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Abstract—Infrastructure-as-a-Service (IaaS) clouds have be-
come more popular enabling users to run applications under
virtual machines. Energy efficiency for IaaS clouds is still chal-
lenge. This paper investigates the energy-efficient scheduling
problems of virtual machines (VMs) onto physical machines
(PMs) in IaaS clouds along characteristics: multiple resources,
fixed intervals and non-preemption of virtual machines. The
scheduling problems are NP-hard. Most of existing works on
VM placement reduce the total energy consumption by using
the minimum number of active physical machines. There,
however, are cases using the minimum number of physical
machines results in longer the total busy time of the physical
machines. For the scheduling problems, minimizing the total
energy consumption of all physical machines is equivalent
to minimizing total busy time of all physical machines. In
this paper, we propose an scheduling algorithm, denoted as
EMinTRE-LFT, for minimizing the total energy consumption
of physical machines in the scheduling problems. Our exten-
sive simulations using parallel workload models in Parallel
Workload Archive show that the proposed algorithm has the
least total energy consumption compared to the state-of-the-
art algorithms.

Keywords-energy efficiency; energy-aware; power-aware; vm
placement; IaaS; total busy time; fixed interval; fixed starting
time; scheduling

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud [1] service pro-

visions users with computing resources in terms of virtual

machines (VMs) to run their applications [2], [3], [4].

These IaaS cloud systems are often built from virtualized

data centers. Power consumption in a large-scale data

centers requires multiple megawatts [5], [3]. Le et al.

[3] estimate the energy cost of a single data center is

more than $15M per year. As these data centers has

more physical servers, they will consume more energy.

Therefore, advanced scheduling techniques for reducing

energy consumption of these cloud systems are highly

concerned for any cloud providers to reduce energy cost.

Energy efficiency is an interesting research topic in cloud

systems. Energy-aware scheduling of VMs in IaaS cloud

is still challenging [2], [3], [6], [7].

Many previous works [8], [9] proved that the scheduling

problems with fixed interval times are NP-hard. They [4],

[10] present techniques for consolidating virtual machines

in cloud data centers by using bin-packing heuristics

(such as First-Fit Decreasing [10], and/or Best-Fit De-

creasing [4]). They attempt to minimize the number of

running physical machines and to turn off as many idle

physical machines as possible. Consider a d-dimensional

resource allocation where each user requests a set of

virtual machines (VMs). Each VM requires multiple re-

sources (such as CPU, memory, and IO) and a fixed

quantity of each resource at a certain time interval. Under

this scenario, using a minimum of physical machines

can result in increasing the total busy time of the active

physical machines [11][9]. In a homogeneous environ-

ment where all physical servers are identical, the power

consumption of each physical machine is linear to its

CPU utilization [4], i.e., a schedule with longer working

time will consume more energy than another schedule

with shorter working time.

This paper presents a proposed heuristic, denoted

as EMinTRE-LFT, to allocate VMs that request multiple

resources in the fixed interval time and non-preemption

into physical machines to minimize total energy con-

sumption of physical machines while meeting all resource

requirements. Using numerical simulations, we compare

EMinTRE-LFT with the state-of-the-art algorithms include

Power-Aware Best-Fit Decreasing (PABFD) [4], vector bin-

packing norm-based greedy (VBP-Norm-L2) [10], and

Modified First-Fit-Decreasing-Earliest (Tian-MFFDE) [9].

Using three parallel workload models [12], [13] and [14]

in the Feitelson’s Parallel Workloads Archive [15], the

simulation results show that the proposed EMinTRE-LFT

can reduce the total energy consumption of the physical

servers by average of 23.7% compared with Tian-MFFDE

[9]. In addition, EMinTRE-LFT can reduce the total energy

consumption of the physical servers by average of 51.5%

and respectively 51.2% compared with PABFD [4] and

VBP-Norm-L2 [10]. Moreover, EMinTRE-LFT has also less

total energy consumption than MinDFT-LDTF [11] in the

simulation results.

The rest of this paper is structured as follows. Section II

discusses related works. Section III describes the energy-
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aware VM allocation problem with multiple requested

resources, fixed starting and duration time. We also for-

mulate the objective of scheduling, and present our theo-

rems. The proposed EMinTRE-LFT algorithm presents in

Section IV. Section V discusses our performance evalua-

tion using simulations. Section VI concludes this paper

and introduces future works.

