
CERIAS Tech Report 2004-30

EXPERIENCE WITH SOFTWARE WATERMARKING

by Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, Yi Zhang

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



Experience with Software Watermarking

Jens Palsberg Sowmya Krishnaswamy Minseok Kwon Di Ma Qiuyun Shao Yi Zhang
CERIAS and Department of Computer Science

Purdue University
West Lafayette, IN 47907

�palsberg,madi�@cs.purdue.edu

Abstract

There are at least four U.S. patents on software wa-
termarking, and an idea for further advancing the state
of the art was presented in 1999 by Collberg and Thom-
borsen. The new idea is to embed a watermark in dynamic
data structures, thereby protecting against many program-
transformation attacks. Until now there have been no re-
ports on practical experience with this technique.

We have implemented and experimented with a water-
marking system for Java based on the ideas of Collberg
and Thomborsen. Our experiments show that watermark-
ing can be done efficiently with moderate increases in code
size, execution times, and heap-space usage,while making
the watermarked code resilient to a variety of program-
transformation attacks. For a particular representation of
watermarks, the time to retrieve a watermark is on the order
of one minute per megabyte of heap space. Our implemen-
tation is not designed to resists all possible attacks; to do
that it should be combined with other protection techniques
such as obfuscation and tamperproofing.

1 Introduction

1.1 The Need to Prove Software Ownership

Suppose Alice has built some software and now wants to
sell it for profit. She copyrights the software, but Bob still
manages to make a pirate copy. Bob may be interested in the
software for several reasons, including 1) private use, 2) in-
dustrial espionage, and 3) further selling for his own profit.
In the first case, Alice’s profits may suffer; in the second
case, some of her algorithmic techniques may be found out;
and in the third case, she may risk that a competitor sells
her own software, perhaps somewhat modified. This leaves
the question:

Question: How does Alice protect her copyright?

Answer: She must be able to prove ownership,
possibly in a court of law, of a given copy of the
software.

If it is known that Alice is capable of proving ownership of
her software, then this capability may help deter theft.

1.2 Approaches to Anti-piracy

Various approaches to anti-piracy have been or could be
tried, including:

� Keep a certified list of customers. If somebody not on
the list has the software, then it must be a pirate copy.

� Link the software to the hardware of a specific ma-
chine. This makes it pointless to copy the software
to some other machine. A further idea is to config-
ure the software such that when a user is logged on
to the Internet, a message with the serial number of
the computer is secretly sent to the software company.
Remark: in 1998 it was found out that on some Intel
computers, the serial number could be read by soft-
ware.

� Link the software to a movable piece of hardware that
cannot easily be copied. This restricts the usage to
a user who possesses the critical piece of hardware.
Such a device is sometimes called a “hardware don-
gle”; and the technique has been called “software dog”
by Tsinghua Archives (Beijing, P.R. China) [1] which
since 1994 has used it for the THDA-MIS multimedia
database system.

� Software watermarking: embed a secret into the soft-
ware which can be retrieved on demand.

The first three of these techniques seem too inflexible for a
setting where software can be downloaded from webpages,
and where mobile code can roam on the Internet. Moreover,
some software is distributed in a form close to source code,



for example, as Java bytecodes, and disassemblers and de-
compilers are getting faster and better. Such considerations
have helped increase interest in software ownership protec-
tion and detection. Watermarking is a method that does not
aim to stop piracy copying, but to prove ownership of the
software and possibly even the data structures and algo-
rithms used in the software. Up to now, there are at least
four U.S. patents on software watermarking [10, 8, 12, 15].

1.3 Attacks on Software Watermarks

Watermarked software may be subject to attacks that
have the objective of locating, distorting, or removing the
watermark. The quality of a watermarking system is cor-
related with the degree to which the watermarked soft-
ware is resistant to attacks. Until now, most approaches
to software watermarking have concentrated on resisting at-
tacks bysemantics-preserving program transformations, in-
cluding compilation, optimization, obfuscation, decompila-
tion, and dead-code removal. Such transformations do not
change the behavior of a program, but they do change the
form of the program. As such, they may easily remove or
distort watermarks that are embedded in the structure of the
program, for example, in comments, in string constants, in
the order of instructions, etc:

� a comment:

/* My software, version 1.0
*/

� a data string:

printf("My software, version
1.0");

� a particular ordering of certain instructions; for ex-
ample, a particular ordering of the branches of an�-
branch switch-statement can encode������� bits.

