
Efficient Commerce Protocols Based on One-Time Pads

Michael A. Schneider and Edward W. Felten
Secure Internet Programming Laboratory

Department of Computer Science
Princeton University

Princeton, NJ 08544 USA

Abstract

We present a new commerce protocol that allows
customers and merchants to conduct face-to-face credit-
card authorizations with a credit card company securely
with the option of anonymity for the customer, the
merchant, or both. Our protocol guarantees that both
parties agree to and know the outcome of each trans-
action. Our protocol has three advantages over others.
First, we need only two Message Authentication Code
(MAC) operations per party per transaction, fewer than
most popular protocols. Second, our own MAC function,
OTPMAC, does not rely on the existence of one-way
functions or on any other unproven hypothesis. Third,
our protocol generates a new one-time identifier per party
per transaction, preventing the linkage of multiple trans-
actions to a single party. Additionally, the protocol can
operate in modes using alternatives to the one-time pad,
including cryptographic random number generators, and
conventional cryptographic MAC functions.

1 Introduction

Traditional credit-card commerce suffers from a

number of vulnerabil iti es. Customers are identified only
by a static identifier – their credit card number. Credit
card numbers may be stolen, copied, or even randomly
generated. Since credit card numbers are static, a number
that is copied or stolen may be used for fraud months or
even years later. Fraudulent vendors might charge a
customer a different amount than is printed on the
customer’s receipt. Since a more secure system would
most likely introduce complications to the use of credit
cards, the vulnerabiliti es are usually simply accepted by a
population of users who are willi ng to trade security for
ease of use.1

1 In some cases, users are protected by legal or other means, but some
party (e.g. the card-issuer) remains liable. In all cases, the liable party is
the one who trades their own liabilit y for (the user’s) ease of use, so this
exception doesn’ t change the basic argument.

Our commerce protocol suffers from none of these
vulnerabiliti es. The static identifiers of traditional credit
cards have been replaced with one-time identifiers that are
used for one transaction only. In addition, Message
Authentication Codes (MACs) are used to secure
transactions against tampering. This combination of one-
time identifiers and MACs allows both customers and
merchants to conduct transactions with extremely high
confidence in the integrity of those transactions, even
when they do not learn each other’s identity.

In some situations, including the face-to-face
transaction environment described below, it may not be
necessary to provide dual-anonymity. We believe that
our protocol is still good for these situations due to its
eff iciency and provable security.

Our protocol has advantages over other electronic
commerce protocols such as SET[8][12], Milli Cent[4][7],
and NetBill [2][13]. Only two MAC operations are
required per transaction, as compared to three or four hash
or signature operations for Milli Cent, and an even greater
number of RSA operations for SET. Our protocol also
provides a significant degree of anonymity, including the
inabilit y to link multiple transactions to the same user, not
found in these other systems.

Our commerce protocol uses a one-time pad to
generate one-time identifiers and MACs. If the one-time
pad is chosen by some truly random mechanism, then it is
possible to prove that the probabilit y of forging a message
is vanishingly small . In particular, the security of the
protocol is not dependent on the existence of one-way
functions or any other unproven assumption. However,
since one-time pads are not always practical, our protocol
can use a pseudorandom stream, such as one based on a
message authentication code (MAC).

2 Background & Purpose

2.1 Transaction Environment

Our commerce protocol is designed to provide security
and a degree of anonymity for both a customer Alice and

a merchant Bob operating in a conventional “checkout
li ne” payment transaction environment. Our protocol is
particularly concerned with the authorization phase of a
conventional credit card transaction.

Our protocol gives both the Alice and Bob the option
to conceal their own identities. When both identities are
concealed, both Alice and Bob must externally check that
they are receiving messages from the intended party in
order to prevent a man-in-the-middle attack. This is easy
to do for face-to-face transactions, where the customer
and merchant have some kind of physical li nk. The
“Anonymity Options” section below provides some
additional solutions.

