Efficient Commer ce Protocols Based on One-Time Pads

Michad A. Schreider and Edward W. Felten
Seaure Internet Programming Laboratory
Department of Computer Science
Princeton University
Princeton, NJ 08544 USA

Abstract

We present a new commerce protocol that allows
customers and merchants to conduct face-to-face credit-
card authorizations with a credit card company securely
with the option of anonymity for the customer, the
merchant, or both. Our protocol guarantees that both
parties agree to and know the outcome of each trans-
action. Our protocol has three advantages over others.
First, we need only two Message Authentication Code
(MAC) operations per party per transaction, fewer than
most popular protocols. Second, our own MAC function,
OTPMAC, does not rely on the existence of one-way
functions or on any other unproven hypothesis. Third,
our protocol generatesa new one-timeidentifier per party
per transaction, preventing the linkage of multiple trans-
actions to a single party. Additionally, the protocol can
operate in modes using alternatives to the one-time pad,
including cryptographic random number generators, and
conventional cryptographic MAC functions.

1 Introduction

Traditional credit-card commerce suffers from a
number of vulnerabilities. Customers are identified only
by a static identifier — their credit card number. Credit
card numbers may be stolen, copied, or even randomly
generated. Since ¢edit card numbersare static, a number
that is copied or stolen may be used for fraud months or
even years later. Frauduent vendors might charge a
customer a different amount than is printed on the
customer’s recapt. Since a more seadre system would
most likely introduce @mplications to the use of credit
cards, the vulnerabiliti es are usually smply accepted by a
population of users who are willi ng to trade seaurity for
ease of use.!

' In some @ses, users are protedted by legal or other means, but some
party (e.g. the ard-issuer) remainsliable. Inall cases, theliable party is
the one who trades their own liability for (the user’s) ease of use, o this
exception daesn’t change the basic argument.

Our commerce protocol suffers from none of these
vulnerahiliti es. The static identifiers of traditional credit
cards have been replaced with one-timeidentifiersthat are
used for one transaction only. In addition, Messge
Authentication Codes (MACs) are used to seaure
transactions against tampering. This combination of one-
time identifiers and MACs allows bath customers and
merchants to conduct transactions with extremely high
confidence in the integrity of those transactions, even
when they do not learn each other’ s identity.

In some dtuations, including the faceto-face
transaction environment described below, it may not be
necessry to provide dual-anonymity. We believe that
our protocol is gill good for these situations due to its
efficiency and provable seaurity.

Our protocol has advantages over other eedronic
commerce protocols such as SET[8][12], Milli Cent[4][7],
and NetBill[2][13]. Only two MAC operations are
required per transaction, as compared to threeor four hash
or signature operations for Milli Cent, and an even greater
number of RSA operations for SET. Our protocol also
provides a significant degree of anonymity, including the
inabilit y to link multi ple transactions to the same user, not
found in these other systems.

Our commerce protocol uses a onetime pad to
generate one-time identifiers and MACs. If the onetime
pad is chosen by some truly random mechanism, then it is
possble to prove that the probabilit y of forging a message
is vanishingly small. In particular, the seaurity of the
protocol is not dependent on the eistence of one-way
functions or any other unproven asauumption. However,
since one-time pads are not always practical, our protocol
can use a pseudorandom stream, such as one based on a
message authentication code (MAC).

2 Background & Purpose
2.1 Transaction Environment

Our commerce protocol is designed to provide seaurity
and a degreeof anonymity for bath a customer Aliceand



a merchant Bob qerating in a conventional “chedcout
ling” payment transaction environment. Our protocol is
particularly concerned with the authorization phase of a
conventional credit card transaction.

Our protocol gives bath the Alice and Bob the option
to concedl their own identities. When bath identities are
concealed, bath Aliceand Bob must externally chedk that
they are receving messages from the intended party in
order to prevent a man-in-the-midde attack. Thisiseasy
to do for faceto-face transactions, where the aistomer
and merchant have some kind of physical link. The
“Anonymity Options’ sedion below provides me
additional solutions.

It is asauumed that the austomer physically possesses a
token (e.g. smart card, digital wallet, etc.) capable of
running this protocol. The aistomer communicates with
the merchant, who then conneds to a Credit Card
Company (CCQ) for transaction authorizetion, process
ing, and confirmation.

