CERIAS Tech Report 2004-30
EXPERIENCE WITH SOFTWARE WATERMARKING
by Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, Yi Zhang
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086



Experience with Software Watermarking

Jens Palsberg  Sowmya Krishnaswamy  Minseok Kwon DiMa  Qiuyun Shao YiZhang
CERIAS and Department of Computer Science
Purdue University
West Lafayette, IN 47907
{palsberg,madi@cs.purdue.edu

Abstract Answer: She must be able to prove ownership,
possibly in a court of law, of a given copy of the
There are at least four U.S. patents on software wa- software.

termarking, and an idea for further advancing the state
of the art was presented in 1999 by Collberg and Thom- Ifit is known that Alice is capable of proving ownership of
borsen. The new idea is to embed a watermark in dynamicher software, then this capability may help deter theft.
data structures, thereby protecting against many program-
transformation attacks. Until now there have been no re- 1.2 Approaches to Anti-piracy
ports on practical experience with this technique.

We have implemented and experimented with a water-  Various approaches to anti-piracy have been or could be
marking system for Java based on the ideas of Collberg tried, including:
and Thomborsen. Our experiments show that watermark-
ing can be done efficiently with moderate increases in code
size, execution times, and heap-spacgeswhile making
the watermarked code resilient to a variety of program-  J | ink the software to the hardware of a specific ma-

¢ Keep a certified list of customers. If somebody not on
the list has the software, then it must be a pirate copy.

transformation attacks. For a particular representation of chine. This makes it pointless to copy the software

watermarks, the time to retrieve a watermark is on the order to some other machine. A further idea is to config-

of one minute per megabyte of heap space. Our implemen- ure the software such that when a user is logged on

tation is not designed to resists all possible attacks; to do to the Internet, a message with the serial number of

that it should be combined with other protection techniques the computer is secretly sent to the software company.

such as obfuscation and tamperproofing. Remark: in 1998 it was found out that on some Intel
computers, the serial number could be read by soft-
ware.

1 Introduction _ .
e Link the software to a movable piece of hardware that

cannot easily be copied. This restricts the usage to
a user who possesses the critical piece of hardware.
Such a device is sometimes called a “hardware don-
gle”; and the technique has been called “software dog”
by Tsinghua Archives (Beijing, P.R. China) [1] which
since 1994 has used it for the THDA-MIS multimedia
database system.

1.1 The Need to Prove Software Ownership

Suppose Alice has built some software and now wants to
sell it for profit. She copyrights the software, but Bob still
manages to make a pirate copy. Bob may be interested in the
software for several reasons, including 1) private use, 2) in-
dustrial espionage, and 3) further selling for his own profit.
In the first case, Alice’s profits may suffer; in the second e Software watermarking: embed a secret into the soft-
case, some of her algorithmic techniques may be found out; ware which can be retrieved on demand.
and in the third case, she may risk that a competitor sells

her own Software, perhaps somewhat modified. This |eavesThe first three of these teChniques seem too inflexible for a
the question: setting where software can be downloaded from webpages,

and where mobile code can roam on the Internet. Moreover,
Question: How does Alice protect her copyright? some software is distributed in a form close to source code,



for example, as Java bytecodes, and disassemblers and dén the second category, we find the approach of Collberg
compilers are getting faster and better. Such considerationsand Thomborsen [3] who explained how to exploit that a
have helped increase interest in software ownership protec-number can be represented as a graph which, in turn, can
tion and detection. Watermarking is a method that does notbe built as an object structure during the execution of a Java
aim to stop piracy copying, but to prove ownership of the program. The idea is that object structures are difficult to
software and possibly even the data structures and algo-analyze precisely at compile time because such analysis in-
rithms used in the software. Up to now, there are at leastvolves flow analysis and pointer analysis [13, 6]. An at-
four U.S. patents on software watermarking [10, 8, 12, 15]. tacker might therefore learn little about the location of a
watermark by statically analyzing a program. Note that the
1.3 Attacks on Software Watermarks building of an object structure introduces the need for ex-
tra code which builds that object structure. An attacker can
Watermarked software may be subject to attacks thatattempt to locate that code even without knowing the ex-
have the objective of locating, distorting, or removing the act details of the watermark. Until now there have been no
watermark. The quality of a watermarking system is cor- reports on practical experience with Collberg and Thom-
related with the degree to which the watermarked soft- POrsen’s technique. _
ware is resistant to attacks. Until now, most approaches There are other forms of attack than semantics-
to software watermarking have concentrated on resisting at-Preserving program transformations. Using terminology of
tacks bysemantics-preserving program transformatigins Collberg and Thomborsen [3], subtractiveattack is one
cluding compilation, optimization, obfuscation, decompila- Where Bob, perhaps with some tool support, tries to locate
tion, and dead-code removal. Such transformations do notnd remove a watermark. Easter Egg watermarks may be
change the behavior of a program, but they do change theVulnerable to such attacks because the Easter Egg code may
form of the program. As such, they may easily remove or Stand outin a way that a human reader can detect without