II. RELATED WORKS

The interval scheduling problems have been studied

for many years with objective to minimizing total busy

time. In 2007, Kovalyov et al. [16] has presented work

to describe characteristics of a fixed interval schedul-

ing problem in which each job has fixed starting time,

fixed processing time, and is only processed in the fixed

duration time on a available machine. The scheduling

problem can be applied in other domains. Angelelli et

al. [17] considered interval scheduling with a resource

constraint in parallel identical machines. The authors

proved the decision problem is NP-complete if number

of constraint resources in each parallel machine is a fixed

number greater than two. Flammini et al. [8] studied

using new approach of minimizing total busy time to

optical networks application. Tian et al. [9] proposed a

Modified First-Fit Decreasing Earliest algorithm, denoted

as Tian-MFFDE, for placement of VMs energy efficiency.

The Tian-MFFDE sorts list of VMs in queue order by

longest their running times first) and places a VM (in

the sorted list) to any first available physical machine that

has enough VM’s requested resources. Our VM placement

problem differs from these interval scheduling problems

[16][17][9], where each VM requires for multiple resource

(e.g. computing power, physical memory, network band-

width, etc.) instead of all jobs in the interval scheduling

problems are equally on demanded computing resource

(i.e. each physical machine can process the maximum of

g jobs in concurrently).

Energy-aware resource management in cloud virtual-

ized data centers is critical. Many previous research [4],

[18], [7], [19] proposed algorithms that consolidate VMs

onto a small set of physical machines (PMs) in virtualized

datacenters to minimize energy/power consumption of

PMs. A group in Microsoft Research [10] has studied

first-fit decreasing (FFD) based heuristics for vector bin-

packing to minimize number of physical servers in the

VM allocation problem. Some other works also proposed

meta-heuristic algorithms to minimize the number of

physical machines. Beloglazov’s work [4] has presented

a modified best-fit decreasing heuristic in bin-packing

problem, denoted as PABFD, to place a new VM to a

host. PABFD sorts all VMs in a decreasing order of CPU

utilization and tends to allocate a VM to an active physical

server that would take the minimum increase of power

consumption. Knauth et al. [18] proposed the OptSched

scheduling algorithm to reduce cumulative machine up-

time (CMU) by 60.1% and 16.7% in comparison to a

round-robin and First-fit. The OptSched uses an mini-

mum of active servers to process a given workload. In

a heterogeneous physical machines, the OptSched maps

a VM to a first available and the most powerful machine

that has enough VM’s requested resources. Otherwise, the

VM is allocated to a new unused machine. In the VM

allocation problem, however, minimizing the number of

used physical machines is not equal to minimizing total

of total energy consumption of all physical machines.

Previous works do not consider multiple resources, fixed

starting time and non-preemptive duration time of these

VMs. Therefore, it is unsuitable for the power-aware VM

allocation considered in this paper, i.g. these previous

solutions can not result in a minimized total energy

consumption for VM placement problem with certain

interval time while still fulfilling the quality-of-service.

Chen et al [19] observed there exists VM resource

utilization patterns. The authors presented an VM alloca-

tion algorithm to consolidate complementary VMs with

spatial and temporal-awareness in physical machines.

They introduce resource efficiency and use norm-based

greedy algorithm, which is similar to in [10], to measure

distance of each used resource’s utilization and maximum

capacity of the resource in a host. Their VM allocation

algorithm selects a host that minimizes the value of this

distance metric to allocate a new VM. Our proposed

EMinTRE-LFT uses a different metric that unifies both

increasing time and the L2-norm of diagonal vector that

is presenting available resources. In our proposed TRE

metric, the increasing time is the difference between two

total busy time of a PM after and before allocating a VM.

Our proposed EMinTRE-LFT algorithm that differs from

these previous works. Our EMinTRE-LFT algorithm use

the VM’s fixed starting time and duration to minimize the

total busy time on physical machines, and consequently

minimize the total energy consumption in all physical

servers. To the best of our knowledge, no existing works

that surveyed in [20], [21], [22], [23] have thoroughly

considered these aspects in addressing the problem of

VM placement.

III. PROBLEM DESCRIPTION

A. Notations

We use the following notations in this paper:

vmi : The i th virtual machine to be scheduled.

M j : The j th physical machine.

S: A feasible schedule.

P min
j

: The minimum power consumed when M j is 0%

CPU utilization.

P max
j

: The maximum power consumed when M j is

100% CPU utilization.

P j (t): Power consumption of M j at a time point t .



t si : Fixed starting time of vmi .

di : Duration time of vmi .

T : The maximum schedule length, which is the time

that the last virtual machine will be finished.

J j : Set of virtual machines that are allocated to M j in

the whole schedule.

T
bus y

j
: The total busy time (ON time) of M j .

ei : Energy consumption for running vmi in the physi-

cal machine that vmi is allocated.

g : The maximum number of virtual machines that can

be assigned to any physical machine.

