
Virtual Enterprise Networks: The Next Generation of
Secure Enterprise Networking

Germano Caronni, Sandeep Kumar, Christoph Schuba, Glenn Scott

Sun Microsystems Laboratories
901 San Antonio Road

Palo Alto, CA 94303, USA
E-mail: Firstname.Lastname@Sun.COM

Abstract

We present a vision of computing environments in which
enterprise networks are built using untrusted public infras-
tructures. The vision allows for networks to dynamically
change depending on the need of their users, rather than
forcing the users to build organizations around networks.
This vision is realized through a design abstraction called
Virtual Enterprise Networking, or short Supernetworking.
A first prototype of such a Supernet has been implemented
on Linux.

Supernetworking introduces a new layer of abstraction
in a layered model of computer networking. The Supernet
layer sits directly above the network layer and includes its
own addressing structure and security services which pro-
tect all data transmitted by the network layer.

A key component of a Supernet is communications tun-
neling. Instead of the traditional two endpoints, our tunnels
have as many endpoints as there are computers participat-
ing in a Supernet. While tunneling has been repeatedly used
to implement infrastructure services such as multicasting,
virtual private networks, and support for mobility, we dis-
till these technologies into a single, simple abstraction.

This new abstraction enables the ability to out-source
network infrastructure services in a transparent and secure
manner, mobility, and the creation and administration of
secure ad-hoc virtual computer networks.

1 Introduction

Remote and reliable computer networks have already be-
gun to transform the way many organizations manage them-
selves. Such organizations have come to depend upon com-
puter networks to conduct their business. Telecommuting to
work has become popular, often-times necessary, for those
who cannot be at a fixed location at all times.

To take full advantage of networked computing and in-
formation exchange, organizations have had to adapt to
the architecture and peculiarities of the underlying network
implementation, instead of the network adapting to them.
Businesses today are often required to build and maintain
an expensive enterprise network infrastructure that typically
has little to do with their core business and expertise. For
small organizations, creating and maintaining such an in-
frastructure is often untenable. Even for large organiza-
tions that have the means to create and support enterprise
networks, such attempts often lead to duplication of effort
since each organization produces a custom solution to com-
mon sets of problems.

Because contemporary enterprise networks are geo-
graphically bound, several methods of remote access have
been devised which introduce the problem of securing the
enterprise network from external sources. Remote users
have their remoteness thrust in their face, and consequently
devise ad-hoc mechanisms to handle the problems intro-
duced by remoteness. Such actions can and often do create
new security vulnerabilities.

A popular example of how to secure an enterprise net-
work is a network firewall. Firewalls attempt to enforce se-
curity policies on communication traffic entering or leaving
a network policy domain [Sch97]. But firewalls are insuffi-
cient because they protect primarily against external threats,
they hinder ubiquitous access, and their mechanisms are in-
adequate to provide anything but coarse-grained control.

While firewall technology enforces security policies at
the network boundary, organizations may exist in multiple
locations, and will want to securely connect their internal
networks using the Internet. This is the driving force be-
hind virtual private networks (VPN.) VPNs are built using
network layer security features, such as the IPSec authen-
tication header (AH [KA98a]) and encapsulating security
payload (ESP [KA98b].) VPNs, however, use these features
mainly on a network-to-network basis to securely tunnel all



traffic between participating networks. Individual comput-
ers can participate in a VPN, but using the VPN in this man-
ner is not scalable. Overall, the generation, maintenance,
administration, and dissolution of secure VPN communica-
tions is costly and cumbersome.

In this paper, we propose a new model for secure enter-
prise networks, giving organizations the ability to organize
themselves and their computers in network-independent
ways. Organizations will be able to rely on generic service
providers that can offer the desired enterprise infrastructure
securely and reliably. Ultimately, they can take advantage
of economies of scale when it is possible to lease commu-
nications, storage, and computing, in much the way society
currently uses the infrastructure provided by the gas, tele-
phone, and electric utilities.

2 The Vision

Imagine users, associated with one or more organiza-
tions, able to access each organization’s information infras-
tructure in a secure fashion from any location on the In-
ternet. Secure here means that authenticity, access control,
auditing (where necessary), and confidentiality are assured.
The hardware components of the organization’s infrastruc-
ture may be at locations which may not be owned by the
organization itself. For example, the organization could
have arrangements with multiple providers for disk space
and backup services, with other companies providing e.g.,
network cabling, routing, and Internet access.

Except for a tiny set of superusers, a worker should be
able to do whatever he does from anywhere, and should not
be restricted by physical location.