distort watermarks that are embedded in the structure of themuch effort. Anadditiveattack is one where Bob inserts his
program, for example, in comments, in string constants, in OWn watermark in an attempt to override Alice’s watermark,

the order of instructions, etc: or at least make it plausible that Alice’s watermark was not
inserted before Bob’s. One possible defense against this
e acomment: form of attack is to let Alice show that her copy of the soft-

ware contains only her watermark, not Bob’s, which means
Bob’s watermark is added after hers. Another possible pro-
tection mechanism is that Alice engages in a protocol with
a trusted authority to timestamp the hash value of her wa-
termark. Acollusionattack is one where two attackers have
printf("M software, version two copies of the same watermarked program—but water-
1.0"); marked with different watermarks—and compare the two
watermarked programs in an attempt to locate the water-
e a particular ordering of certain instructions; for ex- mark.

ample, a particular ordering of the branches ofran An attacker may do more than just analyzing the pro-
branch switch-statement can encaelg(n!) bits. gram text; the attacker may also monitor the state of the

A ¢ . hich 1 I heap, registers, etc. during execution. This may reveal a
program transformation which 1) removes all comments, .5 srycture that is suspiciously long lived, it may also

2) ltJrezatks up ‘1” stnngj into fshqrte';.strlr;gs',”and 3) reolrldefrs reveal a condition that always evaluates to true, etc. Such
instructions whose order is insignificant will remove all of b o - iong may help locate the watermark.

the example watermarks above. Moreover, if part of a wa-
termark resides in portion of the program which can be de- 1 4 proplem Statement
termined to be dead code, then a straightforward dead-code

removal may be a successful attack. _ Our goal is to gain practical experience with Collberg
The main approaches to defending against such attacks;ng Thomborsen’s idea of embedding a watermark in dy-

are to either 1) make the watermark an inherent part of the namijc data structures. Our first goal is to verify the hypoth-
programs behavior, or 2) to make the watermark be repre- ggjs:

sented by data structures that are created at run-time. In the
first category, there is the notion of &aster Eggwater-
mark which is a piece of code that gets activated after an
unusual input. For example, a particular input sequence toPeticolas, Anderson, and Kuhn [14] wrote: “the problem
Microsoft Excel 97 starts an alien-world-exploration game. [with watermarking] is not so much inserting the marks as

/* My software, version 1.0
*/

e adata string:

is such a watermark resilient to program-
transformation attacks?



| Attack | Protection
program-transformation attackrepresent watermark as an object structure
subtractive attack tamperproofing and obfuscation
collusion attack randomization

Table 1. Attacks and Protection Methods

recognizing them afterwards.” This leads us to ask the ques-and it is written in Java. If presented with a Java bytecode
tion: program, then we first decompile it to source code using
one of the available bytecode decompilers. JavaWiz does

need access to all parts of the input program, and it does not
It is not our goal to produce a watermarking system which touch the standard library.
is resilient toall of the attacks listed in Section 1.3.

can we efficiently retrieve such a watermark?