B. Power consumption model

Notations:

- U j (t) is the CPU utilization of M j at time t . - PE j is

the total number cores of M j .

- mi psi ,c is the allocated MIPS of the c th processing

element to the vmi by M j .

- M I PS j ,c is the maximum computing power (in MIPS)

of the c th core on M j .

In this paper, we use the following energy consumption

model proposed in [5][4] for a physical machine. Let

call α = P min
j

/P max
j

is fraction of the minimum power

consumed when M j is idle (0% CPU utilization) and the

maximum power consumed when the physical machine

is fully utilized (100% CPU utilization). The power con-

sumption of M j , denoted as P j (.) with ( j = 1,2, ...,m), is

formulated as follow:

P j (t) = (α+ (1−α).U j (t)).P max
j (1)

We assume that all cores in CPU are homogeneous, i.e.

∀c = 1,2, ...,PE j : M I PS j ,c = M I PS j ,1 . The CPU utilization

U j (t) is formulated as follow:

U j (t)= (
1

PE j ×M I PS j ,1
)

PE j
∑

c=1

∑

vmi∈J j

mi psi ,c (2)

The energy consumption of the M j in the time period

[t1, t2] denoted as ∆E j with CPU utilization U j is formu-

lated as follow:

∆E j = P j (U j ).(t2−t1) = (α.P max
j +(1−α).P max

j .U j ).∆T (3)

where:

∆T j : The busy time of M j that is defined as: ∆T j = (t2 −

t1).

Assume that a virtual machine vmi changes the CPU

utilization is ∆u j for during [t1, t2] and the vmi uses full

utilization of its requested resources in the worst case on

M j . The energy consumption by the vmi , denoted as ei ,

is formulated as:

ei = (1−α).P max
j .∆u j .(t2 − t1) (4)

Let T
bus y

j
be the total busy time of M j , let ei be energy

consumed by vmi , and let vmi ∈ M j be set of virtual

machines vmi (i = 1,2, ...,n) that are allocated to M j in

the whole schedule. Let E j be the total energy consumed

by M j and E j is the sum of energy consumption ∆E j

during the total busy time T
bus y

j
that is formulated as:

E j = (α.P max
j + (1−α).P max

j .U j ).T
bus y

j
(5)

where α.P max
j

.T
bus y

j
is called the base (ON) energy

consumption for M j during the total busy time, i.e.,

E base
j

=α.P max
j

.T
bus y

j
, and ((1−α).P max

j
.U j .T

bus y

j
) is the

increasing energy consumed by some VMs scheduled to

M j .

E j =α.P max
j ×T

bus y

j
+

∑

vmi∈M j

ei (6)

C. Problem formulation

Consider the following scheduling problem. We are

given a set of n virtual machines J = {vm1, . . . , vmn} to

be scheduled on a set of m identical physical servers

M = {M1, . . . , Mm }, each server can host a maximum num-

ber of g virtual machines. Each VM needs d-dimensional

demand resources in a fixed interval with non-migration.

Each vmi is started at a fixed starting time (t si ) and is

non-preemptive during its duration time (di ). Types of

resource considered in the problem include computing

power (i.e., the total Million Instruction Per Seconds

(MIPS) of all cores in a physical machine), physical

memory (i.e., the total MBytes of RAM in a physical

machine), network bandwidth (i.e., the total Kb/s of

network bandwidth in a physical machine), and storage

(i.e., the total free GBytes of file system in a physical

machine), etc.

The objective is to find out a feasible schedule S that

minimizes the total energy consumption in the equation

(8) with ∀i ∈ {1,2, ...,n}, ∀ j ∈ {1,2, ...,m}, ∀t ∈ [0,T ] as

following:

Min(
m
∑

j=1

(α×P max
j ×T

bus y

j
)+

n
∑

i=1

ei ) (7)

where:

- α = P min
j

/P max
j

is the fraction of idle power and

maximum power consumption by physical machine M j .

- T
bus y

j
is the total busy time of M j .

In homogeneous physical machines (PMs), all PMs

have the same idle power and maximum power consump-

tion. Therefore α is the same for all PMs. We rewrite the

objective scheduling as following:

Min(α×P max
×

m
∑

j=1

T
bus y

j
+

n
∑

i=1

ei ) (8)



The scheduling problem has the following hard con-

straints that are described in our previous work [11] as

following:

• Constraint 1: Each VM is only processed by a physical

server at any time with non-migration and non-

preemption.

• Constraint 2: Each VM does not request any resource

larger than the maximum total capacity resource of

any physical server.