Ultimately, an organization freed from the details of pro-
viding information technology (IT) services could stop car-
ing about most of the IT aspects. Except for the actual in-
formation, everything should be securely out-sourced. Even
though the network infrastructure, storage devices and com-
puting facilities were out-sourced, providers of those ser-
vices would not gain access to the organizations data, and
would only gain a small amount of control over it.

3 Secure Out-Sourcing

Typical enterprise network services are easily separated
into different components. For now, our work concentrates
on secure communications, and to a lesser extent, on secure
storage, and secure computing, as well as the management
of their configuration, as depicted in Figure 1.

Stored data and communications are the lifeblood of
many organizations. Any organization that out-sources all
or part of its computing infrastructure must be guaranteed
that the provided security will be at least as good as if the

organization built and maintained the enterprise network it-
self. As a consequence, we consider security to be the single
most important requirement of out-sourcing an enterprise
network. Others are described in Section 3.3. The individ-
ual infrastructure components are described next.

3.1 Infrastructure Components

Communication

Storage
Computation

Manage-
ment

Figure 1. Outsourceable infrastructure com-
ponents

Secure communications. Secure, out-sourced enterprise
network communications are exemplified by the Su-
pernet as a private network over a public communica-
tion infrastructure.

Because Supernet-based enterprise networks are topo-
logically independent of the underlying transport net-
work, the public communication infrastructure is used
only as a transport mechanism for network traffic.
This model differs from the present-day one, in which
topology is location dependent—unless the physical
and logical network topology are co-located, remote
users must handle all problems with remote connectiv-
ity themselves.

As the network communications are transported over
a public infrastructure, everyone, except for the mem-
bers of the Supernet, must be prevented from under-
standing or forging communications traffic. The Su-
pernet achieves this through cryptograhy.

Secure storage. In a world in which out-sourced data stor-
age will be hosted on untrusted servers, integrity, au-
thenticity and confidentiality of the stored data and

2



meta-data (file names, directory structures, access per-
missions) must be assured. This should be achieved
with few requirements made of the service provider
and without unnecessary trust assumptions. The out-
sourced data and its meta-data need to be protected so
that the provider is unable to modify or delete it with-
out being detected.

Stored data could be important for decades or longer,
placing special requirements on the involved key man-
agement schemes. Furthermore, changes in the orga-
nization’s membership require efficient handling of en-
cryption keys and access control. For example, when a
former member of an organization gains access to en-
crypted data stored by the storage provider after he left
the organization, he must be unable to decrypt the data.

Secure computing. Perhaps the most difficult part of the
vision is the secure outsourcing of applications and
computation. Here, a computing provider receives
and runs programs without ever seeing them in the
clear, having those programs consume and produce
data streams which are inaccessible to anything but
members of the Supernet. At the same time, the com-
puting provider may also play the role of an applica-
tions provider, giving the organization tailored and se-
cure access to trusted applications on demand.

We imagine that this component may require substan-
tial changes to existing system architectures, involv-
ing CPUs, memory controllers, and perhaps systems
busses with cryptographic capabilities.

Configuration management. The Supernet infrastructure
components need to be subject to security policies and
controls. The security policy is the interface between
what the organization desires and an implementable
machine-readable description. While the choice of
policy is controlled by the organization, its enforce-
ment is usually a shared responsibility between the or-
ganization and the service provider, governed by a con-
tractual relationship. This model assures the separation
of policy content and expression and its enforcement.

At a high level, the configuration management com-
ponent provides the expression, administration, and
enforcement of security policies that govern the en-
terprise infrastructure components. At a lower level,
configuration management applies to each component:
key management, role and group management, and ac-
cess control.

3.2 Benefits of Out-Sourcing

The out-sourcing of IT infrastructure components brings
with it the following benefits.

Cost effectiveness. If service providers purchase, main-
tain, and manage their equipment for a multitude of
customers they benefit from economies of scale. This
advantage would translate into cost savings for cus-
tomers.

Business Focus. By outsourcing, corporations will be able
to maintain their focus on their main activities, rather
than being distracted by IT concerns.

Access to current and new technology. A critically im-
portant benefit is that service providers can more easily
implement new software and hardware, thus providing
corporations fast access to state-of-the-art technology.

No provider lock-in. A key problem faced by network ad-
ministrators today is that of address renumbering and
address aggregation resulting from relocation. This
partly results from the fact that IP addresses often be-
long to their Internet service providers (ISP), and not
to the organization. When organizations switch ISPs,
they have to renumber their internal addresses. The
costs of this renumbering essentially force companies
to stay with one ISP. With the right technology avail-
able, this problem can be eliminated, thus freeing com-
panies to choose providers at will.

