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Abstract

Learning functional connectivity (FC) network from resting-state function magnetic resonance 

imaging (RS-fMRI) data via sparse representation (SR) or weighted SR (WSR) has been proved to 

be promising for the diagnosis of Alzheimer’s disease and its prodromal stage, mild cognitive 

impairment (MCI). However, traditional SR/WSR based approaches learn the representation of 

each brain region independently, without fully taking into account the possible relationship 

between brain regions. To remedy this limitation, we propose a novel FC modeling approach by 

considering two types of possible relationship between different brain regions which are 

incorporated into SR/WSR approaches in the form of regularization. In this way, the 

representations of all brain regions can be jointly learned. Furthermore, an efficient alternating 

optimization algorithm is also developed to solve the resulting model. Experimental results show 

that our proposed method not only outperforms SR and WSR in the diagnosis of MCI subjects, but 

also leads to the brain FC network with better modularity structure.
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I. INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form of dementia in elderly people over 70 

years of age. It accounts for about 50% to 80% of age-related dementia [1]. Mild cognitive 

impairment (MCI), as an intermediate stage of brain cognitive decline between AD and 

normal aging, shows mild symptoms of cognitive impairment. MCI does not significantly 

impact daily functioning, but it is associated with increased risk of developing to AD. For 

example, individuals with MCI can progress to clinical AD at an annual conversion rate of 

10–15%, compared with normal controls (NC) who develop to AD at much lower annual 

conversion rate of approximately 1–2% [2]. Therefore, early diagnosis of MCI is important 

for reducing the risk of developing AD by appropriate pharmacological treatments and 

behavioral interventions. However, diagnosing MCI from the undergoing normal aging is 

difficult, because of its mild symptoms of cognitive impairment.
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Resting-state functional magnetic resonance imaging (RS-fMRI) [3] can measure the blood-

oxygenation-level-dependent (BOLD) signals of the brain when a subject is not performing 

any explicit task. RS-fMRI technique provides an efficient and noninvasive way for the 

investigation of neurological disorders at a whole-brain level. It holds great promise and has 

been successfully applied to the early diagnosis of AD/MCI before development of clinical 

symptoms.

Learning brain functional connectivity (FC) network [4] from BOLD signals is a prevalent 

approach to infer brain functional organization. FC measures the temporal correlation of 

BOLD signals in structurally separated brain regions [5]. In most studies, FC network is 

characterized by graph, in which a node corresponds to a brain region and an edge connects 

a pair of brain regions. Previous studies have suggested altered FC network in MCI subjects 

[6] and such alterations occur many years before clinically detectable with cognitive tests [7, 

8]. Pearson’s correlation is probably the most widely used approach to capture the pairwise 

correlation between brain regions. This method is intuitive and computationally efficient 

because of its simplicity. However, it ignores the impact of other brain regions, thus 

insufficient to provide adequate and complete information on the interactions among 

multiple brain regions [9–11]. Moreover, the resulted FC network is often quite dense, 

containing possible spurious or insignificant connections.

To overcome the drawbacks of Pearson’s correlation, some other FC modeling methods have 

been developed, such as partial correlation, high-order correlation [10, 12, 13, 28, 29], and 

another widely-accepted method such as sparse representation (SR). It is generally believed 

that a brain region interacts directly with only a few other brain regions [14]. Therefore, 

learning FC network from BOLD signals via SR has attracted increasing attention [15, 9, 14, 

16]. In particular, l1-norm regularization based SR [15, 16] is a typical approach to construct 

sparse FC network. Based on the BOLD signals of each brain region, SR represents one 

brain region using as few other brain regions as possible via linear combination. However, 

other brain regions are typically treated equally, without considering their strength of 

correlation with the target brain region. Intuitively, a brain region that highly correlates with 

the target brain region tends to have larger SR weight. To incorporate such information, 

weighted SR (WSR) was proposed [15] where the FC strengths (based on Pearson’s 

correlation) between the target brain region and other brain regions were used as prior 

weights in l1-norm regularization. Empirical results showed that the WSR achieved superior 

performance in comparison with the original SR. Nevertheless, we found that the 

representations of the brain regions in either SR or WSR are actually independent of each 

other, indicating that some important prior information (such as the inherent relationship 

among different SRs for different brain regions) is still ignored.