15 Our Results 2.1 Watermark Representation

We have implemented and experimented with a wa-  For simplicity, we assume from now on that a watermark
termarking system for Java which embeds a watermark is a natural number. A number can be represented as a graph
in dynamic data structures. Our experiments show that in many ways, e.g., as a Planted Plane Cubic Tree (PPCT).
watermarking can be done efficiently with moderate in- For use in a watermarking system, it is best to have a choice
creases in code size, execution times, and heap-space usag@étween as many kinds of representations as possible. The
while making the watermarked code resilient to a variety of current version of JavaWiz uses PPCTs. Here follow a few
program-transformation attacks. For a particular represen-details of PPCTs.
tation of watermarks, the time to retrieve a watermarkison A PPCT, see Figure 1, is essentially a binary tree with
the order of one minute per megabyte of heap space. one extra node called the Origin, The Origin has a pointer to

Our prototype watermarking  system, called theroot of the binary tree. Moreover, all leaves of the binary
JavaWiz, is publicly available from our web site at tree are linked into a circular linked list which includes the
http://www.cs.purdue.edu/s3/, together with all bench- Origin. Finally, each leaf has a self-pointer. Notice that
marks and test inputs. Thus, an interested reader shoulcevery node in a PPCT has two outgoing pointers.
be able to reproduce the experimental results presented in A particularly important property of PPCTs is that if we
Section 2, and try some attacks. have a pointer to any node in the PPCT, then we can recover

The version of JavaWiz available from our website is the Origin. This can help locate a PPCT in an arbitrary heap.
not designed to resists all possible attacks; to do that it Let us now define mappings from integers to PPCTs and
should be combined with other protection techniques such back. Letc(n) be the number of PPCTs withleaves (this
as obfuscation and tamperproofing. In this paper we outline is called a Catalan number [7].) We have
how to combine the techniques implemented in the publicly

available version of JavaWiz with the current best practices o(n) = 1 . 2n — 2
for obfuscation, tamperproofing, and randomization, see ta- o n n—1
ble 1.

We can enumerate the PPCTs withHeaves as shown in

Rest of the Paper. In section 2 we summarize Collberg F19ure 2.

and Thomborsen’s idea of embedding a watermark in dy- ~ We denote byI'(L, R) the set of binary trees witld
namic data structures, we discuss the JavaWiz implementaleaves in the left subtree, aritlleaves in right subtree. We
tion, and we show our experimental results. In section 3 we ¢&n recursively define the minimum integer represented by
give a summary and a critique of various protection tech- the treesirl’(L, R) as follows:

nigues, and we outline how to integrate them with our other

techniques. min_int(L,R) = mingnt(L —1,R+1)
+c¢(L-1)x R (L#1)
2 Implementation and Experimental Results min_int(1l,R) = 0

We now describe our prototype watermarking system,  Now let us define the integer that a PPCT represents.
called JavaWiz. It can watermark Java 1.2 source programs,Given a PPCT in which the binary treeds we denote the



al =1
Q2 =1
g3) =2
a4) =5

Figure 1. PPCT

&o

{% :

g%xo :
s

Figure 2. Enumeration of PPCT

represented integer byt (T"). Then

int(T) = int(T.left) x c(LeafNum(T.right))
+ int(T.right)
+ min_int(Leaf Num(T.left),
LeafNum(T.right))
int(leaf) = 0

where function Leaf Num(node) gives the number of
leaves of the tree rooted pde.

2.2 Watermark Embedding

To watermark a Java program with a given number, we
first determine its PPCT representation. Next we choose a
base class from the original program and convert it into a
node clasdy adding some fields. Each additional field will
hold an outgoing edge to another node object. The node
class is now a building block for constructing the PPCT,
and off-line we generate straight-line code that constructs
the PPCT. The graph construction code is then merged with
the original program. We do this in a particularly simple
way to illustrate the idea without getting into implementing
full-fledged randomization, obfuscation, and tamperproof-
ing. We view these other protection techniques as building
blocks that can be added on top of our approach. In our
implementation only the “new” expressions in the original
code will be changed. Intuitively if there is an expression
"new A()", then we may change it to "new A1()", and add
a class Al which extends A and place some watermarking
code in its constructor.

For example, suppose we have the following code for
class A:

class A{
A0 {
al = 0;
}
int al;
}
We can change the code into:
cl ass AL{
AL(){
al = 0;

<code for building

wat er mar k>// produced offline
}
int ail;

}

While this may seem simple, bordering on trivial,
it is sufficient to protect against a variety of program-
transformation attacks, as we will show later.