• Constraint 3: The sum of total demand resources of

these allocated VMs is less than or equal to the total

capacity of the resources of M j .

D. Preliminaries

Definition 1 (Length of intervals.): Given a time inter-

val I = [s, f ], the length of I is len(I ) = f −s. Extensively, to

a set I of intervals, length of I is len(I ) =
∑

I∈I len(I ).

Definition 2 (Span of intervals.): For a set I of inter-

vals, we define the span of I as span(I ) = len(
⋃

I ).

Definition 3 (Optimal schedule): An optimal schedule

is the schedule that minimizes the total busy time of

physical machines. For any instance J and parameter

g Ê 1, OPT (J , g ) denotes the cost of an optimal schedule.

In this paper, we denote J is set of time intervals that

derived from given set of all requested VMs. In general,

we use instance J is alternative meaning to a given set

of all requested VMs in context of this paper.

Observations: Cost, capacity, span bounds. For any

instance J , which is set of time intervals derived from

given set of all requested VMs, and capacity parameter

g Ê 1, which is the maximum number of VMs that can be

allocated on any physical machine, the following bounds

are held:

• The optimal cost bound: OPT (J , g ) ≤ len(J ).

• The capacity bound: OPT (J , g ) Ê
len(J )

g
.

• The span bound: OPT (J , g ) Ê span(J ).

For any feasible schedule s on a given set of virtual

machines, the total busy time of all physical machines

that are used in the schedule s is bounded by the maxi-

mum total length of all time intervals in a given instance

J . Therefore, the optimal cost bound holds because

OPT (J , g )=len(J ) iff all intervals are non-overlapping,

i.e., ∀I1, I2 ∈J then I1 ∩ I2 =;.

Intuitively, the capacity bound holds because

OPT (J , g )=
len(J )

g
iff, for each physical server, exactly

g VMs are neatly scheduled in that physical server. The

span bound holds because at any time t ∈
⋃

J at least

one machine is working.

E. Theorems

In the following theorems, all physical machines are

homogeneous. Let P min and P max are the minimum/idle

power and maximum power consumption of a physical

machine respectively. We have α= P min /P max .

Theorem 1: Minimizing total energy consumption in

(8) is equivalent to minimizing the sum of total busy time

of all physical machines (
∑m

j=1 T
bus y

j
).

Min (α×P max
×

m
∑

j=1

T
bus y

j
+

n
∑

i=1

ei ) ∼ Min (
m
∑

j=1

T
bus y

j
) (9)

Proof: A proof for this theorem see detail in [11].

Based on the above theorem, we propose our energy-

aware algorithms denoted as EMinTRE-LFT which is pre-

sented in the next section.

Definition 4: For any schedule we denote by J j the set

of virtual machines allocated to the physical machine M j

by the schedule. Let T j denote the total busy time of M j

is the span of J j , i.e., T j = span(J j ).

Definition 5: For any instance J , the total busy time

of the entire schedule of J computed by the algorithm

H , denoted as cost H (J ), is defined as cost H (J ) =
∫span(J )

0 N H (t)d t , where as N H (t) is the number of phys-

ical machines used at the time t by the algorithm H .

Definition 6: For any instance J and parameter

g Ê 1, EOP T (J , g ), which is denoted as the minimized

total energy consumption of all physical machines

in an optimal schedule for the J , is formulated as:

EOP T (J , g ) =α×P max ·OPT (J , g )+
∑n

i=1
ei .

Theorem 2: For any instance J , the lower and upper of

the total energy consumption in an optimal schedule are

bounded by: Pmin ·
len(J )

g
≤ EOP T (J , g ) ≤ P max · len(J ).

Proof: For any instance J , let OPT (J , g ) be the total

busy time of the optimal schedule for the J , and let E∗

be the total energy consumption for the optimal schedule

for the J .

The total energy consumption of an optimal schedule

needs to account for all physical machines running during

OPT (J , g ). We have: E∗ = Pmin ·OPT (J , g )+
∑n

i=1
ei .

From Definition 6, we have EOP T (J , g ) = E∗.

Apply the capacity bound in Theorem III-D, we have

OPT (J , g ) ≥
len(J )

g
. Thus, E∗ ≥ Pmin ·

len(J )

g
+

∑n
i=1

ei .

Recall that the energy consumption of each virtual

machine is non-negative, thus ei > 0. Therefore, E∗ ≥

Pmin ·
len(J )

g
. Thus

EOP T (J , g ) ≥ Pmin ·
len(J )

g
(10)

We prove the upper bound of the minimized total

energy consumption as following. Apply the optimal cost

bound in Theorem III-D, we have OPT (J , g ) ≤ len(J ).

