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Abstract

Segmentation of retinal layers from Optical Coherence
Tomography (OCT) volumes is a fundamental problem
for any computer aided diagnostic algorithm development.
This requires preprocessing steps such as denoising, region
of interest extraction, flattening and edge detection all of
which involve separate parameter tuning. In this paper,
we explore deep learning techniques to automate all these
steps and handle the presence/absence of pathologies. A
model is proposed consisting of a combination of Convolu-
tional Neural Network (CNN) and Long Short Term Mem-
ory (LSTM). The CNN is used to extract layers of interest
image and extract the edges, while the LSTM is used to trace
the layer boundary. This model is trained on a mixture of
normal and AMD cases using minimal data. Validation re-
sults on three public datasets show that the pixel-wise mean
absolute error obtained with our system is 1.30±0.48 which
is lower than the inter-marker error of 1.79 ± 0.76. Our
model’s performance is also on par with the existing meth-
ods.

1. INTRODUCTION

Optical Coherence Tomography (OCT) is an imaging
modality capable of capturing structural composition of bi-
ological tissues at micrometer resolutions. It is popular
in ophthalmology for clinical diagnosis of retinal diseases.
The structural layers visible in OCT images comprise of
seven layers which are (from top to bottom): Retinal Nerve
Fiber Layer (RNFL), Ganglion Cell Layer and Inner Plexi-
form Layer (GCL+IPL), Inner Nuclear Layer (INL), Outer
Plexiform Layer (OPL), Outer Nuclear Layer (ONL), Inner
Segment (IS), Outer Segment (OS), Retinal Pigment Ep-
ithelium (RPE). The boundaries between these layers are
of interest for diagnosing retinal diseases like Age related
Macular Degeneration, Glaucoma and Cystoidal Macular
Edima. Assessment of these diseases demands accurate
layer markings. Manual marking of the layers is laborious
and time consuming.

∗equal contribution

Automating the layer segmentation task is challenging
due to the presence of speckle noise, vessel shadows and
varying layer orientation. These were generally handled us-
ing a set of modules during preprocessing. Denoising re-
lied on methods such as median filtering, block-matching
and 3D filtering [3] and diffusion filtering [8] [6] [5]. Ves-
sel shadows were removed by explicitly masking out such
regions found via vertical projections [11]. Variable ori-
entation of the layers across the dataset was addressed by
flattening the structures with respect to one of the roughly
estimated layers [1]. All these steps are data dependent and
hence require tuning. In layer segmentation, the uppermost
and the lowermost boundaries (Vitreous-RNFL and RPE-
Choroid) are marked by intensity gradients and hence this
information has been used to extract them[14] [4]. Gradi-
ent and intensity information along with an active contour
approach [12] has also been proposed. By far the most pop-
ular approach is based on graph search. In this class there
are techniques which use intensity, gradient and 3D context
based cost function for optimization [7], shortest path com-
putation with Dijkstras algorithm [15] and graph based trac-
ing of the layer boundary [1]. These methods detect layers
in a sequential fashion by constraining the ROI after each
detected layer. Most of these algorithms were proposed for
segmenting retinal layers in a normal case.

Presence of pathologies alter the layer morphology lo-
cally and thus increases the complexity of the problem.
Automatic segmentation of 3 layers relevant to age related
macular generation and geographic atrophy was proposed
[2] by adapting the edge weights used in graph theory
and dynamic programming based framework [1]. More
recently, information such as slope similarity and non-
associativity of layers as edge weight have been explored
to handle pathologies [9].

Thus, existing techniques employ many (pre)processing
blocks all of which require separate tuning of parameters
and modify approaches designed for normal cases to han-
dle pathologies. This limits the robustness of the methods.
Deep neural networks offer a way to learn the main seg-
mentation task in addition to these early processes. In this
paper, we propose a novel supervised method for layer seg-
mentation applicable to both normal and pathology cases.