To this end, we propose a novel “pairwise-similarity guided sparse representation (PSGSR)” 

method for learning brain FC network from RS-fMRI data. The motivation comes from the 

following hypotheses. First, for the two brain regions with similar pattern of BOLD 

fluctuations, their representations over the other brain regions should be also similar. 

Second, the representations of any other brain region over the two brain regions with similar 

BOLD fluctuations should be also similar. Based on these intuitions, we propose two novel 

regularization terms and incorporate them into the framework of WSR. To solve the PSGSR 
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model, we develop an efficient iterative algorithm by combing bound optimization and 

alternating optimization techniques. After constructing the brain FC network for each 

subject, a machine learning framework consisting of feature extraction, selection, and 

pattern classification is used to distinguish MCI from NC subjects.

II. METHODOLOGY

A. Sparse and weighted sparse representation

Suppose the whole brain is parcellated into N brain regions (or regions-of-interest, ROIs) 

based on a specific brain atlas. Let the regional mean BOLD signal of the ROI i be denoted 

by a column vector xi ∈ RM, where M is the total number of time points. In the SR-based 

approach, xi is supposed to be approximated by a linear combination of BOLD signals of 

other ROIs. Mathematically, we have

xi = ∑ j = 1, j ≠ i
N w jix j + εi (1)

where the weight wji reflects the contribution of xj in representing xi, and εi is the 

approximation error. The weight wji can be calculated by

min
w · i

1
2 xi − ∑ j = 1, j ≠ i

N w jix j
2

+ λ‖w · i‖1 (2)

where w·i denotes the i-th column, ‖w · i‖1 = ∑ j = 1, j ≠ i
N w ji  is the l1-norm, λ is a balance 

parameter used to control the degree of sparsity. In (2), each xj is treated equally in the 

representation of xi. On the other hand, the weighted SR (WSR) [15] is proposed recently as 

given below:

min
w · i

1
2 xi − ∑ j = 1, j ≠ i

N w jix j
2

+ λ‖c · i ⊙ w · i‖1 (3)

where ⊙ denotes element-wise multiplication, c ji = exp −P ji
2 /σ , Pji is the Pearson’s 

correlation between ROIs j and i, σ is a positive parameter used to control the contribution of 

the different values of Pji. From (3), we can observe that, if ROI j is highly correlated with 

ROI i, cji will have a small value such that the resulting wji tends to be large. For other ROIs, 

we also have similar formulation as (3). Therefore, the whole-brain weighted sparse FC 

network can be obtained by solving the following optimization problem:

min
W

1
2‖X − XW‖2 + λ‖C ⊙ W‖1 s . t . diag(W) = 0 (4)
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where X = [x1, x2, ···, xN] ∈ RM×N, C = [c·1, c&middot;2, ···, c·N] ∈ RN×N, W = [w·1, w·2, ···, 

w·N] ∈ RN×N, ‖W‖1 = ∑i = 1, j = 1
i = N, j = N wi j  denotes the l1-norm of W, and diag(W) indicates the 

diagonal elements of W.

B. Pairwise-similarity guided sparse representation

In both SR (2) and WSR (3), the inherent relationship between the representations of 

different ROIs is largely ignored. To address this limitation, we propose to learn the 

representations of all ROIs jointly by introducing an ROI relationship induced penalty into 

the WSR model. An illustration of our method is shown in Figure 1.