To resist attacks based on dead-code removal, we creat@ more efficient graph search that takes advantage of know-
data dependencies from the original program to the water-ing special properties of the watermark graph. Our proto-
mark. We do this by replacing a stateméhin the original type watermarking system contains an implementation of

program with a statement of the form such a specialized graph search for the case where the wa-
termark is @PCT. Our search strategy proceeds by, repeat-
if (x!'=vy) § edly, first finding a potential leaf of RPCT, then locating

a potential origin node, and finally checking that the poten-
wherex, y are distinct nodes in the watermark graph. This tial origin node is indeed an origin node for the watermark
transformation makes the watermark graph part of the com- PPCT. Each of these steps involves the traversal of paths
putation of the original program, and it requires a powerful in the graph, and since we know the size of the watermark
pointer analysis to determine that! = y is always true. ~ PPCT, we have an upper bound on how far we need to pur-
If a given dead-code removal tool does not determinexhat sue a given path. Notice that when searching fOPLT,

I'= y is always true, then the watermark will not be elimi-  we can prune away all potential node classes with less than

nated as dead code. two potential edge fields.
With our specialized search folRPCT, retrieving a wa-
2.3 Watermark Retrieval termark is tractable, although time consuming, as we show
next.

When retrieving a watermark, we cannot rely on the
class names of the watermark because class names can k&4 Experimental Results
changed by obfuscators. We retrieve a watermark by ac-
cessing the heap image at some point during execution of  Our experiments were run under Solaris 2.5.1 on a Sun
the watermarked program. Getting access to a heap imagaJitra 2 Model 2200, with 256MB RAM, and two 200MHz
is supported by the Java 2 SDK [11] (also known as the JavaultraSPARC-I processors, each with 1MB external cache
Development Kit, Version 1.2.), and we take a snapshot of in addition to their on-chip instruction and data caches.
the heap image by using thexhpr of option to thg ava The UltraSPARC-I data cache is a 16KB write-through,
command. non-allocating, direct-mapped cache with two 16-byte sub-

The processing of the heap image proceeds in four stepsblocks per line.

) We used the Sun Java 2 SDK Version 1.2.1 Solaris Pro-
1. Extract potential node classes.We do that by ex- gyction Release Virtual Machine with the default Just-In-

tracting the set of classes used in the heap imege, Time compiler turned on.

ceptthose in the standard Java runtime packages. (OuUr  \ye tested our JavaWiz watermarking system on seven

watermarking system does not use standard classes aqdjym-sized Java programs, see table 2. In each case, we

node classes.) embedded a 40-digit watermark. For each test program, the
third column of the table shows an input that we have used
when measuring the run time and the needed heap space
before and after watermarking.

In the following table we use “before” to dendbefore
watermarking and we use “after” to denotafter water-
marking The listedcode sizeslo not include the standard
libraries. Each test was done five times. The numbers in
the table are the averages. Dimensiarale sizés in kilo-
bytes;wm timeis in seconds and means the time to embed
a watermarkretr timeis in minutes and means the time to
retrieve watermarkexecution timés in seconds and means
the watermarked program’s execution time; &iedp space
usageis in kilobytes and means that heap space used by the

4. Graph search. We are now ready to search for the Watermarked program.
watermark graph. In general, this is the problem ¢ From the table 3, one can see that, for our benchmarks:
of subgraph isomorphism which is known to be NP- 1) JavaWiz adds 4-12 kilobytes of code (|eSS than 10 kilo-
complete. bytes of code on average), 2) embedding a watermark is
done in less than 20 seconds, often faster, 3) watermark-
The rightful owner of the watermarked software knows ing increases a program’s execution time less than 7%, of-
what the watermark is. We can use that information to do ten much less, 4) the heap space requirement increases, al-

2. Extract potential node objects. We do that by ex-
tracting the set of objects in the heap image that are of
a potential node class, as determined in step 1.