It is assumed that the customer physicall y possesses a
token (e.g. smart card, digital wallet, etc.) capable of
running this protocol. The customer communicates with
the merchant, who then connects to a Credit Card
Company (CCC) for transaction authorization, process-
ing, and confirmation.

We will assume that the customer and merchant share
a common CCC. The protocol is easil y extensible to
provide for multiple distinct CCCs. These extensions
would also provide for the transport and handling of the
“brand” information of a conventional credit card system.

2.2 Guarantees

Our protocol guarantees that, with overwhelming
probabilit y, the CCC will process no transaction without
the awareness and agreement of both the customer and the
merchant. In addition, the protocol will reconcile all
authorized transactions, so that both the customer and
merchant will be independently certain of the outcome of
each transaction, also with overwhelming probabilit y.

2.3 Man-in-the-middle Attacks

Although both the Alice and Bob must authenticate

themselves to the CCC, it is not necessary for them to
reveal their identities to each other. When used in the
anonymous mode, this protocol is inherently subject to a
“man-in-the-middle” type of attack. (Any full y
anonymous protocol is subject to this type of attack.) In
the attack, an attacker poses as Bob to Ali ce by making an
identical payment request as Bob’s. When Alice
authorizes the transaction, she will actuall y be paying the
attacker, instead of Bob. This “merchant spoofing,” and
the analogous “customer spoofing” attack are only
possible if an attacker can alter the first two messages of
the protocol, where the parties are first identified. Note
that in order to perform a “merchant spoofing” attack, the
attacker must also be registered with the CCC as a
merchant. Since the real merchant (who expected to
participate in the protocol but did not do so) immediately

detects the fraud, it can be reported to the CCC, who can
easil y trace the transaction back to the attacker.

The defense against this attack is to provide some sort
of reliable transport between Alice and Bob for the first
two messages. Since the protocol will most often be used
for face-to-face transactions, we simply require some sort
of physical connection between Alice and Bob. For
example, the customer should physicall y attach or insert
their token into the merchant’s equipment. It is possible
to extend the protocol to remove this restriction (e.g. to
allow use in Internet transactions). However, we cannot
defend against man-in-the-middle attacks without
compromising the anonymity property enjoyed by the
face-to-face protocol.

2.4 Malicious Customers and Merchants

Our commerce protocol is designed to protect Bob if
Ali ce is a malicious customer who attempts to commit
fraud. A malicious customer, of course, is not required to
adhere to the protocol, and might supply arbitrary
messages to the merchant. Even so, the probabilit y of a
successful forgery attempt can be made arbitraril y low.

Our commerce protocol is also designed to protect
Ali ce if Bob is a malicious merchant who attempts to
charge Alice more or less than she intended to pay. This
includes protection against Bob using stored or
memorized information from previous transactions to
authorize additional transactions without Ali ce’s know-
ledge. Ali ce is also protected against an attack in which
Bob says that a successful transaction has actuall y failed,
and then requests that she authorize the transaction again,
thus double-charging her.

Finall y, both customer and merchant are protected
from compromised communication links, where messages
between the merchant and CCC are observed, intercepted,
altered, or forged. The protocol still guarantees, with
overwhelming probabilit y, that only mutually agreed
upon transactions will be accepted by the CCC.

3 Players

Ali ce, Bob, and the CCC must all participate in the

protocol. Figure 1 shows the three players, as well as the
secrets they must have exchanged in advance.

3.1 Alice, the customer

Ali ce, the customer, must share have a preexisting

secret-sharing relationship with the CCC. The shared
secrets include a read-only one-time pad and a sequence
number that can be incremented. After the secrets are
establi shed, Ali ce does not need to communicate directly
with the CCC.

3.2 Bob, the Merchant

In addition to the physical connection to the customer,
Bob, the merchant, is required to establi sh a connection to
the CCC. This connection does not require any additional
security above that provided by our commerce protocol.

