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Abstract 
 
We present a new commerce protocol that allows 
customers and merchants to conduct face-to-face credit-
card authorizations with a credit card company securely 
with the option of anonymity for the customer, the 
merchant, or both.  Our protocol guarantees that both 
parties agree to and know the outcome of each trans-
action.  Our protocol has three advantages over others.  
First, we need only two Message Authentication Code 
(MAC) operations per party per transaction, fewer than 
most popular protocols.  Second, our own MAC function, 
OTPMAC, does not rely on the existence of one-way 
functions or on any other unproven hypothesis.  Third, 
our protocol generates a new one-time identifier per party 
per transaction, preventing the linkage of multiple trans-
actions to a single party.  Additionally, the protocol can 
operate in modes using alternatives to the one-time pad, 
including cryptographic random number generators, and 
conventional cryptographic MAC functions. 

 
 

1 Introduction 
 
Traditional credit-card commerce suffers from a 

number of vulnerabil iti es.  Customers are identified only 
by a static identifier – their credit card number.  Credit 
card numbers may be stolen, copied, or even randomly 
generated.  Since credit card numbers are static, a number 
that is copied or stolen may be used for fraud months or 
even years later.  Fraudulent vendors might charge a 
customer a different amount than is printed on the 
customer’s receipt.  Since a more secure system would 
most likely introduce complications to the use of credit 
cards, the vulnerabiliti es are usually simply accepted by a 
population of users who are willi ng to trade security for 
ease of use.1 
                                                        
1 In some cases, users are protected by legal or other means, but some 
party (e.g. the card-issuer) remains liable.  In all cases, the liable party is 
the one who trades their own liabilit y for (the user’s) ease of use, so this 
exception doesn’ t change the basic argument. 

Our commerce protocol suffers from none of these 
vulnerabiliti es.  The static identifiers of traditional credit 
cards have been replaced with one-time identifiers that are 
used for one transaction only.  In addition, Message 
Authentication Codes (MACs) are used to secure 
transactions against tampering.  This combination of one-
time identifiers and MACs allows both customers and 
merchants to conduct transactions with extremely high 
confidence in the integrity of those transactions, even 
when they do not learn each other’s identity. 

In some situations, including the face-to-face 
transaction environment described below, it may not be 
necessary to provide dual-anonymity.  We believe that 
our protocol is still good for these situations due to its 
eff iciency and provable security. 

Our protocol has advantages over other electronic 
commerce protocols such as SET[8][12], Milli Cent[4][7], 
and NetBill [2][13].  Only two MAC operations are 
required per transaction, as compared to three or four hash 
or signature operations for Milli Cent, and an even greater 
number of RSA operations for SET.  Our protocol also 
provides a significant degree of anonymity, including the 
inabilit y to link multiple transactions to the same user, not 
found in these other systems. 

Our commerce protocol uses a one-time pad to 
generate one-time identifiers and MACs.  If the one-time 
pad is chosen by some truly random mechanism, then it is 
possible to prove that the probabilit y of forging a message 
is vanishingly small .  In particular, the security of the 
protocol is not dependent on the existence of one-way 
functions or any other unproven assumption.  However, 
since one-time pads are not always practical, our protocol 
can use a pseudorandom stream, such as one based on a 
message authentication code (MAC). 

 
2 Background & Purpose 
 
2.1 Transaction Environment 
 

Our commerce protocol is designed to provide security 
and a degree of anonymity for both a customer Alice and 



a merchant Bob operating in a conventional “checkout 
li ne” payment transaction environment.  Our protocol is 
particularly concerned with the authorization phase of a 
conventional credit card transaction. 

Our protocol gives both the Alice and Bob the option 
to conceal their own identities.  When both identities are 
concealed, both Alice and Bob must externally check that 
they are receiving messages from the intended party in 
order to prevent a man-in-the-middle attack.  This is easy 
to do for face-to-face transactions, where the customer 
and merchant have some kind of physical li nk.  The 
“Anonymity Options” section below provides some 
additional solutions. 

It is assumed that the customer physicall y possesses a 
token (e.g. smart card, digital wallet, etc.) capable of 
running this protocol.  The customer communicates with 
the merchant, who then connects to a Credit Card 
Company (CCC) for transaction authorization, process-
ing, and confirmation. 

We will assume that the customer and merchant share 
a common CCC.  The protocol is easil y extensible to 
provide for multiple distinct CCCs.  These extensions 
would also provide for the transport and handling of the 
“brand” information of a conventional credit card system. 