We will assume that the austomer and merchant share
a common CCC. The protocol is easly extensible to
provide for multiple distinct CCCs. These extensions
would also provide for the transport and handling of the
“brand” information of a conventional credit card system.

2.2  Guarantees

Our protocol guarantees that, with overwhelming
probability, the CCC will processno transaction without
the awarenessand agreement of bath the austomer and the
merchant. In addition, the protocol will remncile all
authorized transactions, so that bath the astomer and
merchant will be independently certain of the outcome of
each transaction, also with overwhelming probability.

2.3 Man-in-the-middle Attacks

Although bath the Alice and Bob must authenticate
themselves to the CCC, it is not necessary for them to
reveal their identities to each other. When used in the
anonymous mode, this protocol is inherently subjed to a
“man-in-the-middle’ type of attack. (Any fully
anonymous protocol is sibjed to this type of attack.) In
the attack, an attacker poses as Bobto Aliceby making an
identical payment reguest as Bob's. When Alice
authorizes the transaction, she will actually be paying the
attacker, instead of Bob. This “merchant spodfing,” and
the analogous “customer spodfing” attack are only
possble if an attacker can alter the first two messages of
the protocol, where the parties are first identified. Note
that in order to perform a“merchant spodfing” attack, the
attacker must also be registered with the CCC as a
merchant. Since the real merchant (who expeded to
participate in the protocol but did not do so) immediately

deteds the fraud, it can be reported to the CCC, who can
easily tracethe transaction back to the attacker.

The defense againgt this attack is to provide some sort
of reliable transport between Alice and Bob for the first
two messages.  Sincethe protocol will most often be used
for faceto-face transactions, we simply require some sort
of physical connedion between Alice and Bob. For
example, the austomer should physically attach or insert
their token into the merchant’s equipment. It is posshle
to extend the protocol to remove this restriction (e.g. to
alow use in Internet transactions). However, we @nnot
defend against man-in-theemidde attacks without
compromising the anonymity property enjoyed by the
faceto-face protocol.

2.4  Malicious Customersand M er chants

Our commerce protocol is designed to proted Bob if
Alice is a malicious customer who attempts to commit
fraud. A malicious customer, of course, isnot required to
adhere to the protocol, and might supdy arbitrary
messages to the merchant. Even so, the probability of a
successul forgery attempt can be made arbitrarily low.

Our commerce protocol is also designed to proted
Alice if Bob is a malicious merchant who attempts to
charge Alice more or lessthan she intended to pay. This
includes protedion against Bob using stored or
memorized information from previous transactions to
authorize additional transactions without Aliceés know-
ledge. Aliceis also proteded against an attack in which
Bob says that a succesdul transaction has actually fail ed,
and then requests that she authorize the transaction again,
thus double-charging her.

Finaly, bath customer and merchant are proteded
from compromised communication links, where messages
between the merchant and CCCare observed, intercepted,
atered, or forged. The protocal ill guarantees, with
overwhelming probability, that only mutualy agreed
upon transactions will be accepted by the CCC,

3 Players

Alice Bob, and the CCC must al participate in the
protocol. Figure 1 shows the threeplayers, as well asthe
seqets they must have exchanged in advance

3.1 Alice, the customer

Alice the austomer, must share have a preexisting
seqet-sharing relationship with the CCC. The shared
seqets include a read-only one-time pad and a sequence
number that can be incremented. After the seaets are
established, Alice does not need to communicate diredly
with the CCC.
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3.2 Bob, the M erchant

In addition to the physical connedion to the austomer,
Bob, the merchant, isrequired to establi sh aconnedion to
the CCC. Thisconnedion does not reguire any additi onal
seaurity abowve that provided by our commerce protocol.

Bob must also have a preeisting seaet-sharing
relationship with the CCC. Thisrelationship isidentical
to the austomer/CCCrelationship. In fact, either Aliceor
Bob could act as a customer or merchant in a transaction,
since the protocol treats merchants and customers in the
same manner, although the CCCwill probably only all ow
customer-merchant transactions.

3.3 The Credit Card Companies (CCCs)

For the purposes of discusgon, it isasaumed that Alice
and Bobshareasingle CCC. Thus, asingle antity isable
to verify the identities of bath Alice and Bob, as well as
their authorization of transactions.