Thus

E∗
≤ Pmin · len(J )+

n
∑

i=1

ei . (11)



Apply the linear power consumption as in the Equation

(1) and Equation (3), the energy consumption of each i -

th virtual machine in period time of [t si , t si + di ] that

denotes as ei is:

ei =

t si+di
∫

t si

P j (Uvmi
)d t = (P max

j
−P idle

j
) ·Uvmi

·di

where Uvmi
is the percentage of CPU usage of the i -th

virtual machine on a j -th physical machine.

Because any virtual machine always requests CPU us-

age lesser than or equal to the maximum total capacity

CPU of every physical machine, i.e., Uvmi
≤ 1.

⇒ ei ≤ (P max
j

−P idle
j

) ·di

Note that in this proof, all physical machines are

identical with same power consumption model thus P max

and P idle are the maximum power consumption and the

idle power consumption of each physical machine. Thus:

ei ≤ (P max −P idle ) ·di

Let Ii is interval of each i -th virtual machine, Ii =

[t si , t si +di ]. By the definition the length of interval is

len(Ii ) = di that is duration time of each i -th virtual

machine. Thus:

ei ≤ (P max −P idle ) · len(Ii )

The total energy consumption of n virtual machines is

formulated as:
n
∑

i=1
ei ≤

n
∑

i=1
[(P max −P idle ) · len(Ii )]

⇔
n
∑

i=1
ei ≤ (P max −P idle ) ·

n
∑

i=1
len(Ii )

⇔

n
∑

i=1

ei ≤ (P max
−P idle ) · len(J ). (12)

From Equation (11), we have:

E∗ ≤ Pmin · len(J )+
∑n

i=1
ei

E∗ ≤ Pmin · len(J )+ (P max −P idle ) · len(J )

E∗
≤ (Pmin + (P max

−P idle )) · len(J ) (13)

By the definition, the unit energy of a physical machine

equals to the idle power consumption in the unit time,

i.e., Pmin = P idle . From the Equation (13):

E∗
≤ P max

· len(J ) (14)

⇔ EOP T (J , g ) ≤ P max
· len(J ) (15)

From both of two equations (10) and (15), we have:

Pmin ·
len(J )

g
≤ EOP T (J , g )≤ P max

· len(J ) (16)

We prove the theorem.

IV. SCHEDULING ALGORITHMS

A. EMinTRE-LFT scheduling algorithm

In this section, we present the proposed energy-aware

scheduling algorithm, denoted as EMinTRE-LFT, with

pseudo-code of EMinTRE-LFT in Algorithm 1. Algorithm

EMinTRE-LFT has two (2) steps:sorts the list of virtual

machines in order decreasing finishing time first. Next,

EMinTRE-LFT allocates the first next virtual machine i to

the first physical machine M j such that M j has enough

resource to provision the virtual machine i and TRE

metric of M j denoted as T RE j is minimum. The T RE j is

formulated as in the following equation 19. The EMinTRE-

LFT solves these scheduling problems in time complexity

of O(n × m × q) where n is the number of VMs to be

scheduled, m is the number of physical machines, and q

is the maximum number of allocated VMs in the physical

machines M j ,∀ j = 1,2, ...,m.

Based on the equation 2, the utilization of a resource

r (resource r can be cores, computing power, physical

memory, network bandwidth, storage, etc.) of the M j ,

denoted as U j ,r , is formulated as:

U j ,r =
∑

s∈n j

Vs,r

H j ,r
. (17)

where n j is the list of virtual machines that are assigned

to the M j , Vs,r is the amount of requested resource r of

the virtual machine s (note that in our study the value

of Vs,r is fixed for each user request), and H j ,r is the

maximum capacity of the resource r in M j .

The available resource is presented using diagonal vec-

tor, where the L2-norm of the diagonal vector (denoted

as D j ) is formulated as:

D j =

√

(
∑

r∈R

((1−U j ,r )×wr )2) (18)

where R is the set of resource types in a host (R={core,

mips, ram, netbw, io, storage}) and wr is weight of

resource r in a physical machine.