 
2.2 Guarantees 
 

Our protocol guarantees that, with overwhelming 
probabilit y, the CCC will process no transaction without 
the awareness and agreement of both the customer and the 
merchant.  In addition, the protocol will reconcile all 
authorized transactions, so that both the customer and 
merchant will be independently certain of the outcome of 
each transaction, also with overwhelming probabilit y. 

 
2.3 Man-in-the-middle Attacks 

 
Although both the Alice and Bob must authenticate 

themselves to the CCC, it is not necessary for them to 
reveal their identities to each other.  When used in the 
anonymous mode, this protocol is inherently subject to a 
“man-in-the-middle” type of attack.  (Any full y 
anonymous protocol is subject to this type of attack.)  In 
the attack, an attacker poses as Bob to Ali ce by making an 
identical payment request as Bob’s.  When Alice 
authorizes the transaction, she will actuall y be paying the 
attacker, instead of Bob.  This “merchant spoofing,” and 
the analogous “customer spoofing” attack are only 
possible if an attacker can alter the first two messages of 
the protocol, where the parties are first identified.  Note 
that in order to perform a “merchant spoofing” attack, the 
attacker must also be registered with the CCC as a 
merchant.  Since the real merchant (who expected to 
participate in the protocol but did not do so) immediately 

detects the fraud, it can be reported to the CCC, who can 
easil y trace the transaction back to the attacker. 

The defense against this attack is to provide some sort 
of reliable transport between Alice and Bob for the first 
two messages.  Since the protocol will most often be used 
for face-to-face transactions, we simply require some sort 
of physical connection between Alice and Bob.  For 
example, the customer should physicall y attach or insert 
their token into the merchant’s equipment.  It is possible 
to extend the protocol to remove this restriction (e.g. to 
allow use in Internet transactions).  However, we cannot 
defend against man-in-the-middle attacks without 
compromising the anonymity property enjoyed by the 
face-to-face protocol. 

 
2.4 Malicious Customers and Merchants 
 

Our commerce protocol is designed to protect Bob if 
Ali ce is a malicious customer who attempts to commit 
fraud.  A malicious customer, of course, is not required to 
adhere to the protocol, and might supply arbitrary 
messages to the merchant.  Even so, the probabilit y of a 
successful forgery attempt can be made arbitraril y low. 

Our commerce protocol is also designed to protect 
Ali ce if Bob is a malicious merchant who attempts to 
charge Alice more or less than she intended to pay.  This 
includes protection against Bob using stored or 
memorized information from previous transactions to 
authorize additional transactions without Ali ce’s know-
ledge.  Ali ce is also protected against an attack in which 
Bob says that a successful transaction has actuall y failed, 
and then requests that she authorize the transaction again, 
thus double-charging her. 

Finall y, both customer and merchant are protected 
from compromised communication links, where messages 
between the merchant and CCC are observed, intercepted, 
altered, or forged.  The protocol still guarantees, with 
overwhelming probabilit y, that only mutually agreed 
upon transactions will be accepted by the CCC. 

 
3 Players 

 
Ali ce, Bob, and the CCC must all participate in the 

protocol.  Figure 1 shows the three players, as well as the 
secrets they must have exchanged in advance. 

 
3.1 Alice, the customer 

 
Ali ce, the customer, must share have a preexisting 

secret-sharing relationship with the CCC. The shared 
secrets include a read-only one-time pad and a sequence 
number that can be incremented.  After the secrets are 
establi shed, Ali ce does not need to communicate directly 
with the CCC. 



3.2  Bob, the Merchant 
 

In addition to the physical connection to the customer, 
Bob, the merchant, is required to establi sh a connection to 
the CCC.  This connection does not require any additional 
security above that provided by our commerce protocol. 

Bob must also have a preexisting secret-sharing 
relationship with the CCC.  This relationship is identical 
to the customer/CCC relationship.  In fact, either Ali ce or 
Bob could act as a customer or merchant in a transaction, 
since the protocol treats merchants and customers in the 
same manner, although the CCC will probably only allow 
customer-merchant transactions. 

 
3.3 The Credit Card Companies (CCCs) 
 

For the purposes of discussion, it is assumed that Ali ce 
and Bob share a single CCC.  Thus, a single entity is able 
to verify the identities of both Alice and Bob, as well as 
their authorization of transactions. 

By a simple extension, our commerce protocol may be 
modified so that customers and merchants have separate 
CCCs, as long as the CCCs trust one another.  In this 
case, the merchant contacts his own CCC, who verifies 
the merchant’s identity.  Then the merchant’s CCC 
contacts the customer’s CCC, who verifies the customer’s 
identity.  If the CCCs agree, they process the transaction 
together.  Finall y, the customer’s CCC generates a 
confirmation for the customer.  The merchant’s CCC 
generates a confirmation for the merchant, and relays both 
over the merchant/CCC link. 