A program transformation which 1) removes all comments,
2) breaks up all strings into shorter strings, and 3) reorders
instructions whose order is insignificant will remove all of
the example watermarks above. Moreover, if part of a wa-
termark resides in portion of the program which can be de-
termined to be dead code, then a straightforward dead-code
removal may be a successful attack.

The main approaches to defending against such attacks
are to either 1) make the watermark an inherent part of the
programs behavior, or 2) to make the watermark be repre-
sented by data structures that are created at run-time. In the
first category, there is the notion of anEaster Eggwater-
mark which is a piece of code that gets activated after an
unusual input. For example, a particular input sequence to
Microsoft Excel 97 starts an alien-world-exploration game.

In the second category, we find the approach of Collberg
and Thomborsen [3] who explained how to exploit that a
number can be represented as a graph which, in turn, can
be built as an object structure during the execution of a Java
program. The idea is that object structures are difficult to
analyze precisely at compile time because such analysis in-
volves flow analysis and pointer analysis [13, 6]. An at-
tacker might therefore learn little about the location of a
watermark by statically analyzing a program. Note that the
building of an object structure introduces the need for ex-
tra code which builds that object structure. An attacker can
attempt to locate that code even without knowing the ex-
act details of the watermark. Until now there have been no
reports on practical experience with Collberg and Thom-
borsen’s technique.

There are other forms of attack than semantics-
preserving program transformations. Using terminology of
Collberg and Thomborsen [3], asubtractiveattack is one
where Bob, perhaps with some tool support, tries to locate
and remove a watermark. Easter Egg watermarks may be
vulnerable to such attacks because the Easter Egg code may
stand out in a way that a human reader can detect without
much effort. Anadditiveattack is one where Bob inserts his
own watermark in an attempt to override Alice’s watermark,
or at least make it plausible that Alice’s watermark was not
inserted before Bob’s. One possible defense against this
form of attack is to let Alice show that her copy of the soft-
ware contains only her watermark, not Bob’s, which means
Bob’s watermark is added after hers. Another possible pro-
tection mechanism is that Alice engages in a protocol with
a trusted authority to timestamp the hash value of her wa-
termark. Acollusionattack is one where two attackers have
two copies of the same watermarked program—but water-
marked with different watermarks—and compare the two
watermarked programs in an attempt to locate the water-
mark.

An attacker may do more than just analyzing the pro-
gram text; the attacker may also monitor the state of the
heap, registers, etc. during execution. This may reveal a
data structure that is suspiciously long lived, it may also
reveal a condition that always evaluates to true, etc. Such
observations may help locate the watermark.

1.4 Problem Statement

Our goal is to gain practical experience with Collberg
and Thomborsen’s idea of embedding a watermark in dy-
namic data structures. Our first goal is to verify the hypoth-
esis:

is such a watermark resilient to program-
transformation attacks?

Peticolas, Anderson, and Kuhn [14] wrote: “the problem
[with watermarking] is not so much inserting the marks as

2



Attack Protection

program-transformation attackrepresent watermark as an object structure
subtractive attack tamperproofing and obfuscation
collusion attack randomization

Table 1. Attacks and Protection Methods

recognizing them afterwards.” This leads us to ask the ques-
tion:

can we efficiently retrieve such a watermark?

It is not our goal to produce a watermarking system which
is resilient toall of the attacks listed in Section 1.3.

1.5 Our Results

We have implemented and experimented with a wa-
termarking system for Java which embeds a watermark
in dynamic data structures. Our experiments show that
watermarking can be done efficiently with moderate in-
creases in code size, execution times, and heap-space usage,
while making the watermarked code resilient to a variety of
program-transformation attacks. For a particular represen-
tation of watermarks, the time to retrieve a watermark is on
the order of one minute per megabyte of heap space.