3.3 Design Space for Solution

Any solution that offers the out-sourcing of IT infrastruc-
ture components is subject to certain constraints that must
be satisfied. In addition to the security requirements out-
lined in Section 3.1, a good solution should have the fol-
lowing characteristics.

Dynamic coalition capability. Today, it is difficult for or-
ganizations to collaborate with others wanting to share
only portions of their enterprise networks. We desire a
technology that enables the secure ad-hoc generation,
maintenance, and dissolution of virtual computer net-
works. This would allow dynamic collaborations, such
as small businesses wanting to rapidly deploy partner
networks, telecommuters wanting to connect home and
office networks, and in general any online community
wanting to establish networked workgroups.

Lifetime independence. Ideally we can use the same tech-
nology independent of the expected lifespan of the vir-
tual computer network, i.e., short, medium, or long
term.

Application reuse. Existing applications must be reusable
without modification. The inertia and cost to rewrite
or retrofit existing applications into a new environment
makes any other approach unlikely to be deployed. For

3



the Supernet, this requires that the IP addressing se-
mantics be maintained.

Transparency and efficiency. Except for the new func-
tionality such as the new security services offered by
the Supernet, it should be indistinguishable for users
that they are using a Supernet instead of a traditional
Internet. At the same time, a Supernet should be as
robust as the underlying network infrastructure.

Scalability. Because IP’s structure has many mechanisms
built in to enable scaling, IP networks can easily grow
to become large networks. While Supernets can take
advantage of these mechanisms because they rely on IP
networks for packet transport services. Some Supernet
specific mechanisms, such as the group key manage-
ment, need to include scalable mechanisms to allow
efficient communications in the flat Supernet structure.

The remainder of the paper concentrates on the novel ar-
chitecture to enable secure communications and its manage-
ment, and properties and benefits derived therefrom.

4 Supernetworking

Our solution to the problems described in Section 1 is
based on a design abstraction that we call Supernetwork-
ing, or Supernets for short. Instances of the abstraction are
also called Supernets. Supernets are analogous to enterprise
networks today, but augmented to provide the properties de-
scribed in Sections 3.2 and 3.3.

4.1 The Model

On the communication side, Supernets are built through
the introduction of a new layer of abstraction in a layered
model of computer networking. The Supernet layer is lo-
cated architecturally on top of the networking layer. It in-
cludes its own addressing structure and security services
that protect all data that are transmitted by the network
layer. In our current design, IP is encapsulated within the
Supernet security layer (SNSL), which in turn is encapsu-
lated in IP. This approach has repeatedly been used to im-
plement infrastructure services such as multicasting, virtual
private networking, and mobility; in short, any technology
that relies on tunneling IP over IP (e.g., [TH98].)

The model is best described by a picture. The lower half
(a) of Figure 2 depicts the model of internetworking as it
is in practice today. The upper half (b) illustrates a vir-
tual computer network, called a Supernet, that spans the in-
ternetwork depicted below. The internetwork provides the
data transmission service for Supernets. The virtual net-
work looks no different to processes running on comput-
ers participating in a Supernet than the internetwork does to
computers today.

Storage server

Network router/Firewall
Host computer

hugedisk.com
bigdisk.com

Alice Bob

Chuck

SAS

Alice bigdisk.comBob

(b)

(a)

Figure 2. Network topologies: (a) Model of in-
ternetworking, (b) Model of Supernetworking

Each Supernet contains one or more communication
channels and consists of a set of nodes. A channel is a com-
munication abstraction that defines an association between
Supernet members through a shared key. Communication
packets that live within Supernets are always associated
with exactly one channel. They are encapsulated in data-
grams that can be interpreted and transmitted on the global
IP network. This encapsulation provides – on a per group
basis – authentication and confidentiality services. Because
the knowledge of the key used is restricted to group mem-
bers, encapsulated packets cannot be interpreted outside the
Supernet channel to which they belong. For all practical
purposes, a channel can be regarded as a local network.

In short, a Supernet aggregates nodes, placing them un-
der a single administrative domain and giving them a net-
work address space. Channels within a Supernet are used to
segregate nodes and services within the Supernet.

A node is an entity identified by an IP address within a
Supernet. Examples for nodes include processes, process
trees, processes with the same user identity, or some other
operating system dependent abstraction. A node can partic-
ipate in multiple channels, but at most one Supernet. Nodes
can communicate with other nodes only if they belong to
the same channel on a Supernet, i.e., if they share a crypto-
graphic communication key.