By a smple extension, our commerce protocol may be
modified so that customers and merchants have separate
CCGs, as long as the CCGCs trust one ancther. In this
case, the merchant contacts his own CCC, who verifies
the merchant’s identity. Then the merchant's CCC
contacts the austomer’s CCC, who werifies the austomer’s
identity. If the CCCs agree they processthe transaction
together. Finaly, the astomer’s CCC generates a
confirmation for the aistomer. The merchant's CCC
generates a confirmation for the merchant, and relaysbath
over the merchant/CCClink.

Since the negotiation between CCCs is outside the
scope of our commerce protocol, and since merchant
communication islimited to the merchant’ sown CCC, the
two CCCGCs can be viewed as a single “composite’” CCC,
shared between customer and merchant. This is the
justification for the simpler model used in our discusson.

4  Protocol Basics
41 Onetime ldentities

To preserve anonymity, bath Alice and Bob compute
and use one-time identities. These identiti es are random
numbers and are only used for a single transaction. They
are the only identifying information required in messages.
The one-time identifiers are derived from the one-time
pads shared between AliceBob and the CCC, allowing
the CCC to identify AliceBob, but preventing anyone
else from determining their identities.

4.2  Anonymity Options

Our protocol allows each party the option of revealing
their own identity. Each party can dedde independently
whether to remain anonymous or reveal their identity. If
a party deddes to reveal their identity, then they must
have agreed on a public identity string with their CCC.
Thisidentity string might contain multi ple representations
of a single identity (e.g. multiple character sets or lang-
uages), but the entire string is always transmitted and used
in MAC calculations as a unit. This identity string is
transmitted with the one-time identifiers between Alice
and Bob. Each party who receves a revealed identity
incorporates that identity into their respedive MAC.

The public identities are not sent to the CCC. The
CCCcan identify bath parties by their one-time identities
aone, and can then lodk up the public identities as
necessary. Since the public identity for each party is
included in the MAC of the other, the CCCwill deted if a
party lies about their own identity (the MAC will not
ched properly).

The man-in-the-middle attack described aboveis made
much more difficult if Bob chooses to reveal hisidentity.
This allows Alice to be sure she is paying the @rred
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Figure 2: Normal Protocol Operation

merchant, although it doesn't prevent an attacker from
making Alice' s payment for her.
43 Message MACs

To prevent forgery, Alice and Bob each independently
calculate MACs on cetain values. These MACs are
calculated using OTPMAC and the one-time pads shared
between customer/merchant and CCC. This allows the
CCC to werify the authenticity of a transaction author-
ization, and prevents an attacker from forging one.

5 Standard Protocol M essages

A normal transaction in our protocol requires five
messages. If synchronization is necessary, two additional
messages are used. In additi on to theinformation detail ed
below, each message begins with a tag identifying the
protocol and the message type. The message tags are
{MO, M1, M2, M3, M4, M5, M6}.

In preparation for the transaction, Bob must prepare a
string trans, which contains the actual transaction
parameters (e.g. amount of money). After recaving
Bob's message, the CCC will generate the string result,
which gives bath Alice and Bob the result of the
transaction. The protocol guarantees that bath Aliceand
Bobwill accept identical copies of bath trans and result.

When a transaction begins, principals use their own
sequence number to index into their one-time pads. The
following values are fetched from the one-time pad in
order:

* |D, used asthe party’ s one-time identifier

*  SYNC, used in synchronizaion messages

* Q, usedtocalculate a MAC for the authorizetion
* R, used to verify the MAC for the result

Subscripts represent the values calculated by a
particular party. For example, 1Ds represents Alices
value for ID. The MAC of a message X using the seaet
key k is represented by pac(k, X).

51 TagMO: Transaction Information

Bob - Alice {IDg, Ng, trans}

In thismessge, Bobisasking Aliceto authorizetrans.
Ng is either Bob's real name, or an empty string, if he
chooses to be anonymous. In this case, Bob doesn’'t
reveal hisown identity to Alicesincel Dg isindistinguish-
able from a random number.