1

ar
X

iv
:1

80
6.

08
85

9v
1 

 [
cs

.C
V

] 
 2

2 
Ju

n 
20

18



Figure 1. Deep learning architecture for layer segmentation.

Table 1. Description of the proposed architecture
LOI extraction Edge detection Boundary-tracing

Module Layer Filter size ACTN Module Layer Filter size ACTN Module Layer
Output
Nodes ACTN.

HM1 CONV (20x30x2)x32 Relu [13] HM1 CONV (15x20x9)x16 Relu fwd-LSTM1 LSTM 64 -
HM2 CONV (20x30x32)x32 Relu HM2 CONV (15x20x16)x16 Relu bck-LSTM1 LSTM 64 -
VM1 CONV (30x20x2)x32 Relu VM1 CONV (20x15x9)x16 Relu fwd-LSTM2 LSTM 32 -
VM1 CONV (30x20x32)x32 Relu VM1 CONV (20x15x16)x16 Relu bck-LSTM2 LSTM 32 -
SM1 CONV (10x10x64)x32 Relu SM1 CONV (10x10x32)x16 Relu TD Fully

connected 8 SigmoidSM2 CONV (5x5x32)x9 Sigmoid SM2 CONV (5x5x16)x1 Sigmoid

It is based on a combination of Convolutional Neural Net-
work (CNN) and Bidirectional Long Short-term Memory
(BLSTM). The major strengths of the proposed method
are (i) no requirement for any preprocessing (ii) multi-
layer segmentation in one go (iii) robustness to presence of
pathologies (iv) robustness to imaging systems and image
quality.

2. PROPOSED ARCHITECTURE
OCT images are corrupted due to presence of speckle

noise whose characteristics vary across scanners. In order
to extract layers of interest which is agnostic to the source of
data (scanner), we use a CNN-based first stage. The pres-
ence of vessel-shadows and pathologies cause the bound-
aries between retinal layers to be discontinuous. Naive
edge detection algorithm fails to extract eight continuous
boundaries shared by seven layers. Hence, layer segmen-
tation from the output of first stage is achieved using a
cascade of stages: edge detection followed by boundary-
tracing. A CNN-based strategy is adopted for the former
while for the latter, a specific type of Recurrent Neural Net-
work, namely LSTM is adopted. The LSTM stage learns
to trace eight continuous boundaries by following the de-
tected edges, with continuity ensured by using a bidirec-
tional LSTM (referred as BLSTM). Detailed description of
proposed architecture is presented next.

2.1. Architecture

The custom-designed architecture for the proposed sys-
tem is shown in Fig.1 and details are provided in Table 1
with CONV being Convolution layer and ACTN as Activa-

tion. We describe each stage in the system next.
Stage 1: Layer of interest (LOI) extraction. The in-

put to the CNN is a stack of OCT image I in addition to a
position cue image Ipc which is defined as Ipc(x, y) = y.
The input passes through 2 parallel modules: Horizontal-
filter Module (HM) and Vertical-filter Module (VM). Resul-
tant activations are stacked and merged using a Square-filter
Module (SM) to generate a LOI image Ili with 9 channels,
each depicting one region(7 layers plus the vitreous cavity
and choroid). Ideally, each channel of Ili is expected to
be a Boolean image with 1 denoting inside the respective
regions and 0 denoting exterior points. Along with learn-
ing interested layers, HM and VM learn intra- and inter-
layer characteristics respectively. HM should ideally learn
to inpaint pathologies and vessel-shadows, based on the
horizontal neighborhood belonging to the same layer. VM
should learn to differentiate two neighboring layers. SM
ensures equal contribution from both horizontal and verti-
cal neighbors. Ili is passed to next stage as well as taken as
an independent side-output.