Our prototype watermarking system, called
JavaWiz, is publicly available from our web site at
http://www.cs.purdue.edu/s3/, together with all bench-
marks and test inputs. Thus, an interested reader should
be able to reproduce the experimental results presented in
Section 2, and try some attacks.

The version of JavaWiz available from our website is
not designed to resists all possible attacks; to do that it
should be combined with other protection techniques such
as obfuscation and tamperproofing. In this paper we outline
how to combine the techniques implemented in the publicly
available version of JavaWiz with the current best practices
for obfuscation, tamperproofing, and randomization, see ta-
ble 1.

Rest of the Paper. In section 2 we summarize Collberg
and Thomborsen’s idea of embedding a watermark in dy-
namic data structures, we discuss the JavaWiz implementa-
tion, and we show our experimental results. In section 3 we
give a summary and a critique of various protection tech-
niques, and we outline how to integrate them with our other
techniques.

2 Implementation and Experimental Results

We now describe our prototype watermarking system,
called JavaWiz. It can watermark Java 1.2 source programs,

and it is written in Java. If presented with a Java bytecode
program, then we first decompile it to source code using
one of the available bytecode decompilers. JavaWiz does
need access to all parts of the input program, and it does not
touch the standard library.

2.1 Watermark Representation

For simplicity, we assume from now on that a watermark
is a natural number. A number can be represented as a graph
in many ways, e.g., as a Planted Plane Cubic Tree (PPCT).
For use in a watermarking system, it is best to have a choice
between as many kinds of representations as possible. The
current version of JavaWiz uses PPCTs. Here follow a few
details of PPCTs.

A PPCT, see Figure 1, is essentially a binary tree with
one extra node called the Origin, The Origin has a pointer to
the root of the binary tree. Moreover, all leaves of the binary
tree are linked into a circular linked list which includes the
Origin. Finally, each leaf has a self-pointer. Notice that
every node in a PPCT has two outgoing pointers.

A particularly important property of PPCTs is that if we
have a pointer to any node in the PPCT, then we can recover
the Origin. This can help locate a PPCT in an arbitrary heap.

Let us now define mappings from integers to PPCTs and
back. Let
��� be the number of PPCTs with� leaves (this
is called a Catalan number [7].) We have


��� �
�

�
�

�
��� �
�� �

�

We can enumerate the PPCTs with� leaves as shown in
Figure 2.

We denote by� ����� the set of binary trees with�
leaves in the left subtree, and� leaves in right subtree. We
can recursively define the minimum integer represented by
the trees in� ����� as follows:

��� �������� � ��� ������ �� �	 ��

	
��� ���� �� �� ��

��� ������ �� � 


Now let us define the integer that a PPCT represents.
Given a PPCT in which the binary tree is� , we denote the

3



Origin

Figure 1. PPCT

C(1) = 1

C(2) = 1

C(3) = 2

C(4) = 5

00

00

00 11

00 11

22
... ...

Figure 2. Enumeration of PPCT

represented integer by����� �. Then

����� � � �����	
����� 
���
������	�������

	 �����	������

	 ��� ������
������	
�����

��
������	�������

����
�
�� � 


where function��
���������� gives the number of
leaves of the tree rooted by����.

2.2 Watermark Embedding

To watermark a Java program with a given number, we
first determine its PPCT representation. Next we choose a
base class from the original program and convert it into a
node classby adding some fields. Each additional field will
hold an outgoing edge to another node object. The node
class is now a building block for constructing the PPCT,
and off-line we generate straight-line code that constructs
the PPCT. The graph construction code is then merged with
the original program. We do this in a particularly simple
way to illustrate the idea without getting into implementing
full-fledged randomization, obfuscation, and tamperproof-
ing. We view these other protection techniques as building
blocks that can be added on top of our approach. In our
implementation only the “new” expressions in the original
code will be changed. Intuitively if there is an expression
”new A()”, then we may change it to ”new A1()”, and add
a class A1 which extends A and place some watermarking
code in its constructor.

For example, suppose we have the following code for
class A:

class A{
A(){

a1 = 0;
}
int a1;

}

We can change the code into:

class A1{
A1(){

a1 = 0;
<code for building
watermark>// produced offline

}
int a1;

}

While this may seem simple, bordering on trivial,
it is sufficient to protect against a variety of program-
transformation attacks, as we will show later.