52 TagM1: Customer Authorization
Alice - Bol {IDa, Na, 1Dg, Ha}
Ha = mac(Qa, {M1, IDa, Na, IDg, Ng, trans})

Alice mmmits to trans by computing and sending her
one-time identifier and MAC in this messge. The
presenceof | Dg in this message all ows Bobto identify the
transaction to which this message refers. Nj is ether
Alicésreal name, or an empty string, if she cdhoosesto be
anonymous. The four fields of this message are
inseparable sincethe MAC has been calculated using I Dy,
Na, and | Dg.

53 TagM2: Merchant Request

Bob - CCC {lDA, aa, IDg, g, HA, HB, tl’anS}
HA = MAC(QA: {Ml, IDA, NA, IDB, NB: tl’anS})
HB = MAC(QB: {MZ, IDA, NA, IDB, NB: tl’anS})

By sending his one-time identifier and MAC with this
message, Bob also commits to trans. To send the



message, Bob must gather bath 1Ds, bath MACs, and
transitself, and send the whole bundle to the CCC.

The flags a, and ap are inserted by Bob to tell the
CCCif either Alice or Bob (respedively) have cosen to
be anonymous. (Bob knows Alice wants to ke
anonymous when she sends him an empty string.) This
information tell s the CCCto use an empty string in place
of the each party’s real namein the MAC calculation. |f
these flags are atered by any party, the transaction will
smply fail, since the MAC will not match when
calculated by the CCC,

The CCClooks up ID4 and IDg in its own tables (see
the Performance discusson below for more details). It
can then retrieve the one-time pads for Alice and Bob,
and use these to verify the MACs. Finally, the CCCcan
perform the transaction.

54 TagM3: CCC Response

CCC - Bob: {IDa, IDg, Ha', Hg', result}
Ha' = mac(Ra, {M3, I D4, 1Dg, result})
Hg" = mac(Rs, {M4, ID4, 1Dg, result})

The CCCreturnsthe string result, informing bath Bob
and Alice of the outcome of trans. To prevent forgery,
the CCC computes MACs for each of Alice and Bob
using Ra and Rg respedively. These MAC values bind
the five message dements together. The ID fields allow
Bob to determine to which of Bob's transactions this
message refers. Bob now has positive @nfirmation of the
transaction outcome.  He increments his squence
number, and although heis gill required to send M4 on to
Alice he is immediately ready to begin another
transaction.

55 TagM4: Response Relay

Bob - Alice {IDa, IDg, Ha', result}
Ha'= mac(Ra, {M4, I D4, I Dg, result})

This message wntains only those portions of message
type M3 which are relevant to Alice Alice performs the
same MAC ched as Bob to verify the integrity of result.
Alice @n also usethe ID fieldsto hind this message to an
in-progress transaction. Alice now has positive
confirmation of the transaction outcome. Sheincrements
her sequence number and is ready for another transaction.

6 Synchronization M essages

Normally, the CCC can pre-compute Alice s next one-
time identity using the CCC's own copy of her sequence
number and one-time pad. Then, when amessage arrives,
a simple hash operation or table lookup can be used to

identify Alice Once the transaction is completed, the
sequence number isincremented, and the processrepeats.

However, should the protocol terminate before
completion, the sequence numbers of Aliceand the CCC,
and thus their pre-computed one-time identities, may not
match. Thislack of synchronization is a serious problem
since the CCC will no longer be able to identify Alice
This might happen if the CCC, merchant, or link goes
down in the midde of a transaction, or if the merchant
violates the protocol by not sending the last message.

Bobisableto attack Aliceby claiming that the CCCis
unreachable while actually processng the transaction
(taking Alice€ s money) and withholding the last message
(presumably also withholding the goods Aliceintended to
purchase). SinceAlicehas no dired communication with
the CCC, she @nnot immediately deted this attack.
However, she will noticeit later, and can dispute it like
shewould dispute any inaccurate transaction.

6.1  Suspicious State

To solve this gnchronization problem, one additional
state is added to the protocol. If Alice @mmits to a
transaction (by sending M1), but does not recéve avalid
confirmation message M4, then she is sid to be in the
“suspicious’ state. When Aliceis uspicious, Alicésown
sequence number might be one lessthan the CCCsidea
of Alicés squence number. Alice does not engage in
any additional transactions until she leaves this date by
the synchronization protocol below.