Since the negotiation between CCCs is outside the 
scope of our commerce protocol, and since merchant 
communication is limited to the merchant’s own CCC, the 
two CCCs can be viewed as a single “composite” CCC, 
shared between customer and merchant.  This is the 
justification for the simpler model used in our discussion. 

 

4 Protocol Basics 
 
4.1 One-time Identities 
 

To preserve anonymity, both Alice and Bob compute 
and use one-time identities.  These identities are random 
numbers and are only used for a single transaction.  They 
are the only identifying information required in messages. 
The one-time identifiers are derived from the one-time 
pads shared between Alice/Bob and the CCC, allowing 
the CCC to identify Ali ce/Bob, but preventing anyone 
else from determining their identities. 

 
4.2 Anonymity Options 
 

Our protocol allows each party the option of revealing 
their own identity.  Each party can decide independently 
whether to remain anonymous or reveal their identity.  If 
a party decides to reveal their identity, then they must 
have agreed on a public identity string with their CCC.  
This identity string might contain multiple representations 
of a single identity (e.g. multiple character sets or lang-
uages), but the entire string is always transmitted and used 
in MAC calculations as a unit.  This identity string is 
transmitted with the one-time identifiers between Alice 
and Bob.  Each party who receives a revealed identity 
incorporates that identity into their respective MAC. 

The public identities are not sent to the CCC.  The 
CCC can identify both parties by their one-time identities 
alone, and can then look up the public identities as 
necessary.  Since the public identity for each party is 
included in the MAC of the other, the CCC will detect if a 
party lies about their own identity (the MAC will not 
check properly). 

The man-in-the-middle attack described above is made 
much more diff icult i f Bob chooses to reveal his identity.   
This allows Alice to be sure she is paying the correct 
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Figure 1: The Players 



merchant, although it doesn’ t prevent an attacker from 
making Alice’s payment for her. 

 
4.3 Message MACs 
 

To prevent forgery, Ali ce and Bob each independently 
calculate MACs on certain values.  These MACs are 
calculated using OTPMAC and the one-time pads shared 
between customer/merchant and CCC.  This allows the 
CCC to verify the authenticity of a transaction author-
ization, and prevents an attacker from forging one. 

 
5 Standard Protocol Messages 
 

A normal transaction in our protocol requires five 
messages.  If synchronization is necessary, two additional 
messages are used.  In addition to the information detailed 
below, each message begins with a tag identifying the 
protocol and the message type.  The message tags are 
{ M0, M1, M2, M3, M4, M5, M6} . 

In preparation for the transaction, Bob must prepare a 
string trans, which contains the actual transaction 
parameters (e.g. amount of money).  After receiving 
Bob’s message, the CCC will generate the string result, 
which gives both Alice and Bob the result of the 
transaction.  The protocol guarantees that both Alice and 
Bob will accept identical copies of both trans and result. 

When a transaction begins, principals use their own 
sequence number to index into their one-time pads.  The 
following values are fetched from the one-time pad in 
order: 

 
• ID, used as the party’s one-time identifier 
• SYNC, used in synchronization messages 
• Q, used to calculate a MAC for the authorization 
• R, used to verify the MAC for the result 

Subscripts represent the values calculated by a 
particular party.  For example, IDA represents Ali ce’s 
value for ID.  The MAC of a message X using the secret 
key k is represented by MAC(k, X). 

 
5.1 Tag M0: Transaction Information 
 
Bob → Ali ce: { IDB, NB, trans}  

 
In this message, Bob is asking Alice to authorize trans.  

NB is either Bob’s real name, or an empty string, if he 
chooses to be anonymous.  In this case, Bob doesn’ t 
reveal his own identity to Ali ce since IDB is indistinguish-
able from a random number. 

 
5.2 Tag M1: Customer Authorization 
 
Ali ce → Bob: { IDA, NA, IDB, HA}  

HA = MAC(QA, { M1, IDA, NA, IDB, NB, trans} ) 
 

Ali ce commits to trans by computing and sending her 
one-time identifier and MAC in this message.  The 
presence of IDB in this message allows Bob to identify the 
transaction to which this message refers.  NA is either 
Ali ce’s real name, or an empty string, if she chooses to be 
anonymous.  The four fields of this message are 
inseparable since the MAC has been calculated using IDA, 
NA, and IDB. 