4



To resist attacks based on dead-code removal, we create
data dependencies from the original program to the water-
mark. We do this by replacing a statement� in the original
program with a statement of the form

if (x != y) �

wherex,y are distinct nodes in the watermark graph. This
transformation makes the watermark graph part of the com-
putation of the original program, and it requires a powerful
pointer analysis to determine thatx != y is always true.
If a given dead-code removal tool does not determine thatx
!= y is always true, then the watermark will not be elimi-
nated as dead code.

2.3 Watermark Retrieval

When retrieving a watermark, we cannot rely on the
class names of the watermark because class names can be
changed by obfuscators. We retrieve a watermark by ac-
cessing the heap image at some point during execution of
the watermarked program. Getting access to a heap image
is supported by the Java 2 SDK [11] (also known as the Java
Development Kit, Version 1.2.), and we take a snapshot of
the heap image by using the-Xhprof option to thejava
command.

The processing of the heap image proceeds in four steps.

1. Extract potential node classes. We do that by ex-
tracting the set of classes used in the heap image,ex-
ceptthose in the standard Java runtime packages. (Our
watermarking system does not use standard classes as
node classes.)

2. Extract potential node objects. We do that by ex-
tracting the set of objects in the heap image that are of
a potential node class, as determined in step 1.

3. Determine potential edges.For each field in a poten-
tial node object, determine whether it can potentially
hold an outgoing edge in a watermark graph. We do
that by comparing the field’s type declaration with the
potential node classes, as determined in step 1. Af-
ter this step, we have completed building a graph rep-
resentation of the part of the heap image that has a
chance of containing a watermark.

4. Graph search. We are now ready to search for the
watermark graph. In general, this is the problem
of subgraph isomorphism which is known to be NP-
complete.

The rightful owner of the watermarked software knows
what the watermark is. We can use that information to do

a more efficient graph search that takes advantage of know-
ing special properties of the watermark graph. Our proto-
type watermarking system contains an implementation of
such a specialized graph search for the case where the wa-
termark is aPPCT. Our search strategy proceeds by, repeat-
edly, first finding a potential leaf of aPPCT, then locating
a potential origin node, and finally checking that the poten-
tial origin node is indeed an origin node for the watermark
PPCT. Each of these steps involves the traversal of paths
in the graph, and since we know the size of the watermark
PPCT, we have an upper bound on how far we need to pur-
sue a given path. Notice that when searching for aPPCT,
we can prune away all potential node classes with less than
two potential edge fields.

With our specialized search for aPPCT, retrieving a wa-
termark is tractable, although time consuming, as we show
next.

2.4 Experimental Results

Our experiments were run under Solaris 2.5.1 on a Sun
Ultra 2 Model 2200, with 256MB RAM, and two 200MHz
UltraSPARC-I processors, each with 1MB external cache
in addition to their on-chip instruction and data caches.
The UltraSPARC-I data cache is a 16KB write-through,
non-allocating, direct-mapped cache with two 16-byte sub-
blocks per line.

We used the Sun Java 2 SDK Version 1.2.1 Solaris Pro-
duction Release Virtual Machine with the default Just-In-
Time compiler turned on.

We tested our JavaWiz watermarking system on seven
medium-sized Java programs, see table 2. In each case, we
embedded a 40-digit watermark. For each test program, the
third column of the table shows an input that we have used
when measuring the run time and the needed heap space
before and after watermarking.

In the following table we use “before” to denotebefore
watermarking, and we use “after” to denoteafter water-
marking. The listedcode sizesdo not include the standard
libraries. Each test was done five times. The numbers in
the table are the averages. Dimensions:code sizeis in kilo-
bytes;wm timeis in seconds and means the time to embed
a watermark;retr time is in minutes and means the time to
retrieve watermark;execution timeis in seconds and means
the watermarked program’s execution time; andheap space
usageis in kilobytes and means that heap space used by the
watermarked program.