In this paper, we propose the TRE metric for the in-

creasing total busy time and the L2-norm of the diagonal

vector (D j ) of the physical machine j -th that is calculated

as:

T RE j = (
t di f f ×wr=t ime

T
bus y

j

)2
+D2

j (19)

V. PERFORMANCE EVALUATION

A. Algorithms

In this section, we study the following VM allocation

algorithms:

• PABFD, a power-aware and modified best-fit decreas-

ing heuristic [4]. The PABFD sorts the list of V Mi

(i=1, 2,..., n) by their total requested CPU utilization,



Algorithm 1 : EMinTRE-LFT: Energy-aware Greedy-based

Scheduling Algorithm

1: function EMINTRE-LFT

2: Input: vmLi st - a list of virtual machines to be

scheduled, hostLi st - a list of physical servers

3: Output: a feasible schedule or null

4: vmList = sortVmListByOrderLastestFinishingTime-

First( vmList ) ⊲

1

5: m = hostList.size(); n = vmList.size();

6: T[j] = 0, ∀ j ∈ [1,m]

7: for i = 1 to n do ⊲ on the VMs list

8: vm = vmList.get(i)

9: allocatedHost = null

10: T1 = sumTotalHostBusyTime( T )

11: minRETime = +∞

12: for j = 1 to m do ⊲ on the hosts list

13: host = hostList.get( j )

14: hostVMList = sortVmListByOrder(

host.getVms(), order=[finishtime])

15: if host.checkAvailableResource( vm ) then

16:

17: preTime = T[ host.id ]

18: T[ host.id ] =

host.estimateHostTotalCompletionTime( vm )

19: T2 = sumTotalHostBusyTime( T )

20: diffTime = Math.max( T2 - T1, 0)

21: TRE = EstimateMetricTimeResEff( diff-

Time, host )

22: if (minTRE > TRE ) then

23: minRETime = TRE

24: allocatedHost = host

25: end if

26: T[ host.id ] = preTime ⊲ Next iterate

over the hostList and choose the host that minimize

the value of different time and resource efficiency

27: end if

28: end for

29: if (allocatedHost != null) then

30: allocate the vm to the host

31: add the pair of vm (key) and host to the

mappi ng

32: else

33: "Cannot allocate the virtual machine vm."

34: end if

35: end for

36: return mappi ng

37: end function

38: sumTotalHostBusyTime(T[]) =
∑m

j=1 T j ⊲ T[1...m]:

Array of total completion times of m physical servers

and assigns new VM to any host that has a minimum

Algorithm 2 Estimating the metric for increasing time and

resource efficiency

1: function ESTIMATEMETRICTIMERESEFF

2: Input: (t di f f ,host) - t di f f is a different time, host

is a candidate physical machine

3: Output: T RE - a value of metric time and resource

efficiency

4: Set R={cores, mips, ram, io, netbw, storage}

5: j = host.getId(); n j = host.getVMList();

6: for r ∈R do

7: Calculate the resource utilization, U j ,r as in the

Equaltion (17).

8: end for

9: wei g ht s[] ← Read weight of resources from con-

figuration file

10: Calculate the T RE j metric of host j as in the

equation (19)

11: D j =

√

∑

r∈R ((1−U j ,r )×wr )2

12: T RE j = (
t di f f

×wt ime

T
bus y

j

)2 +D2
j
⊲ wt ime is weight of

the different time

13: return T RE j

14: end function

increase in power consumption.

• VBP-Norm-L2, a vector packing heuristics that is

presented as Norm-based Greedy with degree 2 [10].

Weights of these Norm-based Greedy heuristics use

FFDAvgSum which are exp(x), which is the value of

the exponential function at the point x, where x is

average of sum of demand resources (e.g. CPU, mem-

ory, storage, network bandwidth, etc.). VBP-Norm-L2

assigns new VM to any host that has minimum of

these norm values.

• MinDFT-LDTF: the algorithm sorts list of V Mi (i=1,

2,..., n) by their starting time (t si ) and respectively

by their finished time (t si + duri ), then MinDFT-

LDTF allocates each VM (in a given sorted list of

VMs) to a host that has a minimum increase in total

completion times of hosts as in algorithm MinDFT

[11].

• EMinTRE-LDTF, the algorithm is proposed in the

Section IV.

B. Methodology

We evaluate these algorithms by simulation using the

CloudSim [24] to create simulated cloud data center

systems that have identical physical machines, heteroge-

neous VMs, and with thousands of CloudSim’s cloudlets

[24] (we assume that each HPC job’s task is modeled as a

cloudlet that is run on a single VM). The information of

VMs (and also cloudlets) in these simulated workloads is



Table I
EIGHT (08) VM TYPES IN SIMULATIONS

VM Type MIPS Cores Memory Network Storage
(Unit: MBytes) (Unit: Mbits/s) (Unit: GBytes)

Type 1 2500 8 6800 100 1000
Type 2 2500 2 1700 100 422.5
Type 3 3250 8 68400 100 1000
Type 4 3250 4 34200 100 845
Type 5 3250 2 17100 100 422.5
Type 6 2000 4 15000 100 1690
Type 7 2000 2 7500 100 845
Type 8 1000 1 1875 100 211.25

Table II
INFORMATION OF A TYPICAL PHYSICAL MACHINE (HOST ) WITH 16 CORES CPU (3250 MIPS/CORE), 136.8 GBYTES OF AVAILABLE PHYSICAL MEMORY, 10

GB/S OF NETWORK BANDWIDTH, 10 TBYTES OF STORAGE AND IDLE, MAXIMUM POWER CONSUMPTION IS 175, 250 ( W ).