To support the concept of nodes, network addresses are
therefore assigned at a finer granularity than one address per
physical network interface. If TCP/IP is the basis for the
addressing structure in a given Supernet, existing TCP/IP
applications can be reused in Supernets. The concept of

4



Supernets does not preclude the use of other addressing
schemes. The benefits of using a local name space for each
Supernet are discussed in Section 6.

Each channel is protected from all other channels via
cryptographic mechanisms. This allows the creation of mul-
tiple trust domains within Supernets. An example for the
usefulness of multiple trust domains within a Supernet is
given in Section 4.5. A channel appears to all nodes on
the channel as a single shared medium (such as a classic
CSMA-CD Ethernet). The channel abstraction does not
need to include routing because end-to-end delivery, includ-
ing routing, of data is provided by the underlying communi-
cation network. Therefore, on a Supernet level, every node
is one hop away (i.e., directly connected) from every other
node on the same channel. Only nodes that participate in a
channel are addressable (and therefore reachable) by other
nodes on the same channel. Because a Supernet can be com-
prised of nodes that are located in any host that is connected
to the underlying communication network, Supernets afford
a convenient abstraction on which to build shared networks
whose members are not constrained to physical locations,
i.e., a network in which an address does not indicate a phys-
ical point of attachment in the network infrastructure.

In the following sections we describe the components
and the architecture that we used to implement this model,
subject to the requirements described earlier.

4.2 Architectural Components

Supernets require five architectural components to en-
sure secure and robust communication among its nodes.

Supernet admission control service. First, the system
provides authentication, admission control, and audit
so that nodes become members of the Supernet under
strict control that prevents unauthorized access. Both,
authentication and admission control are governed by
an explicitly expressed security policy.

Supernet security layer (SNSL). Second, the Supernet
provides communication security services so that the
sender of a message is authenticated. Communication
between end points occurs in a secure manner by us-
ing encryption. These security services are achieved
through datagram encapsulation and packet headers
that carry the necessary data, such as message authen-
tication codes or Supernet identifiers. Our architecture
reuses the IPSEC (Internet Protocol SECurity) stan-
dards for authenticity and integrity protection (authen-
tication header, AH [KA98a]) and confidentiality ser-
vices (encapsulating security payload, ESP [KA98b]),
providing its own keying material to AH and ESP.

Groupkey management service. Third, the system pro-
vides a groupkey management service for the commu-

nication security layer. It is used to provide all nodes
within one channel with the same SNSL traffic encryp-
tion and authentication keys. While unicast security is
well-known and has widely advanced into production
state, it can not be used to efficiently manage chan-
nel keys. Depending on the Supernet-specific policy, it
may be necessary to provide all channel members with
new keying material whenever a node joins, leaves, or
is expelled from the channel. This can be done effi-
ciently by group key management schemes tailored to
scale well to large groups and to support multicasting
communications, such as [CWSP98].

Address resolution service. Fourth, the system provides
address translation in a transparent manner. Because
the Supernet is a private network constructed on top of
the public network infrastructure, the Supernet has its
own internal addressing scheme. To send a packet over
the public network, the Supernet performs address
translation from the internal scheme to the address-
ing scheme of the underlying public network. System-
level components of the Supernet perform this trans-
lation on behalf of the individual nodes in a fashion
transparent to the nodes. If the IP addressing scheme
is chosen for the Supernet-internal addressing, preex-
isting programs can run without modification within a
Supernet ([LS00]).

OS-level enforcement of node compartmentalization.
Fifth, the Supernet provides operating system-level en-
forcement of node compartmentalization in that an op-
erating system-level component treats a Supernet node
differently than it treats other processes running on that
computer. The operating system recognizes that cer-
tain processes are executing as part of a Supernet node
and enforces that all communications to and from them
travel through the security infrastructure of the Super-
net. The result is that a node can communicate only
with nodes in the same channel of the Supernet, and
that non-members of the channel cannot access a node.
Additionally, this operating system-level enforcement
of node compartmentalization allows more than one
Supernet node to run on the same computer, regardless
of whether the nodes are on the same Supernet.

4.3 System Architecture

Figure 3 illustrates how the architectural components in-
teroperate. On the left side, Figure 3 depicts a typical com-
puter that hosts one Supernet node. The right side shows a
computer that runs the three infrastructure services that are
necessary to make Supernets work. These services do not
have to be run on the same computer and can be deployed

5



in a distributed fashion. In the other extreme, a supernet ad-
ministration machine as illustrated on the right side can also
host supernet nodes.