3. Determine potential edgesFor each field in a poten-
tial node object, determine whether it can potentially
hold an outgoing edge in a watermark graph. We do
that by comparing the field’s type declaration with the
potential node classes, as determined in step 1. Af-
ter this step, we have completed building a graph rep-
resentation of the part of the heap image that has a
chance of containing a watermark.



| program | description | test input

javac a compiler for Java the JavaCup source code
javadoc | a Java APl documentation generator the JavaCup source code
JavaCup | an LALR parser generator for Java the CORBA grammar
JTB JTB [16] is a frontend for The Java the Java 1.2 grammar

Compiler Compiler from Sun Microsystems
JavaWiz | the watermarking system reported in this papethe JavaCup source code
compress| a java virtual machine spec benchmark some tar files shipped with compresgs
BLOAT BLOAT [9] is a Java bytecode optimization toolthe JavaCup source code

Table 2. Programs on which we have experimented

program code size wm time | retr time | execution time | heap space usage
before| after before | after | before| after
javac 192| 201 188s| 7.1min| 79.4s| 825s| 6,415 6,453
javadoc 187 | 191 199s| 89min| 26.7s| 27.4s| 9,770 10,000
JavaCup 362 | 373 56s| 46min| 43s| 4.6s| 4,041 4,080
JTB 810| 815 52s| 0.6min| 99s| 10.1s 440 475
JavaWiz 582 | 591 43s| 22min| 47s| 49s| 2,012 2,045
compress 24 32 46s| 0.6min| 68.8s| 72.4s 477 514
BLOAT 1,415 1,427 70s| 3.6min| 55.7s| 57.9s| 3,322 3,362

Table 3. Experimental Results

though it should be noted that the increase depends on the  termarked code, and
size of the objects of the class which is chosen as node class,
and 5) watermark retrieval is done in about 1 minute per 1
megabytes of heap.

We have tried to attack the watermarked programs with
the Java bytecode obfuscator WingGuard [5] and the JavaHenceforth we will refer to such an attacker as an “expert at-
packaging tool JAX [17]. We can view obfuscation and tacker.” Of course, one could adopt a business model where
packaging as attacks because they are semantics-preservirenybody who wants their software to be watermarked has to
program transformations. JAX is particularly interesting as send itin, and get it watermarked by the owner of the water-
an attack because it attempts to eliminate dead code. In allmarking software. Still, the watermarking software may be
cases, we found that the watermark was intact after the at-stolen or simply handed over via bribery. Moreover, one

3. the source code for the watermarking system (but not
necessarily the form of data structures used to repre-
sent watermarks.)

tacks. might be interested in selling the watermarking software
and let the buyers do the watermarking themselves. If the
3 Integration of Protection Techniques watermarking software is sold, then it is difficult to prevent

that an attacker gets access to it.

Throughout the this section, we uBeto denote the pro-
gram to be watermarkedy” to denote the watermark it-
self, andC' to denote a piece of straight-line code (generated
off-line) which, when executed, will produce a watermark
graph. Each of the techniques discussed in this section con-

Our experience shows that a watermarking system can
greatly benefit from the protection mechanisms of random-
ization, obfuscation, and tamperproofing. In the following,
we give a summary and a critique of the current best prac-
tices, and we dls_cuss how they can be mtegr_ated with OUlcern the guestion of producing a mergetoandC' which
other techniques into a full-fledged watermarking system. . "

; . is resilient to attacks.

We will assume a worst-case scenario where the attacker

has access to: 3.1 Randomization

1. the watermarked code, Qo . .
To mergeP and(', one possibility is to insel®' right at

2. agraphical display of the heap during a run of the wa- the beginning of the main program Bf This would ensure



that C is executed at the beginning of a run of the water- may quickly be revealed that a given predicate always eval-
marked code. It has the drawback that an expert attackeruates to true. To protect against such an attack, one needs
will know where to look for theC' code. An alternative is  to avoid that a predicate always evaluates to the same re-
an Easter Egg approach where the code is executed after asult. This can be done by obfuscating with “dynamically”
unusual input. This has the drawback of being more difficult opaque predicates, that is, a familyoafrrelatedpredicates

