMT, and Refinement as described in Section III.

To evaluate the scalability of the three reductions, we

generate synthetic benchmark as follows: we use the ARBAC

user-role reachability problems from [8] and add randomly

generated role hierarchies organized—as suggested in [15]—

as lattices with a senior-most and a junior-most role. The

benchmark contains policies inspired by a university whose

number of roles is 40, the number of administrative actions

from 217 to 492, and the cardinality | � | of role hierarchy

from 10 to 300. All the experiments were performed on an

Intel Core I5 (2.6 GHz) CPU with 4 GB Ram running Ubuntu

11.10.

Table I reports the experimental results of running three

reductions RA, RL, and RC on the benchmark. Column 1

shows the name of the test case, column 2 contains the number

of roles, administrative operations, and | � | in the policies.

Columns 3, 4, and 5 show the average execution times (in

seconds) taken by ASASPXL with using the three reductions

RA, RL, and RC, respectively.

The results show the superiority of the last reduction RC

over the other two. It is also clear that RA is the less scalable

of the three. The reason comes from the fact that number

of additional administrative actions generated by RL and RC

9

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL RESULTS ON THE BENCHMARK IN [9]

Test
case

Roles � # Rules
� # | � |

RA RL RC

Test 1 40 � 287 � 10 1.25 0.93 0.28
Test 2 40 � 217 � 20 2.91 1.17 0.82
Test 3 40 � 262 � 50 3.73 1.14 1.03
Test 4 40 � 296 � 50 2.51 1.12 0.97
Test 5 40 � 480 � 100 8.31 4.27 1.97
Test 6 40 � 479 � 150 22.56 11.32 5.09
Test 7 40 � 467 � 150 47.22 10.92 6.12
Test 8 40 � 484 � 200 51.27 13.65 5.27
Test 9 40 � 463 � 250 45.15 19.92 6.91
Test 10 40 � 492 � 300 39.92 17.21 10.62

is reduced significantly in comparison with that of RA as

discussed in Section IV-B.

Fig. 3. Performance when varying | � |

Figure 3 shows behaviour of the three reductions when the

cardinality | � | of temporal role hierarchies increases. To do

this experiment, we picked one test case from the benchmark

and randomly add hierarchies (with the increase in | � |) to

the test case. | � | varies from 30 to 300 and for each value

of it, we generated 15 different role hierarchies and added to

the test case. The average time (in seconds) for solving the

problems is reported and shown in Figure 3. Blue diamond

line reports the behaviour of the abstract reduction RA; green

squares line shows the performance of the linear reduction RL,

and violet triangles line is the performance of the composite

reduction RC. Clearly, RC performance is much better than

the other two RL and RA.

We emphasize that it is not possible to compare ASASPXL

(with the three reductions) with the other state-of-the-art

analysis tool since they do not support specific features that

we need to build the reductions RL and RC as discussed in

the beginning of Section IV-B and IV-C.

VII. CONCLUSIONS

We have introduced three reductions RA, RL, and RC that

pre-process away role hierarchies so that (an adapted version

of) the technique in ASASPXL can be used to solve user-

role reachability problem in ARBAC. The experimental results

show that the performance of RC is better than that of RL and

much better than RA. This is because the number of additional

administrative actions is reduced significantly by using RC and

RL that allows for the generation of problems with smaller

state spaces.

As future work, we plan to study how to extend our

approach to cope with the dynamic role hierarchies. In fact,

we can use the idea of simulating role hierarchy in the

reductions RC and RL, i.e., using can assign hier and

m can assign hier actions to simulate the affect of role

hierarchy, to design an approach in the context of dynamic

hierarchy as discussed in Section V.

REFERENCES

[1] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati,
“Access control policies and languages,” Int. Journal of Computational
Science and Engineering (IJCSE), vol. 3, no. 2, pp. 94–102, 2007.

[2] R. Sandhu, E. Coyne, H. Feinstein, and C. Youmann, “Role-Based
Access Control Models,” IEEE Computer, vol. 2, no. 29, pp. 38–47,
1996.

[3] J. Crampton, “Understanding and developing role-based administrative
models,” in Proc. 12th CCS, pages 158–167, ACM Press, 2005.

[4] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM TISSEC, vol. 9, no. 4, pp. 391–420, 2006.

[5] S. Jha, N. Li, M. V. Tripunitara, Q. Wang, and H. Winsborough,
“Towards formal verification of role-based access control policies,” IEEE
TDSC, vol. 5, no. 4, pp. 242–255, 2008.

[6] S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gofman, “Efficient
policy analysis for administrative role based access control,” in CCS.
ACM Press, 2007.

[7] F. Alberti, A. Armando, and S. Ranise, “ASASP: Automated Sym-
bolic Analysis of Security Policies,” in CADE, ser. LNCS, vol. 6803.
Springer, 2011, pp. 26–34.

[8] A. L. Ferrara, P. Madhusudan, T. L. Nguyen, and G. Parlato, “VAC
- Verifier of Administrative Role-based Access Control Policies,” in
Proc. of 26th Int’l Conference on Computer Aided Verification (CAV).
Springer Berlin Heidelberg, 2014, pp. 184–191.

[9] P. Yang, M. Gofman, S. Stoller, and Z. Yang, “Policy Analysis for
Administrative Role Based Access Control without Separate Admin-
istration,” J. of Computer & Security, 2014.

[10] A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan, “Policy
analysis for administrative role based access control,” in CSF. IEEE
Press, Jul. 2006.

[11] S. Ghilardi and S. Ranise, “Backward Reachability of Array-based
Systems by SMT solving: Termination and Invariant Synthesis,” In
LMCS, Vol. 6, Issue 4, 2010.

[12] “http://research.microsoft.com/en-us/um/redmond/
projects/z3.”

[13] S. Ranise, T. A. Truong, and A. Armando, “Boosting Model Checking
to Analyse Large ARBAC Policies,” in STM’12, ser. LNCS, vol. 7783,
2012, pp. 273–288.

[14] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin,
“Automatic Error Finding for Access-Control Policies,” in CCS. ACM,
2011.

[15] N. Li and Z. Mao, “Administration in Role Based Access Control,”
in Proc. ACM Symp. on Information, Computer, and Communication
Security (ASIACCS), 2007.

10

Authorized licensed use limited to: CEA. Downloaded on June 28,2022 at 08:31:10 UTC from IEEE Xplore. Restrictions apply.