Application
in Supernet

context

Supernet
Login

Groupkey Mgmt.
Client

Groupkey Mgmt.
Server

Address Resolution
Client

Address Resolution
Server

Supernet Admission
Control Server

TCP/UDP

IP

SNSL

IP

HW

Computer hosting Supernet
Administration Services

Computer Hosting a Supernet Node

(2)

(2a)

(1b)

(1)

(1a)

(2b)

(a)

(b)

(4)

(3)

Figure 3. System architecture component in-
teraction

A node is established through the action of attaching to
a Supernet, i.e., a client process (Supernet login) is started
that communicates with the remote Supernet admission
control server (1). At this time, the client specifies its iden-
tity and the name of the Supernet it wishes to join. Upon
successful authentication of the client, the Supernet admis-
sion control server performs an admission control decision
to determine if the client is authorized to join the specified
Supernet. If the client is admitted, a new virtual address
valid only in the given Supernetwork layer is negotiated for
the node. The Supernet admission control server then in-
forms the group key management server that a new group
member has joined the supernet (1a). Furthermore, it in-
forms the address resolution server of the mapping between
the node’s new virtual address and the IP address by which
the node can be reached on the underlying transport net-
work (1b).

The Supernet admission control server responds to
the client with configuration data (2) that is necessary
on the node’s side to configure the group key manage-
ment client (2a) and address resolution client (2b). From
this point on, both the group key management and ad-
dress resolution clients communicate with their respec-
tive servers asynchronously using the Versakey Proto-
col ([CWSP98]) (a) and the Virtual Address Resolution Pro-
tocol (VARP, [LS00]) (b).

Finally, all actions have been performed that were nec-
essary to prepare the creation of a node. Subsequently,
any application can be placed into the new Supernet con-
text (3), with its own virtual network layer address and
the key material to communicate securely to other Super-
net members (4).

A node can leave its Supernet voluntarily or it can be
administratively forced to leave its Supernet. In the former
case, a client process (e.g., Supernet logout) authenticates
itself to the Supernet admission control server similar to the
way the client was authenticated on behalf of Supernet lo-
gin. Upon successful authentication, the Supernet admis-
sion control server informs the address resolution service
that the node mapping is no longer valid. Furthermore, it
causes the group key management service to remove the
node’s key identifier and to start a key change for the chan-
nels the node used to belong to. This action allows every
node in the channel, except for the newly-departed one, to
learn the new key.

An administratively forced removal of a node works
analogously, except that the node’s removal is not initiated
by the node, but by the Supernet admission control server
or its operator.

4.4 Layering Architecture

Apps

TCP/UDP

IP

HW

HW hdr IP hdr TCP/UDP hdr Appl. data

(a)

(b)

Figure 4. Traditional TCP/IP layering

In traditional computer systems, the networking stack is
arranged as illustrated in Figure 4. Applications use their
TCP/IP interface for all communications (Figure 4 (a)). Ap-
plication data is encapsulated with a TCP header, which is
encapsulated with an IP header. IP in turn is encapsulated in
the appropriate hardware frame before it is sent towards its
destination. Figure 4 (b) illustrates a hardware frame with
its set of headers.

6



Apps

TCP/UDP

IP

HW

IP

SNSL

Apps

TCP/UDP

HW

IP

Apps

TCP/UDP

IP

HW

IP

SNSL

Apps

TCP/UDP

IP

HW

IP

SNSL

HW hdr IP hdr SN + Security hdrs IP hdr TCP/UDP hdr Appl. data

(a)

(b)

Figure 5. Layering architecture in a computer
hosting Supernet nodes

In a Supernet context, two additional layers are intro-
duced into the networking stack (see Figure 5 (a)):

� the inner IP layer which is used primarily for address-
ing within the scope of a Supernet, and

� the Supernet security layer (SNSL) which provides de-
multiplexing identifiers, such as Supernet and channel
identifiers and security headers for encryption and au-
thenticity protection.

Again, Figure 5 (b) illustrates a typical application data-
gram with its encapsulation headers. Figure 5 (a) also de-
picts the case where one computer hosts multiple nodes.
Applications that are executing in the context of different
stacks (i.e., which are executing in different nodes) are re-
stricted to their Supernet channels. The underlying operat-
ing system enforces this encapsulation.

4.5 Example: Two Supernets

Figure 6 illustrates two Supernets and their underlying,
preexisting internetwork infrastructure (Figure 6 (a)).