First, if BOLD signals xi and xj are similar, their corresponding representation wi and wj are 

expected to be similar as well. By defining dij = || xi − xj ||as the distance between xi and xj, 

and also weight ui j = exp −
di j

2

2σ2  as the similarity between xi and xj, we propose the 

following constraint:

1
2 ∑i, j ui j‖w · i − w · j‖

2 = tr(WLWT) (5)

where U = [uij], and L = D − U is called Laplacian matrix in spectral graph theory [17] (D is 

a diagonal matrix whose entries are the row sums of U). As a result, if the BOLD signals 

associated with ROIs i and j have similar fluctuation patterns, we will obtain a larger weight 

uij, which further makes their representations w·i and w·j more similar.

From another view angle, suppose that the BOLD signals xk associated with ROI k is 

linearly represented by the BOLD signals associated with other ROIs (including xi and xj). If 

xi and xj have similar fluctuation patterns, we expect that the resulting representation 

coefficients wik and wjk also likely to be similar. Therefore, from a symmetrical perspective, 

as (5), we also define the following constraint:

1
2 ∑i, j ui j‖wi · − w j ·‖

2 = tr(WTLW) (6)

where wi denotes the i-th row of W.

By integrating (4), (5) and (6) together, we finally obtain the following pairwise-similarity 

guided sparse representation (PSGSR) model for FC network construction:

min
W

1
2‖X − XW‖2 + λ1‖C ⊙ W‖1 +

λ2
2 tr(WLWT + WTLW) s.t. diag(W) = 0 (7)

where λ1, λ2 are the parameters that control the importance of the respective constraint 

terms. Obviously, PSGSR degenerates to WSR when λ2 = 0. After calculating W for each 
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subject using (7), we follow [15] and take the average of W and its transposed one, e.g., 

W 1
2(W + WT), in order to obtain a symmetric FC network.

C. Optimization algorithm

In order to solve the problem (7), we further develop an effective iterative algorithm by 

combing two optimization strategies, i.e., bound and alternating optimizations [18].

Let us define

f (W) = 1
2‖X − XW‖2 + λ1‖C ⊙ W‖1 +

λ2
2 tr(WLWT + WTLW) (8)

First, for any variable a, we have

∣ a ∣ ≤ 1
2

a2

a(0) + a(0) (9)

where a(0) is an arbitrary nonzero value. The equality holds when a = a(0). Then, we have

‖C ⊙ W‖1 = ∑i j Ci j wi j ≤ 1
2 ∑i j Ci j

wi j
2

wi j
(t) + wi j

(t) = 1
2 ∑ j w · j

T D j
(t)w · j + Const (10)

where ∑iCi j
wi j

2

wi j
(t) = w · j

T D j
(t)w · j, Const denotes a constant, and D j

(t) is a diagonal matrix with 

element 
Ci j

wi j
(t)  as follows

D j
(t) =

C1 j

w1 j
(t) 0 0

0 ⋱ 0

0 0
CN j

wN j
(t)

∈ RN × N (11)

Then, let us define
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f (W , W(t)) = 1
2‖X − XW‖2 +

λ1
2 ∑ j w · j

T D j
(t)w · j +

λ2
2 tr(WLWT + WTLW) + Const (12)

Thus, we have

f (W) ≤ f (W , W(t)),
f (W(t)) = f (W(t), W(t))

(13)

It means that f(W, W(t)) is a tight upper bound of original objective function (8). Therefore, 

following the principle of bound optimization, we can optimize f(W, W(t)), instead of f(W), 

so as to get the next approximate solution. Specifically, we have the following problem:

min
W

1
2‖X − XW‖2 +

λ1
2 ∑ j w · j

T D j
(t)w · j +

λ2
2 tr(WLWT + WTLW) s.t. diag(W) = 0 (14)

To solve (14), we further develop an effective alternating optimization algorithm where the 

column of W is alternatively optimized while fixing the other. For example, in order to 

optimize w·k, we can rewrite (14) as

min
w · k

1
2‖xk − Xw · k‖2 +

λ1
2 w · k

T Dk
(t)w · k +

λ2
4 ∑ j, j ≠ k uk j‖w · k − w · j‖

2 +
λ2
2 w · k

T Lw · k s.t.