 
5.3 Tag M2: Merchant Request 
 
Bob → CCC: { IDA, αA, IDB, αB, HA, HB, trans}  

HA = MAC(QA, { M1, IDA, NA, IDB, NB, trans} ) 
HB = MAC(QB, { M2, IDA, NA, IDB, NB, trans} ) 
 
By sending his one-time identifier and MAC with this 

message, Bob also commits to trans.  To send the 
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message, Bob must gather both IDs, both MACs, and 
trans itself, and send the whole bundle to the CCC. 

The flags αA and αB are inserted by Bob to tell the 
CCC if either Ali ce or Bob (respectively) have chosen to 
be anonymous.  (Bob knows Alice wants to be 
anonymous when she sends him an empty string.)  This 
information tell s the CCC to use an empty string in place 
of the each party’s real name in the MAC calculation.  If 
these flags are altered by any party, the transaction will 
simply fail , since the MAC will not match when 
calculated by the CCC. 

The CCC looks up IDA and IDB in its own tables (see 
the Performance discussion below for more detail s).  It 
can then retrieve the one-time pads for Ali ce and Bob, 
and use these to verify the MACs.  Finall y, the CCC can 
perform the transaction. 

 
5.4 Tag M3: CCC Response 
 
CCC → Bob: { IDA, IDB, HA’ , HB’ , result}  

HA’ = MAC(RA, { M3, IDA, IDB, result} ) 
HB’ = MAC(RB, { M4, IDA, IDB, result} ) 
 
The CCC returns the string result, informing both Bob 

and Alice of the outcome of trans.  To prevent forgery, 
the CCC computes MACs for each of Ali ce and Bob 
using RA and RB respectively.  These MAC values bind 
the five message elements together.  The ID fields allow 
Bob to determine to which of Bob’s transactions this 
message refers.  Bob now has positi ve confirmation of the 
transaction outcome.  He increments his sequence 
number, and although he is still required to send M4 on to 
Ali ce, he is immediately ready to begin another 
transaction. 

 
5.5 Tag M4: Response Relay 
 
Bob → Ali ce: { IDA, IDB, HA’ , result}  

HA’= MAC(RA, { M4, IDA, IDB, result} ) 
 
This message contains only those portions of message 

type M3 which are relevant to Ali ce.  Ali ce performs the 
same MAC check as Bob to verify the integrity of result.  
Ali ce can also use the ID fields to bind this message to an 
in-progress transaction.  Ali ce now has positi ve 
confirmation of the transaction outcome.  She increments 
her sequence number and is ready for another transaction. 

 
6 Synchronization Messages 
 

Normally, the CCC can pre-compute Alice’s next one-
time identity using the CCC’s own copy of her sequence 
number and one-time pad.  Then, when a message arrives, 
a simple hash operation or table lookup can be used to 

identify Ali ce.  Once the transaction is completed, the 
sequence number is incremented, and the process repeats. 

However, should the protocol terminate before 
completion, the sequence numbers of Ali ce and the CCC, 
and thus their pre-computed one-time identities, may not 
match.  This lack of synchronization is a serious problem 
since the CCC will no longer be able to identify Ali ce.  
This might happen if the CCC, merchant, or link goes 
down in the middle of a transaction, or if the merchant 
violates the protocol by not sending the last message. 

Bob is able to attack Alice by claiming that the CCC is 
unreachable while actuall y processing the transaction 
(taking Alice’s money) and withholding the last message 
(presumably also withholding the goods Alice intended to 
purchase).  Since Alice has no direct communication with 
the CCC, she cannot immediately detect this attack.  
However, she will notice it later, and can dispute it li ke 
she would dispute any inaccurate transaction. 

 
6.1 Suspicious State 
 

To solve this synchronization problem, one additional 
state is added to the protocol.  If Ali ce commits to a 
transaction (by sending M1), but does not receive a valid 
confirmation message M4, then she is said to be in the 
“suspicious” state.  When Alice is suspicious, Ali ce’s own 
sequence number might be one less than the CCC’s idea 
of Ali ce’s sequence number.  Ali ce does not engage in 
any additional transactions until she leaves this state by 
the synchronization protocol below. 

This synchronization protocol might be initiated by 
Alice while she is still connected to the merchant, or it 
might be initiated when Alice reaches another merchant.  
This protocol must complete before any additional 
transactions are permitted, so the new merchant acts as a 
courier for the synchronization messages.   Since Alice 
presumably wants to make a purchase when she presents 
her token to the next merchant, there is an incentive for 
merchants to provide the synchronization courier service. 