to fully automate. Yet another alternative is randomization, which all evaluate to the same result in any given run, but in
that is, weavingP andC' in a random way, and changing different runs they may evaluate to different results. For ex-
the order, in a random way, of parts BfandC in cases ample, if we have five correlated predicates, then we might
where the order does not matter. The opportunities for suchobserve that they evaluate as shown in the following table.
random weaving may be limited by the naturerfbut it

has the advantage that even an expert attacker may have to_Prédicate| Runl | Run2| Run3 | Run4 | Run5
examine a large part of the watermarked code to¢ind Pred 1 T T F T F
Randomization can protect against collusion attacks to  ~1€d 2 T T F T F
some extent. Suppose two attackers have access to two ~'€d 3 T T F T F
copies of the same software which have been watermarked Pred4 T T F T F
with different watermarks (this is also known as “finger- Pred 5 T T F T F

printing”.) The attackers may do a "diff” of the two copies, It seems advantageous to use both traditional opaque
and thereby learn the location of the watermarking code. predicates and dynamically opaque predicates for obfusca-

tion because it makes it difficult for an attacker to determine
3.2 Obfuscation whether a given predicate is either

Obfuscation is useful for two related purposes: * one of those from the original program, or

. a traditional opaque predicate, or
1. to makeC unrecognizable, and * paque p

] e a dynamically opaque predicate.
2. to makeP andC look alike.
The attacker may monitor the results of evaluating the pred-

If we can achieve (1) and (2), then it will be difficult even jcates in a program in various runs, but this may not give a
for an expert attacker to locate the obfuscated versid@n.of  solid basis for classifying the predicates correctly. If there
There is a wide variety of obfuscation techniques: are many predicates overall, then the classifying task will
padding, opaque predicates, renaming, variable split- require a large effort. In particular, determining which pred-
ting/merging, method inlining/outlining, and many others, icates are correlated may mean keeping track of an expo-
see the survey of Collberg, Thomborsen, and Low [4]. All nentially many sets of predicates.
of these techniques are general, and any general-purpose An attacker might consider using a static analysis with
obfuscation tool that implements them can be helpful. Let the purpose of detecting branch correlations. One such anal-
us here focus on two obfuscation opportunities that can beysis has been presented by Bodik, Gupta, and Soffa [2]. We
given twists that are specific to the watermarking setting. see it as essential that an implementation of dynamically
First, we can obfuscat€ by paddingit with statements  opaque predicates cannot be beaten by, at least, the current
that lead to the building of digger graph than the one  static analysis technigues.
for representing?. Given that the kind and the size of One drawback of dynamically opaque predicates is that
the graph fori?” are secret, the further padding effectively they seem to require more code to be inserted ihtian
makes it impossible for an expert attacker to know what part traditional opaque predicates, because of the need to corre-
of the graph is the watermark. late the predicates. The extra code may be a vulnerability
Second, we can obfuscafebased ommpague predicates in itself, and it may help slow down the execution of the
[4]. The idea of obfuscation with opaque predicates is to watermarked program.
change a statemeStinto a conditional statement “ifthen Itturns out that @PCTis an excellent source for opaque
S”, wherec is an opaque predicate. An opaque predicate predicates. For example, we can maintain two pointers from
is a condition which always evaluates ttue (or always the outside to nodes in a PPCT, and from time to time move
evaluates tdalse), but where this property is difficult to  the pointers to point to other nodes in the PPCT. It is easy
determine for an attacker. The use of opaque predicatesto maintain the invariant that, say, the two pointers point to
will therefore make it more difficult to determine the control different node. Thus, if the pointers reside in variablesd
flow by just inspecting the program. y, then the conditioriz! =y) is an opaque predicate which
A problem with opaque predicates is that if an attacker always evaluates twue and it is difficult for an attacker to
can monitor the heap, registers, etc. during execution, then itguess the invariant.