For example, Supernet 0x4711 in Figure 6 (b) consists
of three nodes, a1, c1, and bigdisk1. While nodes a1 and c1
participate in two channels each, channel 0x01 and channel
0x123, node bigdisk1 participates only in channel 0x123.
This configuration enables secure communications between
nodes a1 and c1 without allowing node bigdisk1 to be able
to participate in their conversation, while at the same time
allowing all nodes to communicate for storage purposes.
This example illustrates how channels can be used to segre-
gate secure communications at a fine-grained level.

The example in Figure 6 (c) for the Supernet
0x0000cafebabe00050100 consists of three channels,
in which channels 0x02 and 0x03 are used for securing

Storage server

Network router/Firewall

Host computer

Channel 0x123

Channel 0x01

Channel 0x01

Channel 0x03

Channel 0x02

hugedisk.com
bigdisk.com

Alice Bob

Chuck

SAS

bigdisk1

hugedisk1 bigdisk2

c1a1

a2 b1a3

Supernet 0x4711

Supernet 0x0000cafebabe00050100

Node

Two Nodes on one host

(a)

(b)

(c)

Figure 6. Example of two Supernets

network storage. Such a configuration could be chosen,
for example, if network storage is out-sourced to different
providers with no mutual trust.

4.6 Implementation

The system architecture presented in Section 4.3 has
been implemented on a Linux platform. While the user-
space components are generic and operating system inde-
pendent, the kernel modifications are specific to the 2.2.13
version of the Linux kernel. In this section we give the
salient features of our implementation and describe our ex-
periences with it. We intend to include more detailed de-
scriptions in future papers.

A node is implemented as an operating system pro-
cess that is bound to a Supernet context. Each process’s
task struct has a pointer to such a context. The context
consists of a reference counted copy-on-write data structure
that holds, among other things, the node’s Supernet-id, its
channel set, and its virtual IP address. The reference count
is maintained across process creation and termination (i.e.,

7



forks and exits.) When the pointer to the context is non-
zero, the process is said to be in Supernet context.

A node represents an end-point of communication and it
can choose a channel on which to communicate. Whenever
the process creates a socket withhin a Supernet context, this
socket is bound to a specfic channel. This is implemented
by copying the triple (Supernet-id, channel-id, virtual IP ad-
dress) from the caller’s context into the sock structure of
the newly created socket in function inet create() in
file net/ipv4/af inet.c. By storing the triple in the socket
and using it for demultiplexing datagrams, we virtualize the
transport layer with respect to Supernets.

When a datagram is generated from such a socket, the
(Supernet-id, channel-id) pair is copied from the sock to
the skbuff, which is the data structure used to store outgo-
ing datagrams in the Linux kernel. As the skbuff traverses
down the IP stack, a transport layer header (TCP or UDP) is
added followed by a network layer header (IP in our case).
However, because this datagram refers to virtual addresses
that are generally not routable on the physical network, it
is encapsulated as the payload of another datagram that is
routable on the physical network. This requires virtual ad-
dresses to be translated to physical addresses.

Address translation is performed within a kernel-
loadable module. Before constructing the final datagram,
the encapsulated datagram is encrypted in the kernel using
keys in conjunction with another user-space program that
manages keys per (Supernet-id, channel-id) pair. The re-
sulting datagram is then routed to its physical destination
using the same IP stack through which it traversed for the
inner packet assembly. This is necessary in order to be inde-
pendent of the mechanisms used within the stack for routing
table lookups and interface delivery.

While most network traffic is generated in user space,
there are some special cases where the kernel generates net-
work traffic on behalf of a user proces, or even indepen-
dently. A good example for this are NFS operations, where
the kernel translates disk reads and writes on the client side
into remote procedure calls to a server computer. Two other
examples are TCP packets being retransmitted, and ICMP
replies to other computers.

To make NFS functionality accessible within the Super-
net context, the mount command was modified to convey
additional information to the kernel, and now whole filesys-
tems can be placed within one or more Supernet contexts.
The in-memory superblock of each filesystem carries infor-
mation about which Supernets the filesystem belongs to.
Whenever network traffic is generated for actions in the
filesystem, the corresponding Supernet, channel, and node
information are passed down the many FS and NET layers
to where kernel-internal sockets are created and maintained.
Filesystem access is limited by the same key-management
constraints as processes are.

4.7 Experiences

Small pilot networks with several channels and nodes,
and changing memberships have been run with stock appli-
cations such as telnet, Apache web server, etc., and custom
test applications. Tools such as a modified tcpdump and
other monitors have been created to observe and verify be-
havior of the running system.