 
6.2 Tag M5: Synchronization Request 

 
Ali ce → CCC: { IDA, SYNCA}  

 
Upon receipt of message M5, the CCC looks up the 

one-time identifier.  Since the identifier in M5 might have 
been already used by the customer, both the current and 
immediately previous one-time identifiers must be pre-
computed by the CCC.  (Matching against this twice-as-
large database of identities is only necessary for 
synchronization messages.)  If the one-time identifier has 
been used on a successful transaction, the CCC resends 
the original M4 response.  If the one-time identifier has 
not been used, then the CCC generates message M6, and 
increments Alice’s sequence number. 



6.3 Tag M6: Synchronization Response 
 
Ali ce → CCC: { IDA, RA [see text]}  

 
M6 is only returned if no transaction used the one-time 

identifier specified in M5.  In this case, the CCC has 
received the current (suspect) one-time identifier for the 
customer, and incremented the sequence number to the 
next one-time identifier.  This means that any transaction 
authorized by the customer using the suspect identifier is 
effectively void.  This prevents a merchant or attacker 
from delaying a transaction and resubmitting it later – 
once the synchronization protocol completes, the delayed 
transaction is no longer valid. 

The field RA differs from previous fields since it 
exposes bits that are, at one point in the protocol, used as 
the secret in a MAC calculation.  However, since M6 is 
only returned when the CCC never processed a 
transaction, M6 will only be sent when these bits have not 
been used.  RA is a very long value, but only the last few 
bytes (the same size as a SYNC field) should be included.  
This helps prevents CCC response messages from being 
forged.  After synchronization, the customer is ready to 
begin a new transaction.  

 
7 Operational Modes 
 

The generation of one-time identities and MACs can 
be done in various ways, depending upon the operational 
requirements. The following modes exhibit various 
capabiliti es of the commerce protocol, and may be 
appropriate in different situations. 

 
7.1 OTP (Unconditionally Secure) Mode 
 

In OTP mode, the secrets shared between client and 
CCC include a truly random one-time pad.  OTPMAC is 
used to generate MACs for messages.  This mode is 
unconditionally secure. It does not rely on the existence of 
one-way functions, or on any other unproven conjecture.  

Given any value for the security parameter σ, it can be 
proven that the probabilit y of forging just one message is 
less than σ for suitably chosen parameters.  

This mode requires that both the client and CCC store 
a (possibly large) stream of random bits.  In addition, 
once the one-time pad is exhausted, no additional 
transactions may take place. 

 
7.2 CPRNG Mode 
 

In the case where the storage of a large one-time pad is 
not practical, pseudo-random numbers can be used 
instead.  In this mode, a cryptographic pseudo-random 
number generator[3] (CPRNG) is used to generate the bits 
of the one-time pad as necessary; all other operations are 
identical to OTP mode.  Only a seed for the CPRNG 
needs to be shared between client and CCC. In this mode, 
the user can continue engaging in transactions forever – 
there is no one-time pad that can be exhausted.  However, 
the security of the protocol is bounded by the crypto-
graphic strength of the CPRNG used. 

 
7.3 HMAC Mode 
 

The HMAC mode is similar to the CPRNG mode, but 
uses HMAC[1][5] in two distinct ways.  First, HMAC is 
used as the CPRNG to generate one-time identifiers, as in 
CPRNG mode.  Second, HMAC replaces OTPMAC as 
the MAC function.  This mode would be most useful 
when a cryptographic hash function can be calculated 
more quickly or easil y than OTPMAC (perhaps in a 
hardware implementation), and when we are not worried 
about the lack of proven security for cryptographic hash 
functions.  There is no one-time pad to exhaust in HMAC 
mode, so the client may continue engaging in transactions 
for a very long time. A secret key and sequence number 
are shared between client and CCC.  (Of course, periodic 
key changes are always prudent.) 

To compute a one-time identity, an HMAC operation 
is applied to the sequence number, using the secret key.  

Figure 3: Synchronization Process 

A
lice  

IDA, SYNCA 

 
IDA, SYNCA 

B
ob  

C
C

C
 IDA, RA 

IDA, RA 



This generates an unpredictable identifier, which does not 
reveal the secret key.  The SYNC field is generated in a 
similar way, although this calculation may be delayed 
since it is not needed in most transactions.  The HMAC 
mode of our prototype implementation uses 160-bit one-
time identifiers generated by HMAC-SHA-1[6][10]. 

 
7.4 Hybrid Modes 
 

The implementation difference between OTP and 
CPRNG modes is that OTP mode stores a one-time pad, 
while CPRNG mode generates the values as needed.  This 
means that OTP-mode tends to use more space, while 
CPRNG-mode tends to use more time.  These modes can 
interoperate in a hybrid mode for the benefit of both 
customer and CCC. 