We can use the watermark PPCT as the source of opaquestronger by building a dependency cycle. For example, sup-
predicates for obfuscation of those parts of the original pro- pose we could create a dependency from the code that builds
gramP that come after all of' has been executed. (Thein- some random PPCT to the original data structures. This
terleaving ofP andC will determine how much o comes would create a dependency cycle (from the original pro-
afterC.) A problem here is that this will leave bott and gram to the watermark PPCT, to the random PPCT, back
the initial portion of P unobfuscated. We can improve the to the original program) and thereby make it difficult to
situation by inserting code for building a second, random, change something without affecting everything else. One
PPCT (say) at the very beginning of the merged program, way of achieving this would be to ask the programmer of
and then use that as a basis for obfuscation. We might evenP to supply some opaque predicates based on the original
choose to use the random PPCT as a basis for obfuscatiomata structures. This will make the watermarking system
of all of P merged withC'. semi-automatic rather than fully automatic.

The use of a second PPCT highlights a chicken-and-egg
problem because now the code that builds the random PPCT3 4 Pool of Watermark Representations
is unobfuscated and therefore a possible target for an ex-
pert attacker. It is conceivable that an expert attacker could

locate the code for building the random PPCT and from It is beneficial to hide théormsof watermark represen-

there unravel the whole construction. With current technol- 210nS from attackers. If an attacker knows the form of data
structure used to represent a watermark, the attacker can

he onl roach r in in h an k . .
09y, the only approach to protecting against such an attac do a heap analysis to look for specific instances of the wa-

seems to be to, after the other transformations are done, apfermark representation: and that mav be easy and inexoen-
ply a general-purpose obfuscation tool, such as WingGuard . P ' Y Y P

[5. Note though, that if the extra obfuscation technique sive to do. Thus it is an improvement to separate the water-

s known to an expert attaker, then there may be ways of {808 2 T S0 | B L ROkt
unobfuscating the code. RO

structures, and not just to focus on PPCT. For example, a
company can develop its own proprietary watermark repre-
sentations. When watermarking a piece of program, at least
one watermark data structure will be chosen from the pool.
Collberg and Thomborsen [3] gave an example of tam- |t might seem plausible that we make all the potential
perproofing a watermark representation using the Java re-candidates of watermark data structures public once we
flection mechanism. The idea is to verify, at run time, that have a large number of them. This is because an attacker
the classes used to represent the watermark are intact. Howhas to try, in the worst case, all of them to find the hidden
ever, as noted in [3], this style of tamperproofing is not watermark. However, this idea has a flaw: the workload for
stealthy. attackers to try all the candidates may not be prohibitively
An alternative idea is to base tamperproofing on the in- heavy. On the contrary, the cost is just the sum of trying
tegrity of the watermark graph structure itself. For example, each one; and one can carry out the work in parallel, which
a tamperproofing mechanism may be able to detect, at runcan be done in an efficient way.
time, that the graph representing the watermark is nolonger \We can now summarize the properties of PPCTs that
of the required form, say, a PPCT. The approach to obfusca-make them attractive as watermark representations. When
tion based on deriving opaque predicates from a watermarkchoosing other forms of representation, it seems best to

PPCT achieves a level of such tamperproofing because itchoose some with similar properties. Specifically, a rep-
creates data dependencies fréhto the watermark graph.  resentation:

If an attacker manages to distort the watermark PPCT, then

3.3 Tamperproofing

some opaqgue predicates may evaluatéatee instead of ¢ should have a stealthy heap images,

true. If this is the case, then the program may afterwards

begin to misbehave in a unpredictable way. Moreovér, e should represent a number via some enumeration
is obfuscated with the use of the random PPCT, so if that method (this is generally difficult, although it may not
PPCT is distorted, the@’ may misbehave, leading to the be necessary if one can publish the hash of a graph),

wrong watermark PPCT, and, in turn, a misbehavihdy

doing this, we have created a link of dependency from the e should be a source of opaque predicates (for creating
correctness of the original prograprto the integrity of the dependencies), and

watermarkW. The overall effect is that once the embedded

watermark loses its original form, the semantics of the wa- e should have some special properties that are easy to
termarked program will also change. check (for tamperproofing) and that do not stand out

We can take this idea one step further and make it (for stealthiness).