¿From the table 3, one can see that, for our benchmarks:
1) JavaWiz adds 4–12 kilobytes of code (less than 10 kilo-
bytes of code on average), 2) embedding a watermark is
done in less than 20 seconds, often faster, 3) watermark-
ing increases a program’s execution time less than 7%, of-
ten much less, 4) the heap space requirement increases, al-

5



program description test input

javac a compiler for Java the JavaCup source code
javadoc a Java API documentation generator the JavaCup source code
JavaCup an LALR parser generator for Java the CORBA grammar
JTB JTB [16] is a frontend for The Java the Java 1.2 grammar

Compiler Compiler from Sun Microsystems
JavaWiz the watermarking system reported in this paperthe JavaCup source code
compress a java virtual machine spec benchmark some tar files shipped with compress
BLOAT BLOAT [9] is a Java bytecode optimization toolthe JavaCup source code

Table 2. Programs on which we have experimented

program code size wm time retr time execution time heap space usage
before after before after before after

javac 192 201 18.8 s 7.1 min 79.4 s 82.5 s 6,415 6,453
javadoc 187 191 19.9 s 8.9 min 26.7 s 27.4 s 9,770 10,000
JavaCup 362 373 5.6 s 4.6 min 4.3 s 4.6 s 4,041 4,080
JTB 810 815 5.2 s 0.6 min 9.9 s 10.1 s 440 475
JavaWiz 582 591 4.3 s 2.2 min 4.7 s 4.9 s 2,012 2,045
compress 24 32 4.6 s 0.6 min 68.8 s 72.4 s 477 514
BLOAT 1,415 1,427 7.0 s 3.6 min 55.7 s 57.9 s 3,322 3,362

Table 3. Experimental Results

though it should be noted that the increase depends on the
size of the objects of the class which is chosen as node class,
and 5) watermark retrieval is done in about 1 minute per 1
megabytes of heap.

We have tried to attack the watermarked programs with
the Java bytecode obfuscator WingGuard [5] and the Java
packaging tool JAX [17]. We can view obfuscation and
packaging as attacks because they are semantics-preserving
program transformations. JAX is particularly interesting as
an attack because it attempts to eliminate dead code. In all
cases, we found that the watermark was intact after the at-
tacks.

3 Integration of Protection Techniques

Our experience shows that a watermarking system can
greatly benefit from the protection mechanisms of random-
ization, obfuscation, and tamperproofing. In the following,
we give a summary and a critique of the current best prac-
tices, and we discuss how they can be integrated with our
other techniques into a full-fledged watermarking system.

We will assume a worst-case scenario where the attacker
has access to:

1. the watermarked code,

2. a graphical display of the heap during a run of the wa-

termarked code, and

3. the source code for the watermarking system (but not
necessarily the form of data structures used to repre-
sent watermarks.)

Henceforth we will refer to such an attacker as an “expert at-
tacker.” Of course, one could adopt a business model where
anybody who wants their software to be watermarked has to
send it in, and get it watermarked by the owner of the water-
marking software. Still, the watermarking software may be
stolen or simply handed over via bribery. Moreover, one
might be interested in selling the watermarking software
and let the buyers do the watermarking themselves. If the
watermarking software is sold, then it is difficult to prevent
that an attacker gets access to it.

Throughout the this section, we use� to denote the pro-
gram to be watermarked,� to denote the watermark it-
self, and� to denote a piece of straight-line code (generated
off-line) which, when executed, will produce a watermark
graph. Each of the techniques discussed in this section con-
cern the question of producing a merger of� and� which
is resilient to attacks.

3.1 Randomization

To merge� and�, one possibility is to insert� right at
the beginning of the main program of� . This would ensure

6



that� is executed at the beginning of a run of the water-
marked code. It has the drawback that an expert attacker
will know where to look for the� code. An alternative is
an Easter Egg approach where the code is executed after an
unusual input. This has the drawback of being more difficult
to fully automate. Yet another alternative is randomization,
that is, weaving� and� in a random way, and changing
the order, in a random way, of parts of� and� in cases
where the order does not matter. The opportunities for such
random weaving may be limited by the nature of� , but it
has the advantage that even an expert attacker may have to
examine a large part of the watermarked code to find�.