Stage 2: Edge detection. This stage is implemented
with a second CNN. LOI image Ili is passed through HM,
VM and SM similar to stage 1. Here HM and VM learn
edges with horizontal and vertical orientations respectively.
Both edge-maps are combined using SM to generate a sin-
gle map Ied capturing edges of all orientations. Ied is passed
to next stage as well as taken out as a side-output.

Stage 3: Boundary-tracing. This is implemented us-
ing a BLSTM. For each column i of an image, eight
boundary-coordinates (Li(j), j ∈ {1, 2, ..., 8}) depend on
the edge passing through the neighboring columns. Hence,



(a) (b)

Figure 2. (a) Stripe extraction (b) Data augmentation using column rolling. top: original image, bottom: image after column rolling.

a stripe representing information of neighboring columns
is extracted (online) from Ied as follows. Ied is shifted
left and right twice (Ied(x − k, y); k ∈ {0,±1,±2}) and
stacked such that each column is aligned with its neigh-
bors in the 3rd dimension. Each column of this stack is
termed as ‘stripe’ (see Fig.2(a)). Extracted stripes are se-
quentially passed to the two-staged BLSTM. A BLSTM has
two LSTMs, each learns to generate boundary-coordinates
for the current stripe in continuation with coordinates from
the right and the left neighboring stripes respectively. Es-
timated Li, i ∈ {1, 2, ..., No. of columns} traces the de-
sired 8 layer boundaries simultaneously across the image.

3. MATRIALS AND TRAINING METHOD

3.1. Dataset description

The proposed system was trained and evaluated using
publicly available datasets.

Dataset with normal cases: Two publicly available
datasets were considered. The first (we refer to as
Chiunorm) is made available by Chiu et al. [1] and con-
tains 110 B-scans from 10 healthy subjects (11 B-scans per
subject) along with partial manual markings from two ex-
perts. The authors state that, “each expert grader exhibited a
bias when tracing layer boundaries” and “manual segmen-
tation tended to be smooth”. Thus, manual segmentation
does not follow edges tightly. The second dataset (called
OCTRIMA3D) is made available by Tian et al. [15] and
contains 100 B-scans from 10 healthy subjects(10 B-scans
per subject); manual markings by two observers are also
provided. The authors emphasize that in contrast to the
smooth manual labellings in [1], the delineated boundaries
in OCTRIMA3D trace small bumps.

Dataset with pathology cases [2]: This is a dataset
made available by Chiu et al. [2] and it consists of a total
of 220 B-scans from 20 volumes. This dataset is character-
ized by the presence of pathologies such as drusen and geo-
graphic atrophy and hence we refer to it as Chiupath. Man-

ual segmentation from two experts are available for only
3 layer boundaries (Vitreous-RNFL, OS-RPE and RPE-
Choroid). The dataset includes scans with varying image
quality.

3.2. Preparation of Training data

Input image I . The datasets have been acquired with
varying scanning protocols and hence vary in resolution and
layer orientation. This is addressed by standardizing the im-
ages to 300 × 800 pixel resolution as follows. Columns of
each image were summed to obtain a 1D projection and a
Gaussian function was fitted on the same. The mean value
of the Gaussian represents the y-coordinate of the center
(CROI(x, y)) of a region containing the layers. Images
were shifted/cropped/padded vertically such that resultant
height is 300px and y-coordinates of CROI and the center
of the image are aligned. Next, images were padded hori-
zontally with trailing zeros to achieve a standardized width
of 800px. The position cue image Ipc was generated with
pixel value proportional to the y-coordinate of the pixel lo-
cation. Finally, I and Ipc were stacked and the pixel inten-
sities were normalized to have zero mean and unit variance.

Layer boundary coordinates Li(j). Since the
Chiunorm dataset provides partial/discontinuous manual
markings from two experts whereas our network requires
unique and continuous GT for each image, partial mark-
ings from the 1st expert was given to a local expert who
completed them. It is to be noted that subjective bias and
smoothness of marking maintained by the 1st expert is im-
possible to be reproduced by the local expert. Also, the
markers for all three datasets used for training are different
and exhibit different subjective biases and smoothness of
marking. In summary, GT used for training is noisy given
that they are derived from 3 different markers.