3.5 Summary

With the above discussion in mind, the mergingénd
C may proceed in three steps:

1. choose from the watermark representation pool an ap-

propriatell/, generate” from W offline;

2. padC and merge it withP using randomization, ob-

fuscation, and tamperproofing based on one or more

graphs (e.g., PPCTs); and

3. obfuscate the outcome of (1) with a general-purpose

obfuscator.
An attacker may attempt to carry out the following steps:

1. Locate the code that builds the graphs;

2. remove from rest of the program all dependencies on
the graphs, that is, remove all opague and dynamically

opaque predicates; and

3. remove or distort the code that builds the two graphs.

A goal of a good watermarking system should be to make it
useless for an attacker to do just (1), and to make it difficult

to do (2), hence also difficult to do (3).

4 Conclusion

References

(1]
(2]

[3

—_—

[4

—_

(7]
(8]

(9]

Our current watermarking system is a promising step in [10]

the direction of a practically useful tool. The idea of em-
bedding a watermark in dynamic data structures is viable, it

leads to watermarked programs that are resilient to a variety [11]

of program-transformation attacks, and such watermarks
can be retrieved efficiently. To protect against other attacks,
one needs to integrate other protection techniques such a
obfuscation and tamperproofing. Each of these protection
methods gives protection against specific attacks. While

12]

there may be simple ways of putting these methods together[13]

in a watermarking system, it is better if we can utilize them
in a correlated way so that each of them supports the others

and thereby makes attacks more difficult.

Acknowledgments. We thank the reviewers for helpful

comments. We also thank the other members of the Securel14]

Software Systems group for many discussions about water-

marking.

[15]

[16]

[17]

T. Archives. http://www.tsinghua.edu.cn/docsn/dag/djse.htm,
1999.

R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow
information using infeasible paths. Broceedings of the 5th
ACM SIGSOFT Symposium on Software Engineepages
361-377, Sept. 1997.

C. Collberg and C. Thomborsen. Software watermark-
ing: Models and dynamic embeddings. Mroceedings
of POPL'99, 26th Annual SIGPLAN-SIGACT Symposium
on Principles of Programming Languaggsages 311-324,
1999.

C. Collberg, C. Thomborsen, and D. Low. Manufactoring
cheap, resilient, and stealthy opaque constructBrdeeed-
ings of POPL'98, 25th Annual SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languagesges 184—
196, 1998.

5] W. Corporation. http://www.wingsoft.com/.

G. DeFouw, D. Grove, and C. Chambers. Fast interproce-
dural class analysis. IRroceedings of POPL'98, 25th An-
nual SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languagegages 222-236, San Diego, Califor-
nia, January 1998.

I. P. Goulden and D. M. Jacksoi€ombinatorial Enumera-
tion. Wiley, 1983.

K. Holmes. Computer software protection. US Patent
5,287,407, Assignee: International Business Machines, Feb.
1994.

A. Hosking and N. Nystrom. BLOAT: Bytecode-
level optimizer and analysis tool. Purdue University,
www.cs.purdue.edu/homes/hosking/research.html, 1999.
R. L.Davidson and N. Myhrvold. Method and system for
generating and auditing a signature for a computer program.
US Patent 5,559,884, Assignee: Microsoft Corp, Sept. 1996.
Sun Microsystems. Java 2 SDK,
standard edition documentation.
http://www.javasoft.com/products/jdk/1.2/docs/index.html,
2000.

S. A. Moskowitz and M. Cooperman. Method for stega-
cipher protection of computer code. US Patent 5,745,569,
Assignee: The Dice Company, Jan. 1996.

J. Palsberg and M. I. Schwartzbach. Object-oriented type
inference. InProceedings of OOPSLA91, ACM SIG-
PLAN Sixth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applicatiopages
146-161, Phoenix, Arizona, October 1991.

F. A. P. Peticolas, R. J. Anderson, and M. G. Kuhn. Attacks
on copyright marking systems. Rroceedings of the Second
Workhop on Information HidingApr. 1998.

P. R. Samson. Apparatus and method for serializing and val-
idating copies of computer software. US Patent 5,287,408,
Assignee: Autodesk, Inc, Feb. 1994.

K. Tao and J. Palsberg. The Java tree builder. Purdue Uni-
versity, www.cs.purdue.edu/jtb, 1997.

F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical ex-
perience with an application extractor for Ja\&M Systems
Journal 1999.