In hybrid-mode, one party uses a CPRNG to generate a 
one-time pad for the other party.  The second party uses 
the pad as in OTP mode.  The first party stores only the 
CPRNG, not the precomputed values, and uses it to 
regenerate the values as necessary as in CPRNG-mode. 

For example, suppose the customer uses a device with 
extremely limited computational power, but an acceptable 
amount of storage.  While the CCC uses a device with 
enormous computational power, it is expensive to store 
large one-time pads for a large number of clients.  A 
hybrid mode is best suited to this situation; it reduces 
client computation, while also reducing CCC data storage 
requirements.  This mode can also be used if the CCC 
uses a secret generator function, since the CPRNG need 
not be disclosed to the clients, and is not extractable from 
reverse engineering of the client’s token or software.  As 
in OTP mode, the client will eventually exhaust the 
supply of values from the one-time pad.  Also, as in 
CPRNG mode, the protocol is as secure as the CPRNG. 

 
8 OTPMAC 
 
8.1 Background 
 

OTPMAC is a MAC function specificall y tailored for 
the calculation of MACs using one-time pads instead of 
secret keys.  In contrast to most MAC functions, 
OTPMAC does not rely on the existence of one-way-
functions, or on any other unproven hypothesis. The 
probabilit y of an attacker successfull y violating the 
integrity of a message can be bounded below a security 
parameter σ, for any chosen value of σ. 

 
8.2 Choosing a prime p 
 

OTPMAC uses a large prime number p; it is conven-
ient to choose p as a Mersenne prime (a prime of the form 
2b-1).  To satisfy the security criterion, p should be greater 
than 1/σ.  The two primary operations in the calculation 

of OTPMAC are addition and multipli cation mod p.  
Given a true random one-time pad, OTPMAC returns a 
uniformly randomly distributed number mod p. 

 
8.3 Calculation Steps 
 

The first step of OTPMAC is to break the message into 
chunks { C0, C1, ..., Cn-1} .  Each chunk should correspond 
to a number less than p, so less than b bits at a time are 
taken from the message to form each chunk.  The last 
chunk is padded with zeros to a convenient boundary.  
Finall y, one additional chunk Cn containing the length of 
the original message in bits (plus one) is appended. 

Next, a key K i is generated for each Ci.  K i is a 
uniformly random value mod p.  Exactly b bits are taken 
from the one-time pad for each K i.  If the value is equal to 
p (i.e. if all bits are ones) then the value is discarded and 
the process is repeated.  This process guarantees that the 
keys are uniformly randomly distributed mod p. 

The next step is to multiply (mod p) each Ci by the 
corresponding K i.  All of the resulting products are 
summed (mod p) to obtain the final OTPMAC value. 
 
8.4 Desired Property 
 

A good MAC function should have the following 
property:  If an attacker has seen a stream of messages 
and their MACs, but does not know the keys, the attacker 
should not be able to generate a correct MAC (with a 
probabilit y greater than that of random guessing) for any 
messages other than the ones the attacker saw. 
 
8.5 A Useful Lemma 

 
The product (mod p) of any nonzero constant and a 

uniform random variable (mod p) is a uniform random 
variable (mod p).  Also, the sum (mod p) of any constant 
(or independent variable) and a uniform random variable 
(mod p) is a uniform random variable (mod p).  Thus, any 
linear function (mod p) on uniform random variables 
(mod p) with at least one nonzero coeff icient (mod p) is a 
uniform random variable (mod p).  This lemma is useful 
in showing that OTPMAC does have the desired property. 

 
8.6 OTPMAC Property 

 
The result of an OTPMAC calculation is a linear 

function on the uniform random keys K i.  The coeff icients 
of the linear function are the message chunks Ci, and the 
length of the message plus one.  The result of an 
OTPMAC calculation is: 

C0K0 + C1K1 + … + Cn-1Kn-1 + (n+1)Kn 

We will demonstrate that any change to a message will 
induce a change in the OTPMAC result.  In each case 



below, the change will be a linear function on the K i, with 
at least one nonzero coeff icient, and with linearly 
independent coeff icients from the coeff icients corres-
ponding to the original message.  This property guaran-
tees that an attacker, without knowledge of the K i, cannot 
calculate the OTPMAC for the changed message with any 
probabilit y greater than random guessing.  Since the 
probabilit y of a correct guess is exactly 1/p, and σ ≥ 1/p, 
the OTPMAC check will succeed at the receiver with 
probabilit y no greater than σ. 