LOI image Ili. Each I can be divided in 9 regions de-
marcated by 8 boundaries. 9 binary images were defined
to represent each region (see Fig 1) which were stacked to
generate Ili.



Figure 3. Visualization of side output

Table 2. Pixel-level Mean Absolute Error(MAE) for predictions with Mnorm network. Values indicate mean±std.

Boundary Chiunorm OCTRIMA3D
Inter marker [1] ours Inter marker [15] ours

Vitreous - RNFL 2.37±0.79 1.38±0.37 1.11±0.30 1.00±0.24 0.68±0.20 1.49±0.47
RNFL - GCL&IPL 1.73±0.85 1.67±0.77 1.38±0.42 1.70±0.76 1.16±0.34 1.56±0.38
GCL&IPL - INL 1.81±1.44 1.48±0.58 1.42±0.58 1.79±0.47 1.01±0.15 1.24±0.30
INL - OPL 3.02±0.87 1.48±0.46 1.60±0.32 1.44±0.33 1.11±0.41 1.39±0.51
OPL - ONL&IS 2.18±0.97 1.74±0.65 1.88±0.65 1.83±0.60 1.50±0.77 1.78±0.77
ONL&IS - OS 2.85±0.93 1.00±0.30 0.92±0.34 0.76±0.22 0.54±0.10 0.91±0.25
OS - RPE 1.88±1.08 1.14±0.40 1.01±0.23 1.81±0.87 1.22±0.53 1.09±0.32
RPE - Choroid 2.18±1.69 1.26±0.35 1.43±0.68 1.22±0.22 0.76±0.17 0.98±0.27
Overall 2.25±1.08 1.39±0.48 1.34±0.44 1.44±0.47 1.00±0.33 1.30±0.41

Edge-map Ied. For all Is, Ied is defined as a binary image indicating 1 at the boundary pixel and 0 elsewhere



Table 3. Pixel-level Mean Absolute Error for predictions with Mmixed network. Values indicate mean±std.

Boundary Chiupath Chiunorm OCTRIMA3D
Inter marker [2] ours Inter marker [1] ours Inter marker [15] ours

Vitreous - RNFL 1.25±0.39 1.14±0.339 0.95±0.28 2.37±0.79 1.15±0.32 1.02±0.28 1.00±0.24 0.70±0.25 1.03±0.35
OS - RPE 2.56±0.75 2.53±0.83 2.41±0.77 1.88±1.08 0.99±0.20 1.12±0.44 1.81±0.87 1.24±0.58 0.87±0.20
RPE - Choroid 1.55±0.71 1.46±1.13 1.97±1.23 2.18±1.69 1.41±0.65 1.32±0.67 1.22±0.22 0.73±0.18 0.92±0.33
Overall 1.79±0.62 1.71±0.76 1.78±0.78 2.14±1.19 1.18±0.39 1.16±0.46 1.34±0.45 0.89±0.348 0.92±0.31

(a) (b)

Figure 4. Comparison with manual (green) segmentation. Results (in red) for a Normal case (a) and a pathological case (b) predicted by
Mnorm and Mmixed, respectively.

(see Fig 1).
As mentioned earlier, GT for pathological cases have

markings for only 3 boundaries. Hence, Li(j), Ili and
Ied for the Chiupath dataset were modified to have only
3 boundaries.

3.3. Training

Two copies of the proposed system were trained, one for
only normal cases and one for both normal and pathologi-
cal cases. The first copy, referred to as Mnorm, was trained
for 8 layer-boundaries using two normal datasets. The sec-
ond copy, referred to as Mmixed was trained for detecting
the 3 boundaries for which manual markings were avail-
able. Mmixed was trained using the GT for 3 boundaries
in Chiupath dataset and the same ones in Chiunorm and
OCTRIMA3D.