Bob must also have a preexisting secret-sharing
relationship with the CCC. This relationship is identical
to the customer/CCC relationship. In fact, either Ali ce or
Bob could act as a customer or merchant in a transaction,
since the protocol treats merchants and customers in the
same manner, although the CCC will probably only allow
customer-merchant transactions.

3.3 The Credit Card Companies (CCCs)

For the purposes of discussion, it is assumed that Ali ce
and Bob share a single CCC. Thus, a single entity is able
to verify the identities of both Alice and Bob, as well as
their authorization of transactions.

By a simple extension, our commerce protocol may be
modified so that customers and merchants have separate
CCCs, as long as the CCCs trust one another. In this
case, the merchant contacts his own CCC, who verifies
the merchant’s identity. Then the merchant’s CCC
contacts the customer’s CCC, who verifies the customer’s
identity. If the CCCs agree, they process the transaction
together. Finall y, the customer’s CCC generates a
confirmation for the customer. The merchant’s CCC
generates a confirmation for the merchant, and relays both
over the merchant/CCC link.

Since the negotiation between CCCs is outside the
scope of our commerce protocol, and since merchant
communication is limited to the merchant’s own CCC, the
two CCCs can be viewed as a single “composite” CCC,
shared between customer and merchant. This is the
justification for the simpler model used in our discussion.

4 Protocol Basics

4.1 One-time Identities

To preserve anonymity, both Alice and Bob compute
and use one-time identities. These identities are random
numbers and are only used for a single transaction. They
are the only identifying information required in messages.
The one-time identifiers are derived from the one-time
pads shared between Alice/Bob and the CCC, allowing
the CCC to identify Ali ce/Bob, but preventing anyone
else from determining their identities.

4.2 Anonymity Options

Our protocol allows each party the option of revealing
their own identity. Each party can decide independently
whether to remain anonymous or reveal their identity. If
a party decides to reveal their identity, then they must
have agreed on a public identity string with their CCC.
This identity string might contain multiple representations
of a single identity (e.g. multiple character sets or lang-
uages), but the entire string is always transmitted and used
in MAC calculations as a unit. This identity string is
transmitted with the one-time identifiers between Alice
and Bob. Each party who receives a revealed identity
incorporates that identity into their respective MAC.

The public identities are not sent to the CCC. The
CCC can identify both parties by their one-time identities
alone, and can then look up the public identities as
necessary. Since the public identity for each party is
included in the MAC of the other, the CCC will detect if a
party lies about their own identity (the MAC will not
check properly).

The man-in-the-middle attack described above is made
much more diff icult i f Bob chooses to reveal his identity.
This allows Alice to be sure she is paying the correct

Ali ce
(Customer)

Bob
(Merchant)

Credit Card
Company

Ali ce’s
One
Time
Pad

Bob’s
One
Time
Pad

Seq. # Seq. #

Ali ce’s
One
Time
Pad

Bob’s
One
Time
Pad

Seq. # Seq. #

Figure 1: The Players

merchant, although it doesn’ t prevent an attacker from
making Alice’s payment for her.

4.3 Message MACs

To prevent forgery, Ali ce and Bob each independently
calculate MACs on certain values. These MACs are
calculated using OTPMAC and the one-time pads shared
between customer/merchant and CCC. This allows the
CCC to verify the authenticity of a transaction author-
ization, and prevents an attacker from forging one.

5 Standard Protocol Messages

A normal transaction in our protocol requires five
messages. If synchronization is necessary, two additional
messages are used. In addition to the information detailed
below, each message begins with a tag identifying the
protocol and the message type. The message tags are
{ M0, M1, M2, M3, M4, M5, M6} .

In preparation for the transaction, Bob must prepare a
string trans, which contains the actual transaction
parameters (e.g. amount of money). After receiving
Bob’s message, the CCC will generate the string result,
which gives both Alice and Bob the result of the
transaction. The protocol guarantees that both Alice and
Bob will accept identical copies of both trans and result.