For example, suppose an attacker changes some Ci to 
Ci’ .  This causes OTPMAC to change by the amount ∆ = 
K i(Ci’–Ci) (mod p).   (Ci’ -Ci) must be nonzero, so the 
difference ∆ is a linear function with at least one nonzero 
coeff icient on a uniformly random variable.  The result of 
such a function is a uniformly random variable. 

The same is true if the attacker attempts to modify 
more that one chunk of the message.  Each Ci which is 
changed to a different value Ci’ forces another coeff icient 
of ∆ to be nonzero.  As long as there is at least one 
nonzero coeff icient, ∆ will be a uniform random variable. 

In these arguments, we have assumed that the 
coeff icients of the changed message are linearly 
independent from the coeff icients generated by the 
original message.  However, since (n+1) is always a 
coeff icient, an attacker can’ t pick any set of Ci that are not 
li nearly independent.  Since OTPMAC requires that the 
K i be used only once, an attacker only gets one value 
generated using a particular set of K i.  This prevents the 
attacker from picking a message to be a linear 

combination of two other messages – the only linearly 
dependent messages must be simple multiples of the 
original message.  However, since the length (n+1) is not 
changed, any change in any coeff icient will result in a 
linearly independent set of coeff icients.  Therefore, our 
assumption is justified. 

Next, suppose an attacker modifies a message by 
changing its length from n to n’ .   If the new length is 
shorter than the old length by one, then ∆ is (n-Cn-1)Kn-1 - 
(n+1)Kn.  Since (n+1) is nonzero, ∆ is again a linear 
function on uniform random variables, and thus a random 
variable.  This argument can be extended to include all 
messages shorter than n. ∆ will always contain the term 
(n+1)Kn, and will never have any other terms containing 
Kn.  Since (n+1) is always nonzero, the resulting ∆ will 
always be a uniform random variable. 

Finall y, suppose an attacker lengthens the message.  In 
this case, ∆ will always contain a term (n’+1)Kn’.  (n’+1) 
is again nonzero, so ∆ will be a linear function on uniform 
random variables, and thus a random variable. 

Since the OTPMAC value cannot be calculated 
without the keys K i, an attacker cannot successfull y forge 
a message with probabilit y greater than σ. 

 
8.7 OTPMAC Conclusions 
 
• OTPMAC works well for the calculation of MAC 

values when a suff icient supply of random bits is 
present in the form of a synchronized one-time pad. 

Figure 4: Calculation of OTPMAC 
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• Since the one-time pad is required for both 
generation and checking of MAC values, OTPMAC 
can only be used in symmetric key systems. 

• OTPMAC can be used to provide virtuall y any 
degree of security with suitable choices of σ and p. 

• OTPMAC can provide guarantees about the 
probabilit y of forgery since it does not depend upon 
the existence of one-way functions or any other 
unproven hypothesis. 

 
9 Performance Issues 
 
9.1 One-time pad consumption 
 

The use of one-time pads requires a significant amount 
of storage capacity.  However, the required storage is 
quite reasonable, as shown by the following examples. 

Two examples for OTPMAC parameters are shown in 
Table 1.  We assume that both parties choose to be 
anonymous for all of these examples.  For Example 1, we 
choose the OTPMAC parameter p = 231-1, which gives a 
security parameter σ ≈ 2-31.  Using the identifier and 
maximum transaction/response sizes shown, 64 bytes of 
one-time pad are consumed in each transaction. 
 
Table 1: Example parameter choices 

Parameter Example 1 Example 2 

Security Parameter (σ) ≈ 2-31 ≈ 2-127 

OTPMAC prime (p) 231-1 2127-1 

One-time identifier size 32 bits 128 bits 

SYNC size 32 bits 128 bits 

Transaction size 22 bytes 28 bytes 

Response size 13 bytes 14 bytes 

One-time pad 
consumed per 

transaction 
64 bytes 128 bytes 

 
For Example 2, we choose the higher security value of 

p = 2127-1, which gives a security parameter σ ≈ 2-127.  
The sizes of identifiers are also increased, as are the 
maximum transaction/response sizes. For these param-
eters, 128 bytes of one-time pad are used per transaction.  
These two examples are used to generate performance 
estimates for the various parties in the following sections. 

 
9.2 Customer/CCC Performance 
 

A customer using a smart card with 32K of memory 
can perform 512 transactions before its one-time pad is 

exhausted, under the parameter choices of Example 1.  
Even for a heavy card user (average 8 transactions per 
day), this card would last about two months before its 
one-time pad was exhausted.   