This g/nchronizaion protocol might be initiated by
Alice while she is gill conneded to the merchant, or it
might be initiated when Alice reaches another merchant.
This protocol must complete before any additional
transactions are permitted, so the new merchant acts as a
courier for the synchronizetion messges.  Since Alice
presumably wants to make a purchase when she presents
her token to the next merchant, there is an incentive for
merchants to provide the synchronization courier service

6.2 TagMb5: Synchronization Request
Alice -~ CCC {IDa, SYNC,p}

Upon recept of message M5, the CCC lodks up the
one-timeidentifier. Sincetheidentifier in M5 might have
been already used by the aistomer, bath the arrent and
immediately previous one-time identifiers must be pre-
computed by the CCC. (Matching against this twice-as-
large database of identities is only necessry for
synchronization messages.) If the one-time identifier has
been used on a succesdul transaction, the CCC resends
the original M4 response. |If the one-time identifier has
not been used, then the CCC generates message M6, and
increments Alice s squence number.
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6.3 TagM6: Synchronization Response

Alice » CCC {IDa, Ra [seetex}

M6 is only returned if no transaction used the one-time
identifier spedfied in M5. In this case, the CCC has
receved the arrent (susped) one-time identifier for the
customer, and incremented the sequence number to the
next one-time identifier. This means that any transaction
authorized by the austomer using the susped identifier is
effedively void. This prevents a merchant or attacker
from delaying a transaction and resubmitting it later —
once the synchronization protocol completes, the delayed
transaction is no longer valid.

The fiedd R, differs from previous fieds gnce it
exposes bits that are, at one point in the protocol, used as
the seaet in a MAC calculation. However, since M6 is
only returned when the CCC never procesed a
transaction, M6 will only be sent when these bits have not
been used. R4 isavery long value, but only the last few
bytes (the same size asa SYNC field) should be included.
This helps prevents CCC response messages from being
forged. After synchronizetion, the astomer is ready to
begin a new transaction.

7 Operational Modes

The generation of one-time identities and MACs can
be done in various ways, depending upon the operational
requirements. The following modes exhibit various
capabilities of the cmmerce protocol, and may be
appropriate in different situations.

7.1  OTP (Unconditionally Secure) M ode

In OTP mode, the seaets dared between client and
CCCinclude a truly random one-time pad. OTPMAC is
used to generate MACs for messages. This mode is
unconditionally seaure. It does not rely on the eistence of
one-way functions, or on any other unproven conjedure.

Given any value for the seaurity parameter o, it can be
proven that the probability of forging just one message is
lessthan o for suitably chosen parameters.

This mode requires that bath the dient and CCC store
a (posshly large) stream of random bits. In addition,
once the onetime pad is exhausted, no additional
transactions may take place
7.2 CPRNG Mode
In the @se where the storage of alarge one-timepad is
not practical, pseudo-random numbers can be used
instead. In this mode, a cryptographic pseudo-random
number generator[3] (CPRNG) is used to generate the bits
of the one-time pad as necessary; all other operations are
identical to OTP mode. Only a sead for the CPRNG
nedls to be shared between client and CCC. In this mode,
the user can continue engaging in transactions forever —
thereisno ane-time pad that can be exhausted. However,
the seaurity of the protocol is bounded by the aypto-
graphic strength of the CPRNG used.
7.3 HMAC Mode

The HMAC mode is smilar to the CPRNG mode, but
uses HMAC[1][5] in two distinct ways. First, HMAC is
used as the CPRNG to generate one-time identifiers, asin
CPRNG mode. Semnd, HMAC replaces OTPMAC as
the MAC function. This mode would be most useful
when a cryptographic hash function can be @lculated
more quickly or easily than OTPMAC (perhaps in a
hardware implementation), and when we are not worried
about the lack of proven seaurity for cryptographic hash
functions. Thereisno ane-time pad to exhaust in HMAC
mode, so the dient may continue engaging in transactions
for a very long time. A seaet key and sequence number
are shared between client and CCC. (Of course, periodic
key changes are always prudent.)

To compute a one-time identity, an HMAC operation
is applied to the sequence number, using the seaet key.



This generates an unpredictable identifier, which does not
reveal the seaet key. The SYNC field is generated in a
similar way, athough this calculation may be delayed
sinceit is not needed in most transactions. The HMAC
mode of our prototype implementation uses 160-bit one-
time identifiers generated by HMAC-SHA-1[6][10].