Randomization can protect against collusion attacks to
some extent. Suppose two attackers have access to two
copies of the same software which have been watermarked
with different watermarks (this is also known as “finger-
printing”.) The attackers may do a “diff” of the two copies,
and thereby learn the location of the watermarking code.

3.2 Obfuscation

Obfuscation is useful for two related purposes:

1. to make� unrecognizable, and

2. to make� and� look alike.

If we can achieve (1) and (2), then it will be difficult even
for an expert attacker to locate the obfuscated version of�.

There is a wide variety of obfuscation techniques:
padding, opaque predicates, renaming, variable split-
ting/merging, method inlining/outlining, and many others,
see the survey of Collberg, Thomborsen, and Low [4]. All
of these techniques are general, and any general-purpose
obfuscation tool that implements them can be helpful. Let
us here focus on two obfuscation opportunities that can be
given twists that are specific to the watermarking setting.

First, we can obfuscate� by paddingit with statements
that lead to the building of abigger graph than the one
for representing� . Given that the kind and the size of
the graph for� are secret, the further padding effectively
makes it impossible for an expert attacker to know what part
of the graph is the watermark.

Second, we can obfuscate� based onopaque predicates
[4]. The idea of obfuscation with opaque predicates is to
change a statement� into a conditional statement “if
 then
�”, where
 is an opaque predicate. An opaque predicate
is a condition which always evaluates totrue (or always
evaluates tofalse), but where this property is difficult to
determine for an attacker. The use of opaque predicates
will therefore make it more difficult to determine the control
flow by just inspecting the program.

A problem with opaque predicates is that if an attacker
can monitor the heap, registers, etc. during execution, then it

may quickly be revealed that a given predicate always eval-
uates to true. To protect against such an attack, one needs
to avoid that a predicate always evaluates to the same re-
sult. This can be done by obfuscating with “dynamically”
opaque predicates, that is, a family ofcorrelatedpredicates
which all evaluate to the same result in any given run, but in
different runs they may evaluate to different results. For ex-
ample, if we have five correlated predicates, then we might
observe that they evaluate as shown in the following table.

Predicate Run 1 Run 2 Run 3 Run 4 Run 5
Pred 1 T T F T F
Pred 2 T T F T F
Pred 3 T T F T F
Pred 4 T T F T F
Pred 5 T T F T F

It seems advantageous to use both traditional opaque
predicates and dynamically opaque predicates for obfusca-
tion because it makes it difficult for an attacker to determine
whether a given predicate is either

� one of those from the original program, or

� a traditional opaque predicate, or

� a dynamically opaque predicate.

The attacker may monitor the results of evaluating the pred-
icates in a program in various runs, but this may not give a
solid basis for classifying the predicates correctly. If there
are many predicates overall, then the classifying task will
require a large effort. In particular, determining which pred-
icates are correlated may mean keeping track of an expo-
nentially many sets of predicates.

An attacker might consider using a static analysis with
the purpose of detecting branch correlations. One such anal-
ysis has been presented by Bodik, Gupta, and Soffa [2]. We
see it as essential that an implementation of dynamically
opaque predicates cannot be beaten by, at least, the current
static analysis techniques.

One drawback of dynamically opaque predicates is that
they seem to require more code to be inserted into� than
traditional opaque predicates, because of the need to corre-
late the predicates. The extra code may be a vulnerability
in itself, and it may help slow down the execution of the
watermarked program.

It turns out that aPPCT is an excellent source for opaque
predicates. For example, we can maintain two pointers from
the outside to nodes in a PPCT, and from time to time move
the pointers to point to other nodes in the PPCT. It is easy
to maintain the invariant that, say, the two pointers point to
different node. Thus, if the pointers reside in variables� and
�, then the condition��!=�� is an opaque predicate which
always evaluates totrue and it is difficult for an attacker to
guess the invariant.

7



We can use the watermark PPCT as the source of opaque
predicates for obfuscation of those parts of the original pro-
gram� that come after all of� has been executed. (The in-
terleaving of� and� will determine how much of� comes
after�.) A problem here is that this will leave both� and
the initial portion of� unobfuscated. We can improve the
situation by inserting code for building a second, random,
PPCT (say) at the very beginning of the merged program,
and then use that as a basis for obfuscation. We might even
choose to use the random PPCT as a basis for obfuscation
of all of � merged with�.