wkk = 0

(15)

where the terms irrelevant to w·k have been eliminated. In order to handle the constraint wkk 

= 0, we remove the k-th element from w·k and w·j, and denote the resulting vectors as w · k

and w · j. Similarly, let X−k, Dk
(t), L−k denote the original matrices with the k-th row and 

column removed. Then, (15) can be simplified as the following unconstrained problem

min
w · k

1
2‖xk − X−kw · k‖2 +

λ1
2 w · k

TDk
(t)w · k +

λ2
4 ∑ j, j ≠ k uk j‖w · k − w · j‖

2

+
λ2
2 w · k

TL−kw · k

(16)
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To find the optimal solution for (16), we set the derivative with respect to w · k equal to zero, 

which leads to the closed-form solution as follows:

w · k = X−k
TX−k + λ1Dk

(t) +
λ2
2 I∑ j, j ≠ k uk j + λ2L−k

−1
X−k

Txk +
λ2
2 ∑ j, j ≠ k uk jw · j

(17)

where I is an identity matrix with appropriate dimension.

D. Feature extraction, selection and classification

After FC network has been constructed for each subject, local clustering coefficients for 

weighted graph (WLCC) [19] are used as features of all brain regions in the network. WLCC 

is computed for each node in a weighted graph to quantify the probability that the neighbors 

of this node are also connected to each other. Thus, each subject with N (N = 90 in this 

work) ROIs is represented by a feature vector with N elements. Many features might be 

redundant or irrelevant to classification. In order to alleviate overfitting and construct 

effective classification model with better generalization, reducing the number of features is a 

crucial issue. In this study, sparse regression LASSO [20] is used to select a small subset of 

features which are important for classification. After selecting a few number of features for 

each subject, a support vector machine (SVM) model with linear kernel [21, 22] is 

constructed for classification.

III. EXPERIMENTS AND RESULTS

Next, we evaluate the effectiveness of the proposed method in the application of MCI 

classification. Some closely related FC network construction methods, such as Pearson’s 

correlation (PEC), SR, and WSR are also included for comparison. The proposed learning 

framework was implemented on MATLAB 2012b environment. Leave-one-out cross-

validation (LOOCV) is applied to evaluate the generalization of different methods because 

of its popularity. Another nested LOOCV on the training samples is applied to select optimal 

hyperparameters in each method.

A. Data

The publicly available neuroimaging data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database are used. In this work, 97 age- and gender-matched subjects (49 

MCI and 48 NC) are selected from the database. These subjects were scanned using 3.0T 

Philips scanner. To preprocess the acquired fMRI data, SPM8 software (http://

www.fil.ion.ucl.uk/spm/software/spm8) was utilized. In particular, for magnetization 

equilibrium, the first three RS-fMRI volumes of each subject were discarded before 

preprocessing, leaving 137 volumes. To correct head motion, rigid body transformation was 

used where the subjects with head motion larger than 2 mm or 2 degrees were discarded. 

The fMRI images were normalized to the Montreal Neurological Institute (MNI) template. 
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The images were spatially smoothed using an isotropic 8-mm full-width-at-half-maximum 

(FWHM) Gaussian kernel. We did not conduct scrubbing to the data with frame-wise 

displacement larger than 0.5, as it would introduce additional artifacts. The subjects who had 

less than 4.5 min RS-fMRI data were excluded from further analysis. The images were 

parcellated into 90 ROIs, defined based on the automated anatomical labeling (AAL) atlas. 

Mean RS-fMRI time series of each ROI was calculated and band-pass filtered (0.015 ≤ f ≤ 

0.15Hz). Head motion parameters (Friston24 model), together with the mean BOLD signals 

of white matter and cerebrospinal fluid, were regressed out from the regional mean BOLD 

signals.

B. Algorithm convergence

The optimization algorithm proposed to solve (7) is essentially iterative. Thus, we 

investigate how it converges. Figure 2 shows the convergence curve for the two randomly 

selected subjects. The y-axis denotes the value of the loss function, and x-axis denotes the 

iteration number. We can observe that the proposed method converges very fast. In most 

cases, the algorithm converges in less than 30 iterations.