7.4  Hybrid Modes

The implementation difference between OTP and
CPRNG modes is that OTP mode stores a one-time pad,
while CPRNG mode generates the values as needed. This
means that OTP-mode tends to use more space while
CPRNG-mode tends to use more time. These modes can
interoperate in a hybrid mode for the benefit of bath
customer and CCC.

In hybrid-mode, one party usesa CPRNG to generate a
one-time pad for the other party. The second party uses
the pad asin OTP mode. The first party stores only the
CPRNG, not the precomputed values, and uses it to
regenerate the values as necessary as in CPRNG-mode.

For example, suppose the austomer uses a devicewith
extremely limited computational power, but an acceptable
amount of storage. While the CCC uses a device with
enormous computational power, it is expensive to store
large one-time pads for a large number of clients. A
hybrid mode is best suited to this stuation; it reduces
client computation, whil e al'so reducing CCC data storage
requirements. This mode @n also be used if the CCC
uses a seaet generator function, since the CPRNG nedl
not be disclosed to the dients, and is not extractable from
reverse engineaing of the dient’s token or software. As
in OTP mode, the dient will eventualy exhaust the
supdy of values from the onetime pad. Also, as in
CPRNG mode, the protocol is as ssaure as the CPRNG.

8 OTPMAC
8.1 Background

OTPMAC is a MAC function spedfically tail ored for
the alculation of MACs using one-time pads instead of
seaet keys. In contrast to most MAC functions,
OTPMAC does not rely on the eistence of one-way-
functions, or on any other unproven hypothesis. The
probability of an attacker succesdully violating the
integrity of a message @n be bounded below a seaurity
parameter g, for any chosen value of ©.

8.2 Choosingaprimep

OTPMAC uses a large prime number p; it is conven-
ient to choose p as a Mersenne prime (a prime of theform
2°-1). To satisfy the seaurity criterion, p should be greater
than /0. The two primary operations in the @l culation

of OTPMAC are addtion and multiplication mod p.
Given a true random one-time pad, OTPMAC returns a
uniformly randomly distributed number mod p.

8.3 Calculation Steps

Thefirst step of OTPMAC isto bresk the message into
chunks {C,, Cy, ...,C,1}. Each chunk should correspond
to a number lessthan p, so lessthan b bits at a time are
taken from the message to form each chunk. The last
chunk is padded with zeros to a convenient boundary.
Finally, one additional chunk C,, containing the length of
the original message in hits (plus one) is appended.

Next, a key K; is generated for each C;. K is a
uniformly random value mod p. Exactly b bits are taken
from the one-time pad for each K;. If thevalueisequal to
p (i.e if al bits are ones) then the value is discarded and
the processis repeated. This processguarantees that the
keys are uniformly randomly distributed mod p.

The next step is to multiply (mod p) each C; by the
corresponding K. All of the resulting products are
summed (mod p) to oltain the final OTPMAC value.

84  Desred Property

A good MAC function should have the following
property: If an attacker has e a stream of messges
and their MACs, but does not know the keys, the attacker
should not be able to generate a corred MAC (with a
probability greater than that of random guessng) for any
messages other than the ones the attacker saw.

85 A Useful Lemma

The product (mod p) of any nonzero constant and a
uniform random variable (mod p) is a uniform random
variable (mod p). Also, the sum (mod p) of any constant
(or independent variable) and a uniform random variable
(mod p) isauniform random variable (mod p). Thus, any
linear function (mod p) on uniform random variables
(mod p) with at least one nonzero coefficient (mod p) isa
uniform random variable (mod p). Thislemmais useful
in showing that OTPMAC does have the desired property.

86 OTPMAC Property

The result of an OTPMAC calculation is a linear
function on the uniform random keys K;. The wefficients
of the linear function are the message dunks C;, and the
length of the message plus one. The result of an
OTPMAC calculation is:

CoKo + CiKy + ... + CaKpg + (N+D)K,

Wewill demonstrate that any change to a message will
induce a change in the OTPMAC result. In each case
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bel ow, the change will be alinear function on the K;, with
at least one nonzero coefficient, and with linearly
independent coefficients from the efficients corres-
ponding to the original message. This property guaran-
tees that an attacker, without knowledge of the K;, cannot
calculate the OTPMAC for the dhanged message with any
probability greater than random guesing. Since the
probability of a corred guessis exactly 1/p, and o = 1/p,
the OTPMAC ched will succeal at the recaver with
probahility no greater than o.