Type MIPS Cores Memory Network Storage P idl e P max

(Unit: MBytes) (Unit: Mbits/s) (Unit: GBytes) (Unit: Watts) (Unit: Watts)

M1 3250 16 140084 10000 10000 175 250

Table III
THE NORMALIZED TOTAL ENERGY CONSUMPTION. SIMULATION RESULTS OF

SCHEDULING ALGORITHMS SOLVING SCHEDULING PROBLEMS WITH 12681
VMS AND 5000 PMS USING FEILTELSON’S PARALLEL WORKLOAD MODEL

[12]. ALGORITHM EMINTRE-LFT WTX HAS WEIGHT OF TIME IS EQUAL TO

X (X = 1;0.1;0.001).

Algorithm Energy Norm. Saving Energy
(Unit: kWh) Energy (+:better;-:worst)

PABFD 1,055.42 1.598 -60%
VBP-Norm-L2 1,054.69 1.597 -60%
MinDFT-LDTF 603.90 0.915 9%
Tian-MFFDE 660.30 1.000 0%
EMinTRE-LFT wt1 503.43 0.762 24%
EMinTRE-LFT wt0.01 503.43 0.762 24%
EMinTRE-LFT wt0.001 503.43 0.762 24%

Table IV
THE NORMALIZED TOTAL ENERGY CONSUMPTION. SIMULATION RESULTS OF

SCHEDULING ALGORITHMS SOLVING SCHEDULING PROBLEMS WITH 15,201
VMS AND 5,000 PMS USING DOWNEY97’S PARALLEL WORKLOAD MODEL

[13] IN THE PARALLEL WORKLOAD ARCHIVE [15]. ALGORITHM

EMINTRE-LFT WTX HAS WEIGHT OF TIME IS EQUAL TO X
(X = 1;0.1;0.001).

Algorithm Energy Norm. Saving Energy
(Unit: kWh) Energy (+:better;-:worst)

PABFD 878.01 1.523 -52.3%
Norm-VBP-L2 876.49 1.520 -52.0%
Tian-MFFDE 576.55 1.000 0.0%
MinDFT-LDTF 502.61 0.872 12.8%
EMinTRE-LFT wt1 416.35 0.722 27.8%
EMinTRE-LFT wt0.01 416.35 0.722 27.8%
EMinTRE-LFT wt0.001 416.35 0.722 27.8%

extracted from two parallel job models are Feitelson’s par-

allel workload model [12], Downey98’s parallel workload

model [13] and Lublin99’s parallel workload model [14] in

Parallel Workloads Archive (PWA) [15]. When converting

from the generated log-trace files, each cloudlet’s length

is a product of the system’s processing time and CPU

rating (we set the CPU rating is equal to included VM’s

MIPS). We convert job’s submission time, job’s start time

Table V
THE NORMALIZED TOTAL ENERGY CONSUMPTION. SIMULATION RESULTS OF

SCHEDULING ALGORITHMS SOLVING SCHEDULING PROBLEMS WITH 8847
VMS AND 5000 PHYSICAL MACHINES (HOSTS) USING LUBLIN99’S

PARALLEL WORKLOAD MODEL [14]

Algorithm Energy Norm. Saving Energy
(Unit: kWh) Energy (+:better;-:worst)

PABFD 460.66 1.601 -60.1%
Norm-VBP-L2 453.23 1.575 -57.5%
Tian-MFFDE 287.78 1.000 0.0%
MinDFT-LDTF 263.86 0.917 8.3%
EMinTRE-LFT wt0.001 232.29 0.807 19.3%
EMinTRE-LFT wt0.01 232.29 0.807 19.3%
EMinTRE-LFT wt1 232.29 0.807 19.3%
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Figure 1. The normalized total energy consumptions compare to Tian-
MFFDE. Simulation result for scheduling algorithms with Feitelson’s
parallel workload model [12] in the Parallel Workload Archive [15] that
includes 1,000 jobs have total of 12,681 VMs and 5000 PMs.