C. Classification performance

To comprehensively measure the performance of the different methods, we use the following 

indices: accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), and specificity 

(SPE). As we can see from Table 1, SR achieves better performance than PEC. This may be 

because SR is able to measure complex interaction relationship among multiple brain 

regions and at the same time removes many spurious and redundant connections. 

Furthermore, we can see that WSR outperforms the original SR because the former focuses 

more on the brain regions with strong Pearson’s correlation while the latter equally treats all 

brain regions during SR. After further introducing prior knowledge about brain regions, the 

proposed PSGSR further improved the performance of MCI classification. The result 

confirms that learning the representations of all brain regions jointly can effectively make 

use of the inherent high-level relationship among the brain regions.

D. FC networks

Figure 3 illustrates the FC networks constructed by PEC, SR, WSR, and the proposed 

PSGSR for a randomly selected subject. As can be seen, PEC leads to a dense network 

which contains too many potentially spurious or insignificant connections. In contrast, the 

other three methods all can generate sparse networks. Nevertheless, the result of SR is 

difficult to interpret because it lacks notable structure. WSR is slightly better than SR 

because WSR incorporates Pearson’s correlation as prior. Among all the methods, PSGSR 

can generate a FC network with both sparsity and better modularity structure.

E. Discriminative ROIs

Note that the proposed approach is evaluated by nested LOOCV. In different folds of 

LOOCV, we have different training and testing subjects and the hyperparameters optimized 

could be different as well. In this study, LASSO-based feature selection was used to select a 

small number of features that are crucial for diagnosis. Only the features with sufficient 
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discriminative ability were frequently selected. Therefore, those frequently selected features 

during the LOOCV are regarded as important for MCI diagnosis. Following this criterion, 

the most discriminative ROIs are shown in Figure 4.

In summary, these ROIs are generally believed to be related to AD. For example, 

parahippocampal gyrus is an important biomarker in distinguishing AD patients from NC 

because the volume of the parahippocampal gyrus is significantly reduced in AD [23]. Sofie 

et al. [24] proposed that FC of the occipital cortex is likely to be affected in early-onset AD 

patients, which indicates an increased vulnerability of this brain region. Latha et al. [25] 

found that gray matter volume in the right supramarginal gyrus was reduced in AD patients, 

thus leading to poor memory performance and visual recognition deficits. In [26], the 

authors found that the volume of thalamus was significantly reduced in the patients 

diagnosed with AD and this degenerative process may contribute to cognitive decline in AD. 

Some studies [27] found significant brain volume reduction in the caudate in AD patients, 

compared to NC subjects.

IV. CONCLUSION

In this paper, we have presented a novel sparse representation based FC modeling approach 

for MCI diagnosis. This work is motivated by the fact that previous SR/WSR-based 

approaches represent each brain region independently without considering their inherent 

interactions. Therefore, we propose that the brain regions with similar BOLD signals should 

have similar representations and play a mutually similar role in the representations of other 

brain regions. Based on this assumption, we step forward and propose a pairwise-similarity 

guided sparse representation for brain FC network modeling, and develop a machine 

learning framework for MCI diagnosis. The results show that our approach not only 
enhances the modularity structure of the brain FC network, but also leads to better diagnosis 

performance.
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Figure 1. 
Illustration of PSGSR.
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Figure 2. 
Illustration of convergence of algorithm.
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Figure 3. 
FC networks derived from (a) PEC, (b) SR, (c) WSR, and (d) PSGSR.
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Figure 4. 
The most discriminative brain regions.
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TABLE I

Performance of different methods.

Method ACC AUC SEN SPE

PEC 63.92 0.6619 63.27 64.58

SR 68.04 0.7096 75.51 60.42

WSR 72.16 0.7300 75.51 68.75

PSGSR 81.44 0.8418 83.67 79.17
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