For example, suppose an attacker changes some C; to
C/'. This causes OTPMAC to change by the amount A =
Ki(G'-C) (mod p). (C/’-C) must be nonzero, so the
difference A is alinear function with at least one nonzero
coefficient on a uniformly random variable. The result of
such afunction is a uniformly random variable.

The same is true if the attacker attempts to modify
more that one dwunk of the message. Each C; which is
changed to a different value C;’ forces another coefficient
of A to be nonzero. As long as there is at least one
nonzero coefficient, A will be auniform random variable.

In these arguments, we have asauumed that the
coefficients of the danged message are linearly
independent from the efficients generated by the
original messge. However, since (n+l) is always a
coefficient, an attacker can’t pick any set of C; that are not
linearly independent. Since OTPMAC requires that the
K; be used only once an attacker only gets one value
generated using a particular set of K;. This prevents the
attacker from picking a message to be a linear

combination of two aher messages — the only linearly
dependent messages must be simple multiples of the
original message. However, sincethe length (n+1) is not
changed, any change in any coefficient will result in a
linearly independent set of coefficients. Therefore, our
asamption isjustified.

Next, suppose an attacker modifies a messge by
changing its length from n to n’.  If the new length is
shorter than the old length by one, then A is (n-C,,.)K.1 -
(n+1)K,. Since (n+l) is nonzero, A is again a linear
function on uniform random variables, and thus arandom
variable. This argument can be etended to include all
messages orter than n. A will aways contain the term
(n+1)K,,, and will never have any other terms containing
Kn. Since (n+1) is always nonzero, the resulting A will
aways be a uniform random variable.

Finally, suppose an attacker lengthensthe message. In
this case, A will always contain aterm (n'+1)K,. (n’'+1)
isagain nonzero, so A will bealinear function on uniform
random variables, and thus a random variable.

Since the OTPMAC value a@annot be alculated
without the keys K;, an attacker cannot succesgully forge
amessge with probability greater than o.

87 OTPMAC Conclusions

« OTPMAC workswell for the @lculation of MAC
values when a sufficient supdy of random bitsis
present in the form of a synchronized one-time pad.



» Sincetheonetimepad is required for bath
generation and cheding of MAC values, OTPMAC
can only be used in symmetric key systems.

*  OTPMAC can be used to provide virtually any
degreeof searity with suitable coices of o and p.

OTPMAC can provide guarantees about the
probability of forgery sinceit does not depend upon
the istence of one-way functions or any other
unproven hypothesis.

9 Performance lssues

9.1 One-timepad consumption

The use of one-time pads requires a significant amount
of storage @pacity. However, the required storage is
guite reasonable, as $rown by the foll owing examples.

Two examples for OTPMAC parameters are shown in
Table 1. We asaume that bath parties choose to be
anonymous for all of these examples. For Example 1, we
choose the OTPMAC parameter p = 2°'-1, which gives a
seaurity parameter ¢ = 2%, Using the identifier and
maximum transaction/response sizes fiown, 64 bytes of
one-time pad are mnsumed in each transaction.

Table 1: Example parameter choices

Par ameter Examplel | Example 2
Seaurity Parameter (o) =23 =21
OTPMAC prime (p) L1 2771
One-timeidentifier size 32hits 128hits
SYNC size 32hits 128hits
Transaction size 22 bytes 28 bytes
Response size 13 bytes 14 bytes
One-time pad
consumed_ per 64 bytes 128 bytes
transaction

For Example 2, we choase the higher seaurity value of
p = 2'%'-1, which gives a seaurity parameter o = 2%,
The sizes of identifiers are aso increased, as are the
maximum transaction/response sizes. For these param-
eters, 128 bytes of one-time pad are used per transaction.
These two examples are used to generate performance
estimates for the various parties in the foll owing sedions.

exhausted, under the parameter choices of Example 1.
Even for a heavy card user (average 8 transactions per
day), this card would last about two months before its
one-time pad was exhausted.