When running applications from the confined network
visibility of a Supernet context, we observed their depen-
dency on services that we take for granted in today’s dis-
tributed networking environments. Services, such as the
domain name system (DNS) or network file system (NFS)
are invoked on behalf of applications at times least ex-
pected. These services typically read their configuration
from system-wide files that refer to addresses on the physi-
cal network rather than Supernet-specific ones. This means
these services must either be replicated on a (Supernet-
id, channel-id) pair basis, or be tunneled out of this con-
text. Furthermore, configuration files must contain channel-
relevant data and be visible only in their appropriate Super-
net context.

Our solution has been oriented towards the latter, with
the configuration files being replicated dynamically in the
/proc file system dependent on the Supernet context of
the caller. For example, in our implementation the DNS re-
solver configuration file /etc/resolv.conf is a sym-
bolic link pointing to file /proc/self/resolv.conf,
which will contain different data depending on the given
processes Supernet context.

As an extension to the solely communication-based as-
pects of Supernets, we have also implemented and tested the
mapping of NFS filesystems into Supernets, and realized
a Supernet-specific filesystem which provides for client-
based data encryption services, similar to CFS and TCFS.

Our experiences with all subsystems and the whole ar-
chitecture have been very encouraging, and we plan to run
larger-scale tests in the near future. After having more ro-
bust secure storage available we are now ready to place parts
of our own work environment within a Supernet.

5 Related Work

Supernets combine many different ideas into one
conceptual framework. In this section we compare some
of these ideas as it is practiced today with its use within
Supernets.

The X-Bone
The X-Bone ([TH98]) primarily concerns itself with

building experimental virtual networks called “overlays.”
These overlays may be either protocol level or application
level tunnelling. However, in the X-Bone, there are defined

8



routing sites which do not exist in the Supernet approach.
In the Supernet, the virtual network appears to be one LAN
segment with no routing.

Network Address Translation

The use of arbitrary IP addresses to number an internal
network appeared when IP addresses directly routable on
the Internet became scarce. The need for hosts in such pri-
vate networks to communicate with hosts on the Internet led
to the development of network address translation ([EF94]),
or NAT for short. NAT typically uses a host different than
the communicating source to rewrite packet addresses for
traffic both going onto the Internet and returning to the pri-
vate network.

NAT, however, suffers from several weaknesses. It
breaks the end-to-end assumption implicit in many
application-layer protocols. Furthermore, connections that
originate outside a private network and are destined to the
inside are difficult to manage. Triad ([DG00]) is an attempt
to alleviate many of these issues. Supernets effectively
perform NAT at each host with the additional benefit of
end point addressability because virtual addresses are
maintained and resolved transparently through an address
resolution service. Supernets also maintain the end-to-end
assumption because end points are directly addressable and
routable at the application layer.

Plan 9

The use of per-process name spaces appeared in Plan 9
([PPD+95]) which mapped traditional services into the file
name space. These two features allow processes to map re-
mote services into their local name space through the use
of gateway processes on remote machines that acted as file
servers executing the 9P protocol. However, there are sev-
eral concepts pervasive in our design of Supernets which
are not so easily mapped onto the Plan 9 design. One of
those is the limitation of the visibility of resources to cer-
tain groups. This allows the partitioning of information and
services. It is coarse enough to work in large, practical set-
tings, yet provides fine-grained control where such coarse
mechanisms are insufficient. Other crucial differences are
outlined in Section 6.

Per-process name spaces have previously been imple-
mented as shared libraries (e.g., union directories and ver-
sioning in n-DFS ([Kri95, Section 2.5].) We chose not to
rely on the use of shared libraries because it may be un-
desirable to force processes to unconditionally link with a
specified library.

6 Advantages Provided by the Supernet Ab-
straction

6.1 Independent Addressing

A key consequence of the Supernet abstraction is an in-
dependent addressing scheme for entities on the Supernet.
This is an additional layer of indirection in naming and rout-
ing to real entities on the underlying communications net-
work. This indirection allows several benefits:

Different Supernet entities can coexist on the same
physical host. Supernets are the basic building block
in our vision of out-sourcing. Because out-sourced re-
sources such as computation and storage may be man-
aged independently, the same physical host that pro-
vides more than one resource may be assigned to mul-
tiple Supernets. In such a case, decoupling physical
addresses from Supernet addresses is very desirable
because the same physical host may be assigned dif-
ferent addresses in each such Supernet.