(if the start time is missing, then the start time is equal

to sum of job’s submission time and job’s waiting time),

job’s request run-time, and job’s number of processors

in job data from the log-trace in PWA [15] to VM’s

submission time, starting time and duration time, and

number of VMs (each VM is created in round-robin

in the four types of VMs in Table I on the number

of VMs). Eight (08) types of VMs as presented in the
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Figure 2. The normalized total energy consumptions compare to Tian-
MFFDE. Simulation result for scheduling algorithms with Downey97’s
parallel workload model [13] in the Parallel Workload Archive [15] that
includes 1,000 jobs have total of 15,201 VMs and 5000 PMs.
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Figure 3. The normalized total energy consumption compare to Tian-
MFFDE. Result of simulations with Lublin99’s parallel workload model
[14] that includes 1,000 jobs have total of 8,847 VMs and 5,000 PMs.

Table I are used in the [9] that are similar to categories

in Amazon EC2’s VM instances: high-CPU VM, high-

memory VM, small VM, and micro VM, etc.. All physical

machines are identical and each physical machine is a

typical physical machine (Hosts) with 16 cores CPU (3250

MIPS/core), 136.8 GBytes of available physical memory,

10 Gb/s of network bandwidth, 10 TBytes of available

storage. The minimum and maximum power consumed

of each physical machine is 175W and 250W respectively

(the minimum power when a PM idle is 175:250 = 70%

of the maximum power consumption as in [5][4]). In the

simulations, we use weights as following: (i) weight of

increasing time for mapping a VM to PM: {0.001, 0.01,

1}; (ii) weights of computing resources such as number

of MIPS per CPU core, physical memory (RAM), network

bandwidth, and storage respectively are equally to 1. We

denoted EMinTRE-LFT wt0.001, EMinTRE-LFT wt0.01 and

EMinTRE-LFT wt1 as the total energy consumption of

algorithm EMinTRE-LFT in the simulations has weight of

increasing time for mapping a VM to PM is {0.001, 0.01,

1} respectively.

We choose Modified First-Fit Decreasing Earliest (de-

noted as Tian-MFFDE) [9] as the baseline because Tian-

MFFDE is the best algorithm in the energy-aware schedul-

ing algorithm to time interval scheduling. We also com-

pare our proposed VM allocation algorithms with PABFD

[4] because the PABFD is a famous power-aware best-fit

decreasing in the energy-aware scheduling research com-

munity, and a vector bin-packing algorithm (VBP-Norm-

L2) to show the importance of with/without considering

VM’s starting time and finish time in reducing the total

energy consumption of VM placement problem.

C. Results and Discussions

The simulation results are shown in the three tables

(Table III, Table IV and Table V) and figures. Three

(03) figures include Fig. 1, Fig. 2 and Fig. 3 show bar

charts comparing energy consumption of VM allocation

algorithms that are normalized with the Tian-MFFDE.

None of the scheduling algorithms use VM migration

techniques, and all of them satisfy the Quality of Ser-

vice (e.g. the scheduling algorithm provisions maximum

of user VM’s requested resources). We use total energy

consumption as the performance metric for evaluating

these VM allocation algorithms.

Using three parallel workload models [12], [13] and

[14] in the Feitelson’s Parallel Workloads Archive [15], the

simulation results show that the proposed EMinTRE-LFT

can reduce the total energy consumption of the physical

servers by average of 23.7% compared with Tian-MFFDE

[9]. In addition, EMinTRE-LFT can reduce the total energy

consumption of the physical servers by average of 51.5%

and respectively 51.2% compared with PABFD [4] and

VBP-Norm-L2 [10]. Moreover, EMinTRE-LFT has also less

total energy consumption than MinDFT-LDTF [11] in the

simulation results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated an energy-aware VM allo-

cation problem with multiple resource, fixed interval and

non-preemption constraints. We also discussed our key

observation in the VM allocation problem, i.e., minimiz-

ing total energy consumption is equivalent to minimize

the sum of total completion time of all physical machines

(PMs). Our proposed algorithm EMinTRE-LFT can all

reduce the total energy consumption of the physical

servers compared with the state-of-the-art algorithms in

simulation results on three parallel workload models of

Feitelson’s [12], Downey98’s [13], and Lublin99’s [14].

We are developing the algorithm EMinTRE-LFT into

a cloud resource management software (e.g. OpenStack

Nova Scheduler). In the future, we would like to evaluate

more with the weights of increasing time and L2-norm of

diagonal vector on available resources. Additionally, we

are working on IaaS cloud systems with heterogeneous

physical servers and job requests consisting of multiple

VMs using EPOBF [6]. We are studying how to choose

the right weights of time and resources (e.g. computing



power, physical memory, network bandwidth, etc.) in

Machine Learning techniques.
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