Table 2: Performance for a user with a 32K smart
card

Parameter Examplel | Example 2
Number of transactions 512 256
OTPlifetime
= 2months | =1 month
(8 per day)
CCCstorage 32GB 32GB
(2 milli on users)

The CCCalso nedls to store apies of all the one-time
pads. Using these parameters, the CCC could service 1
million card users using only 32 GB of storage. This
amount of storage is certainly reasonable, espedaly for a
large transaction-procesgng facility. Table 2 detail sthese
estimates, and provides the adjusted estimates for the
higher seaurity of Example 2.

9.3 M er chant/CCC Perfor mance

The number of transactions that can be performed
using a smart card is probably insufficient for merchants.
One alternative would be to distribute the one-time pad to
the merchant on CD-ROM or other large media.

Using the parameters from Example 1 abowe, a
merchant equipped with a CD-ROM one-time pad could
perform 104 million transactions. Even performing
20,000transactions per day, this pad would last 1.4 years.
These examples are detailed in Table 3.

Table 3: Performance for a merchant with
a CD-ROM one-time pad

9.2

Customer/CCC Performance

Par ameter Examplel | Example 2
Number of 104 5.2
transactions million million
OTP lifetime _
(20,000 [er day) =14 years | =8 months
CCCoffline storage
(5000merchants) 3TB 3TB
CCConline storage 180GB 360GB
(1 month)

A customer using a smart card with 32K of memory
can perform 512 transactions before its one-time pad is

Although the CCC nealsto store @pies of al the one-
time pads, it isimportant to note that each one-time pad is
accessd drictly sequentially. This means that the CCC



might store only the active portion of each one-time pad
in onli ne storage, and the remainder offline. Thelast row
of Table 3 estimates the online storage required to store
sufficient one-time pad to processtransactions for at least
one month. This amount of storage is reasonable for a
large procesing facility. There are also many other
posshiliti es for storage optimization.

9.4 CCC Identity Lookup

Upon recept of M2, the CCC determines the identities
of the merchant and customer using their onetime
identities. Oneway for the CCCto perform thislookupis
to use ahash table. The hash tablelookup returnsthereal
identities of the participants, which are used to retrieve
the one-time pads. Once the transaction has completed,
the hash table is updated with the (precomputed) next
one-time identifiers for bath parties.

Sincethe hash table @mntains only on a single one-time
identifier for each user, it is much smaller than the entire
colledion of one-time pads. The size of the hash tableis
only afunction of theidentifier size, and not on the length
of the one-time pads dored for each user. For the 32-bit
identifiers and 109000 wsers in the examples abowe, the
hash table wuld occupy only about three megabytes,
depending upon the hash implementation.

In the extremey unlikely event that multiple users
correspond to the same one-time identifier, the CCC can
perform the MAC verification for each of the @andidate
users.  With overwhelming probability, the MAC will
match for only one of the dients.

10 Related Work

Several other commerce and eledronic cash protocols
have been proposed. However, none of these provide the
provable seaurity and anonymity/unlinkability posshble
with one-timeidentifiersand OTPMAC.

Mondex International Ltd. has created the Mondex
eledronic cash system, which uses smart cards or other
tokens with stored valug[9]. Although the full protocal is
undisclosed, there is a unique 16-digit identifier for each
card, as well as an audit trail. These could reveal users
identities, or link a customer to multi ple purchases.

DigiCash’s eCash[11] is an eledronic cash system that
does provide anonymity and unlinkability of multiple
transactions to a single party, even by the CCC
However, eCash requires RSA, which does not provide
the provable seaurity nor speed of OTPMAC.

The NetBill[13] commerce system is optimized for
services delivered over a network, instead of face-to-face
transactions. The NetBill transaction protocol uses eight
messages, three more than required by our OTPMAC-
based protocol. NetBill uses a static customer identifier,
and provides neither provable seaurity nor unli nkability.

The Millicent System[4][7] provides a commerce
protocol optimized for small transactions over the
Internet. Milli cent usesaversion of eledronic cash called
scrip, which is restricted to a spedfic vendor. Milli cent
requires at least threeor four cryptographic operations per
transaction; our protocol requires only two. Milli cent
provides neither provable seaurity nor unlinkabilit y.

SET[8][12] is a set of standards designed for seaure
credit card transactions. Since SET usesdigital certificate
chains, it requires many more signature verifications than
our commerce protocol. Although SET can provide non-
repudation, SET's digital certificates provide neither
provable searity nor unlinkabilit y.
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