Easier migration of networks. As described in Sec-
tion 3.2, a key practical problem faced by network ad-
ministrators today is that of address renumbering and
address aggregation resulting from relocation. By de-
coupling Supernet addresses from the addresses used
by the underlying communication infrastructure (for
routing for example), Supernetworking eliminates this
problem for corporate and ISP network managers.
Renumbering can happen as often as needed at the un-
derlying IP network, with minimal disruption of net-
work services. This is made possible via automatic ad-
dress mapping registration in the virtual address reso-
lution service with flexible validity expiration periods.

Supernet topology and internal addresses can remain
concealed. By decoupling Supernet addresses from
the addresses on the underlying communication infras-
tructure, we can hide the Supernet addresses from all
outsiders. Using the channel based security architec-
ture access control to services on channels is trivially
enforced through key management. Key revocation
is enforced through a forced group key change as de-
scribed in [CWSP98].

Logical proximity can be independent of the underly-
ing network. Many service-location and multicasting
schemes rely on local network addressing to provide
access to nearby resources, or for scalability.

By decoupling these addresses, we can create Super-
nets where the addressing reflects this logical close-
ness, without forcing this on the underlying network.

9



Thus, a logically nearby printer may be the one pro-
vided by some external organization and it can be
brought close to the address space in the Supernet,
without requiring that the print service provider and
the customer share an ISP.

6.2 The Value of Abstractions

The value and strength of our approach is to discern how
simple and clean it is to realize our goals using the abstrac-
tion of Supernets, rather than from first principles. This ab-
straction forces a compartmentalization of functions and in-
formation between layers, and is yet compatible with tradi-
tional network-layer security solutions because it is possible
to use them in addition to (i.e., on top of) our abstraction.

On the one hand, one might be tempted to treat this prop-
erty as a system and software engineering problem, reason-
ing that a properly implemented system is robust. On the
other hand, we argue that robustness is concomitant with
simple design. Clean abstractions lead to simpler imple-
mentations; this leads to more easily maintained systems.
Simpler solutions are generally easier to understand and
reason with. When complex systems are built using them,
it is sometimes easier to deduce system properties because
they are based on simple unifying abstractions. By demon-
strating that a design to which an implementation corre-
sponds enforces an agreed upon approved abstraction, a
convincing argument can be made that the system is cor-
rect.

7 Summary

This paper motivated and proposed a novel architecture
that enables the out-sourcing of network infrastructure ser-
vices in a secure and transparent manner. Communica-
tion, network storage, and computation services can be out-
sourced to one or a set of providers. The fact that some or
all infrastructure services are out-sourced is transparent to
users, applications, and servers. Existing applications con-
tinue to work as they do on enterprise networks today. The
technology enables the secure ad-hoc generation, mainte-
nance, and dissolution of virtual enterprise networks.

Acknowledgements

Many thanks go to Tom Markson and Amit Gupta who
were instrumental in the formative phases of Supernets, and
to Sheueling Chang, Susan Landau, and Raphi Rom for
many helpful discussions and contributions.

References

[CWSP98] Germano Caronni, Marcel Waldvogel, Dan
Sun, and Bernhard Plattner. Efficient Secu-
rity for Large and Dynamic Multicast Groups.
In Proceedings of the IEEE 7th International
Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WET
ICE 1998), June 1998.

[DG00] Cheriton David and Mark Gritter. TRIAD: A
Scalable Deployable NAT-based Internet Ar-
chitecture, 2000.

[EF94] Kjeld Egevang and Paul Francis. The IP Net-
work Address Translator (NAT). RFC 1631,
May 1994.

[FD99] Domenico Ferrari and Luca Delgrossi.
Supranets, 1999.

[KA98a] Stephen Kent and Randall Atkinson. RFC-
2402 IP Authentication Header. Network
Working Group, November 1998.

[KA98b] Stephen Kent and Randall Atkinson. RFC-
2406 IP Encapsulating Security Payload
(ESP). Network Working Group, November
1998.

[Kri95] Balachander Krishnamurthy, editor. Practical
Reusable UNIX Software. John Wiley, 1995.

[LS00] Yuefeng Liu and Christoph Schuba. Virtual Ad-
dress Resolution in Supernets: VARP. Tech-
nical report, Computer Science Department,
Stanford University, August 2000.

[PPD+95] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs.
The USENIX Association, Computing Systems,
8(3):221–254, Summer 1995.

[Sch97] Christoph L. Schuba. On the Modeling, De-
sign, and Implementation of Firewall Technol-
ogy. PhD thesis, Department of Computer Sci-
ences, Purdue University, West Lafayette, Indi-
ana, December 1997.

[TH98] Joe Touch and Steve Hotz. The X-Bone. Third
Global Internet Mini-Conference in conjunc-
tion with Globecom ’98, 1998.

10