 
Table 2: Performance for a user with a 32K smart 
card 

Parameter Example 1 Example 2 

Number of transactions 512 256 

OTP li fetime 
(8 per day) ≈ 2 months ≈ 1 month 

CCC storage 
(1 milli on users) 

32 GB 32 GB 

 
The CCC also needs to store copies of all the one-time 

pads.  Using these parameters, the CCC could service 1 
milli on card users using only 32 GB of storage. This 
amount of storage is certainly reasonable, especiall y for a 
large transaction-processing facilit y.  Table 2 detail s these 
estimates, and provides the adjusted estimates for the 
higher security of Example 2. 
 
9.3  Merchant/CCC Performance 
 

The number of transactions that can be performed 
using a smart card is probably insuff icient for merchants.  
One alternative would be to distribute the one-time pad to 
the merchant on CD-ROM or other large media. 

Using the parameters from Example 1 above, a 
merchant equipped with a CD-ROM one-time pad could 
perform 10.4 milli on transactions.  Even performing 
20,000 transactions per day, this pad would last 1.4 years.  
These examples are detailed in Table 3. 

 
Table 3: Performance for a merchant with 
a CD-ROM one-time pad 

Parameter Example 1 Example 2 

Number of  
transactions 

10.4 
milli on 

5.2 
milli on 

OTP li fetime 
(20,000 per day) ≈ 1.4 years ≈ 8 months 

CCC offline storage  
(5000 merchants) 

3 TB 3 TB 

CCC online storage 
(1 month) 

180 GB 360 GB 

 
Although the CCC needs to store copies of all the one-

time pads, it is important to note that each one-time pad is 
accessed strictly sequentiall y.  This means that the CCC 



might store only the active portion of each one-time pad 
in online storage, and the remainder off line.  The last row 
of Table 3 estimates the online storage required to store 
suff icient one-time pad to process transactions for at least 
one month.  This amount of storage is reasonable for a 
large processing facilit y.  There are also many other 
possibiliti es for storage optimization. 
 
9.4 CCC Identity Lookup 
 

Upon receipt of M2, the CCC determines the identities 
of the merchant and customer using their one-time 
identities.  One way for the CCC to perform this lookup is 
to use a hash table.  The hash table lookup returns the real 
identities of the participants, which are used to retrieve 
the one-time pads.  Once the transaction has completed, 
the hash table is updated with the (precomputed) next 
one-time identifiers for both parties. 

Since the hash table contains only on a single one-time 
identifier for each user, it is much smaller than the entire 
collection of one-time pads.  The size of the hash table is 
only a function of the identifier size, and not on the length 
of the one-time pads stored for each user.  For the 32-bit 
identifiers and 100,000 users in the examples above, the 
hash table could occupy only about three megabytes, 
depending upon the hash implementation. 

In the extremely unli kely event that multiple users 
correspond to the same one-time identifier, the CCC can 
perform the MAC verification for each of the candidate 
users.  With overwhelming probabilit y, the MAC will 
match for only one of the clients. 

 
10 Related Work 
 

Several other commerce and electronic cash protocols 
have been proposed.  However, none of these provide the 
provable security and anonymity/unlinkabilit y possible 
with one-time identifiers and OTPMAC. 

Mondex International Ltd. has created the Mondex 
electronic cash system, which uses smart cards or other 
tokens with stored value[9].  Although the full protocol is 
undisclosed, there is a unique 16-digit identifier for each 
card, as well as an audit trail .  These could reveal users’ 
identities, or link a customer to multiple purchases. 

DigiCash’s eCash[11] is an electronic cash system that 
does provide anonymity and unlinkabilit y of multiple 
transactions to a single party, even by the CCC.  
However, eCash requires RSA, which does not provide 
the provable security nor speed of OTPMAC. 

The NetBill [13] commerce system is optimized for 
services deli vered over a network, instead of face-to-face 
transactions.  The NetBill t ransaction protocol uses eight 
messages, three more than required by our OTPMAC-
based protocol.  NetBill uses a static customer identifier, 
and provides neither provable security nor unlinkabilit y. 

The Milli cent System[4][7] provides a commerce 
protocol optimized for small transactions over the 
Internet.  Milli cent uses a version of electronic cash called 
scrip, which is restricted to a specific vendor.  Milli cent 
requires at least three or four cryptographic operations per 
transaction; our protocol requires only two.  Milli cent 
provides neither provable security nor unlinkabilit y. 

SET[8][12] is a set of standards designed for secure 
credit card transactions.  Since SET uses digital certificate 
chains, it requires many more signature verifications than 
our commerce protocol.  Although SET can provide non-
repudiation, SET’s digital certificates provide neither 
provable security nor unlinkabilit y. 
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