When a transaction begins, principals use their own
sequence number to index into their one-time pads. The
following values are fetched from the one-time pad in
order:

• ID, used as the party’s one-time identifier
• SYNC, used in synchronization messages
• Q, used to calculate a MAC for the authorization
• R, used to verify the MAC for the result

Subscripts represent the values calculated by a
particular party. For example, IDA represents Ali ce’s
value for ID. The MAC of a message X using the secret
key k is represented by MAC(k, X).

5.1 Tag M0: Transaction Information

Bob → Ali ce: { IDB, NB, trans}

In this message, Bob is asking Alice to authorize trans.

NB is either Bob’s real name, or an empty string, if he
chooses to be anonymous. In this case, Bob doesn’ t
reveal his own identity to Ali ce since IDB is indistinguish-
able from a random number.

5.2 Tag M1: Customer Authorization

Ali ce → Bob: { IDA, NA, IDB, HA}

HA = MAC(QA, { M1, IDA, NA, IDB, NB, trans})

Ali ce commits to trans by computing and sending her
one-time identifier and MAC in this message. The
presence of IDB in this message allows Bob to identify the
transaction to which this message refers. NA is either
Ali ce’s real name, or an empty string, if she chooses to be
anonymous. The four fields of this message are
inseparable since the MAC has been calculated using IDA,
NA, and IDB.

5.3 Tag M2: Merchant Request

Bob → CCC: { IDA, αA, IDB, αB, HA, HB, trans}

HA = MAC(QA, { M1, IDA, NA, IDB, NB, trans})
HB = MAC(QB, { M2, IDA, NA, IDB, NB, trans})

By sending his one-time identifier and MAC with this

message, Bob also commits to trans. To send the

A
lice

IDA, NA, IDB, HA

IDA, αA, IDB, αB, HA, HB, trans

B
ob

C
C

C

IDB, NB, trans

IDA, IDB, HA’ , HB’ , result

IDA, IDB, HA’ , result

Figure 2: Normal Protocol Operation

message, Bob must gather both IDs, both MACs, and
trans itself, and send the whole bundle to the CCC.

The flags αA and αB are inserted by Bob to tell the
CCC if either Ali ce or Bob (respectively) have chosen to
be anonymous. (Bob knows Alice wants to be
anonymous when she sends him an empty string.) This
information tell s the CCC to use an empty string in place
of the each party’s real name in the MAC calculation. If
these flags are altered by any party, the transaction will
simply fail , since the MAC will not match when
calculated by the CCC.

The CCC looks up IDA and IDB in its own tables (see
the Performance discussion below for more detail s). It
can then retrieve the one-time pads for Ali ce and Bob,
and use these to verify the MACs. Finall y, the CCC can
perform the transaction.

5.4 Tag M3: CCC Response

CCC → Bob: { IDA, IDB, HA’ , HB’ , result}

HA’ = MAC(RA, { M3, IDA, IDB, result})
HB’ = MAC(RB, { M4, IDA, IDB, result})

The CCC returns the string result, informing both Bob

and Alice of the outcome of trans. To prevent forgery,
the CCC computes MACs for each of Ali ce and Bob
using RA and RB respectively. These MAC values bind
the five message elements together. The ID fields allow
Bob to determine to which of Bob’s transactions this
message refers. Bob now has positi ve confirmation of the
transaction outcome. He increments his sequence
number, and although he is still required to send M4 on to
Ali ce, he is immediately ready to begin another
transaction.

5.5 Tag M4: Response Relay

Bob → Ali ce: { IDA, IDB, HA’ , result}

HA’= MAC(RA, { M4, IDA, IDB, result})

This message contains only those portions of message

type M3 which are relevant to Ali ce. Ali ce performs the
same MAC check as Bob to verify the integrity of result.
Ali ce can also use the ID fields to bind this message to an
in-progress transaction. Ali ce now has positi ve
confirmation of the transaction outcome. She increments
her sequence number and is ready for another transaction.