The use of a second PPCT highlights a chicken-and-egg
problem because now the code that builds the random PPCT
is unobfuscated and therefore a possible target for an ex-
pert attacker. It is conceivable that an expert attacker could
locate the code for building the random PPCT and from
there unravel the whole construction. With current technol-
ogy, the only approach to protecting against such an attack
seems to be to, after the other transformations are done, ap-
ply a general-purpose obfuscation tool, such as WingGuard
[5]. Note though, that if the extra obfuscation technique
is known to an expert attacker, then there may be ways of
unobfuscating the code.

3.3 Tamperproofing

Collberg and Thomborsen [3] gave an example of tam-
perproofing a watermark representation using the Java re-
flection mechanism. The idea is to verify, at run time, that
the classes used to represent the watermark are intact. How-
ever, as noted in [3], this style of tamperproofing is not
stealthy.

An alternative idea is to base tamperproofing on the in-
tegrity of the watermark graph structure itself. For example,
a tamperproofing mechanism may be able to detect, at run
time, that the graph representing the watermark is no longer
of the required form, say, a PPCT. The approach to obfusca-
tion based on deriving opaque predicates from a watermark
PPCT achieves a level of such tamperproofing because it
creates data dependencies from� to the watermark graph.
If an attacker manages to distort the watermark PPCT, then
some opaque predicates may evaluate tofalse instead of
true. If this is the case, then the program may afterwards
begin to misbehave in a unpredictable way. Moreover,�

is obfuscated with the use of the random PPCT, so if that
PPCT is distorted, then� may misbehave, leading to the
wrong watermark PPCT, and, in turn, a misbehaving� . By
doing this, we have created a link of dependency from the
correctness of the original programP to the integrity of the
watermarkW. The overall effect is that once the embedded
watermark loses its original form, the semantics of the wa-
termarked program will also change.

We can take this idea one step further and make it

stronger by building a dependency cycle. For example, sup-
pose we could create a dependency from the code that builds
some random PPCT to the original data structures. This
would create a dependency cycle (from the original pro-
gram to the watermark PPCT, to the random PPCT, back
to the original program) and thereby make it difficult to
change something without affecting everything else. One
way of achieving this would be to ask the programmer of
� to supply some opaque predicates based on the original
data structures. This will make the watermarking system
semi-automatic rather than fully automatic.

3.4 Pool of Watermark Representations

It is beneficial to hide theformsof watermark represen-
tations from attackers. If an attacker knows the form of data
structure used to represent a watermark, the attacker can
do a heap analysis to look for specific instances of the wa-
termark representation; and that may be easy and inexpen-
sive to do. Thus it is an improvement to separate the water-
marking system and the watermark data structures. It seems
best to establish apoolof different kinds of watermark data
structures, and not just to focus on PPCT. For example, a
company can develop its own proprietary watermark repre-
sentations. When watermarking a piece of program, at least
one watermark data structure will be chosen from the pool.

It might seem plausible that we make all the potential
candidates of watermark data structures public once we
have a large number of them. This is because an attacker
has to try, in the worst case, all of them to find the hidden
watermark. However, this idea has a flaw: the workload for
attackers to try all the candidates may not be prohibitively
heavy. On the contrary, the cost is just the sum of trying
each one; and one can carry out the work in parallel, which
can be done in an efficient way.

We can now summarize the properties of PPCTs that
make them attractive as watermark representations. When
choosing other forms of representation, it seems best to
choose some with similar properties. Specifically, a rep-
resentation:

� should have a stealthy heap images,

� should represent a number via some enumeration
method (this is generally difficult, although it may not
be necessary if one can publish the hash of a graph),

� should be a source of opaque predicates (for creating
dependencies), and

� should have some special properties that are easy to
check (for tamperproofing) and that do not stand out
(for stealthiness).

8



3.5 Summary

With the above discussion in mind, the merging of� and
� may proceed in three steps:

1. choose from the watermark representation pool an ap-
propriate� , generate� from� offline;

2. pad� and merge it with� using randomization, ob-
fuscation, and tamperproofing based on one or more
graphs (e.g., PPCTs); and

3. obfuscate the outcome of (1) with a general-purpose
obfuscator.