For both Mnorm and Mmixed, datasets were divided into
training and testing set using a split of 8:2. Equal portion of
pathological and normal cases were taken for training and
testing Mmixed. Online data augmentation was done by
applying random rotation, scaling, horizontal and vertical
flips, shift and column rolling wherein neighboring columns
are rolled up/down systematically (see Fig.2(b)).Training of
the entire network was done in an end-to-end fashion. All
slices(11 B-scans) of a single volume constituted a batch
while training. Binary cross-entropy and Mean Square Er-
ror loss functions were used at stages-1,2 and stage-3 re-
spectively. ADADELTA optimizer [16] was used with sam-
ple emphasizing scheme [10]. Emphasizing scheme chooses

training example with large errors more frequently. This en-
sures that network sees informative data more often.

The proposed pipeline was implemented on a NVIDIA
GTX TITAN GPU, with 12GB of GPU RAM on a core
i7 processor. The entire architecture was implemented in
Theano using the Keras library. Training for 250 epochs
took about a week. The testing time for each OCT volume
(11 slices) is 4s.

4. RESULTS

The proposed system is shown Fig. 3 along with a sam-
ple input and the outputs of various stages. Both predicted
and GT are shown for each stage for the Mnormal (Mmixed)
in the top (bottom) panel. The model has two side outputs
at stages 1 and 2 respectively. The output of the first stage
is a 9-channel image, with each channel representing a re-
gion (Vitreous, RNFL, GCL+IPL, INL, OPL, ONL+IS, OS,
RPE, Choroid). The output of second stage is a single chan-
nel image representing the edges between the two consecu-
tive layers.

The networks Mnorm and Mmixed were evalu-
ated separately using the mean absolute pixel error
(MAE). Mnorm was trained for predicting eight layer
boundaries on Chiunorm and OCTRIMA3D datasets.
Mmixed was trained with normal and pathological
data (Chiupath, Chiunorm, OCTRIMA3D) for estimat-
ing three layer boundaries. Benchmarking for each dataset
was done against the output provided by the authors of the



datasets. Qualitative results comparing manual marking to
predicted layer boundaries are shown in Fig. 4. Tables 2 and
3 list the obtained MAE for the Mnorm and Mmixed net-
works, respectively. The overall MAE obtained by our sys-
tem is lower than the inter marker error on all the datasets
and our results are comparable to the benchmarks at a sub-
pixel level. It is to be noted that MAE for normal cases is
less with Mmixed than that achieved for the same cases with
Mnorm. This is due to the larger training set for Mmixed

compared to Mnorm. However, the improvement appears
to be less for the OS-RPE boundary as the variability to be
learnt has also increased. Although training data has in-
creased, it is not enough to learn this increased variability.

5. CONCLUDING REMARKS
We proposed a solution for OCT layer segmentation

problem using deep networks. It is in the form of a single
system which integrates all the processing steps and seg-
ments all the layers in parallel. Such a design obviates the
need for tuning individual stages that is commonly found in
existing solutions. Results demonstrate that the system is
robust to change in scanner and image quality and is able
to handle both normal and pathological cases without any
data dependent tuning. These are the major strengths of
our method. The performance of this system, even with the
limited training, is comparable to the existing benchmarks.
Increase in the number of training cases led the system to
learn more accurate segmentation boundaries. Two notable
issues are: i) The ground-truth used for training was sourced
from multiple, biased markers resulting in ambiguities in
the training process. ii) the precision of the output of the
edge-detection stage is at most 1 pixel whereas the BLSTM
requires sub-pixel precision. The 1 pixel wide edge causes a
confusion field for the BLSTM while tracing precise bound-
aries. Nevertheless, the proposed system for layer segmen-
tation is robust, fast, automatic with potential for further
improvements.
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