An attacker may attempt to carry out the following steps:

1. Locate the code that builds the graphs;

2. remove from rest of the program all dependencies on
the graphs, that is, remove all opaque and dynamically
opaque predicates; and

3. remove or distort the code that builds the two graphs.

A goal of a good watermarking system should be to make it
useless for an attacker to do just (1), and to make it difficult
to do (2), hence also difficult to do (3).

4 Conclusion

Our current watermarking system is a promising step in
the direction of a practically useful tool. The idea of em-
bedding a watermark in dynamic data structures is viable, it
leads to watermarked programs that are resilient to a variety
of program-transformation attacks, and such watermarks
can be retrieved efficiently. To protect against other attacks,
one needs to integrate other protection techniques such as
obfuscation and tamperproofing. Each of these protection
methods gives protection against specific attacks. While
there may be simple ways of putting these methods together
in a watermarking system, it is better if we can utilize them
in a correlated way so that each of them supports the others
and thereby makes attacks more difficult.

Acknowledgments.We thank the reviewers for helpful
comments. We also thank the other members of the Secure
Software Systems group for many discussions about water-
marking.

References

[1] T. Archives. http://www.tsinghua.edu.cn/docsn/dag/djse.htm,
1999.

[2] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow
information using infeasible paths. InProceedings of the 5th
ACM SIGSOFT Symposium on Software Engineering, pages
361–377, Sept. 1997.

[3] C. Collberg and C. Thomborsen. Software watermark-
ing: Models and dynamic embeddings. InProceedings
of POPL’99, 26th Annual SIGPLAN–SIGACT Symposium
on Principles of Programming Languages, pages 311–324,
1999.

[4] C. Collberg, C. Thomborsen, and D. Low. Manufactoring
cheap, resilient, and stealthy opaque constructs. InProceed-
ings of POPL’98, 25th Annual SIGPLAN–SIGACT Sympo-
sium on Principles of Programming Languages, pages 184–
196, 1998.

[5] W. Corporation. http://www.wingsoft.com/.
[6] G. DeFouw, D. Grove, and C. Chambers. Fast interproce-

dural class analysis. InProceedings of POPL’98, 25th An-
nual SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages, pages 222–236, San Diego, Califor-
nia, January 1998.

[7] I. P. Goulden and D. M. Jackson.Combinatorial Enumera-
tion. Wiley, 1983.

[8] K. Holmes. Computer software protection. US Patent
5,287,407, Assignee: International Business Machines, Feb.
1994.

[9] A. Hosking and N. Nystrom. BLOAT: Bytecode-
level optimizer and analysis tool. Purdue University,
www.cs.purdue.edu/homes/hosking/research.html, 1999.

[10] R. L.Davidson and N. Myhrvold. Method and system for
generating and auditing a signature for a computer program.
US Patent 5,559,884, Assignee: Microsoft Corp, Sept. 1996.

[11] Sun Microsystems. Java 2 SDK,
standard edition documentation.
http://www.javasoft.com/products/jdk/1.2/docs/index.html,
2000.

[12] S. A. Moskowitz and M. Cooperman. Method for stega-
cipher protection of computer code. US Patent 5,745,569,
Assignee: The Dice Company, Jan. 1996.

[13] J. Palsberg and M. I. Schwartzbach. Object-oriented type
inference. InProceedings of OOPSLA’91, ACM SIG-
PLAN Sixth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, pages
146–161, Phoenix, Arizona, October 1991.

[14] F. A. P. Peticolas, R. J. Anderson, and M. G. Kuhn. Attacks
on copyright marking systems. InProceedings of the Second
Workhop on Information Hiding, Apr. 1998.

[15] P. R. Samson. Apparatus and method for serializing and val-
idating copies of computer software. US Patent 5,287,408,
Assignee: Autodesk, Inc, Feb. 1994.

[16] K. Tao and J. Palsberg. The Java tree builder. Purdue Uni-
versity, www.cs.purdue.edu/jtb, 1997.

[17] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical ex-
perience with an application extractor for Java.IBM Systems
Journal, 1999.

9