6 Synchronization Messages

Normally, the CCC can pre-compute Alice’s next one-
time identity using the CCC’s own copy of her sequence
number and one-time pad. Then, when a message arrives,
a simple hash operation or table lookup can be used to

identify Ali ce. Once the transaction is completed, the
sequence number is incremented, and the process repeats.

However, should the protocol terminate before
completion, the sequence numbers of Ali ce and the CCC,
and thus their pre-computed one-time identities, may not
match. This lack of synchronization is a serious problem
since the CCC will no longer be able to identify Ali ce.
This might happen if the CCC, merchant, or link goes
down in the middle of a transaction, or if the merchant
violates the protocol by not sending the last message.

Bob is able to attack Alice by claiming that the CCC is
unreachable while actuall y processing the transaction
(taking Alice’s money) and withholding the last message
(presumably also withholding the goods Alice intended to
purchase). Since Alice has no direct communication with
the CCC, she cannot immediately detect this attack.
However, she will notice it later, and can dispute it li ke
she would dispute any inaccurate transaction.

6.1 Suspicious State

To solve this synchronization problem, one additional
state is added to the protocol. If Ali ce commits to a
transaction (by sending M1), but does not receive a valid
confirmation message M4, then she is said to be in the
“suspicious” state. When Alice is suspicious, Ali ce’s own
sequence number might be one less than the CCC’s idea
of Ali ce’s sequence number. Ali ce does not engage in
any additional transactions until she leaves this state by
the synchronization protocol below.

This synchronization protocol might be initiated by
Alice while she is still connected to the merchant, or it
might be initiated when Alice reaches another merchant.
This protocol must complete before any additional
transactions are permitted, so the new merchant acts as a
courier for the synchronization messages. Since Alice
presumably wants to make a purchase when she presents
her token to the next merchant, there is an incentive for
merchants to provide the synchronization courier service.

6.2 Tag M5: Synchronization Request

Ali ce → CCC: { IDA, SYNCA}

Upon receipt of message M5, the CCC looks up the

one-time identifier. Since the identifier in M5 might have
been already used by the customer, both the current and
immediately previous one-time identifiers must be pre-
computed by the CCC. (Matching against this twice-as-
large database of identities is only necessary for
synchronization messages.) If the one-time identifier has
been used on a successful transaction, the CCC resends
the original M4 response. If the one-time identifier has
not been used, then the CCC generates message M6, and
increments Alice’s sequence number.

6.3 Tag M6: Synchronization Response

Ali ce → CCC: { IDA, RA [see text]}

M6 is only returned if no transaction used the one-time

identifier specified in M5. In this case, the CCC has
received the current (suspect) one-time identifier for the
customer, and incremented the sequence number to the
next one-time identifier. This means that any transaction
authorized by the customer using the suspect identifier is
effectively void. This prevents a merchant or attacker
from delaying a transaction and resubmitting it later –
once the synchronization protocol completes, the delayed
transaction is no longer valid.

The field RA differs from previous fields since it
exposes bits that are, at one point in the protocol, used as
the secret in a MAC calculation. However, since M6 is
only returned when the CCC never processed a
transaction, M6 will only be sent when these bits have not
been used. RA is a very long value, but only the last few
bytes (the same size as a SYNC field) should be included.
This helps prevents CCC response messages from being
forged. After synchronization, the customer is ready to
begin a new transaction.

7 Operational Modes

The generation of one-time identities and MACs can
be done in various ways, depending upon the operational
requirements. The following modes exhibit various
capabiliti es of the commerce protocol, and may be
appropriate in different situations.

7.1 OTP (Unconditionally Secure) Mode

In OTP mode, the secrets shared between client and
CCC include a truly random one-time pad. OTPMAC is
used to generate MACs for messages. This mode is
unconditionally secure. It does not rely on the existence of
one-way functions, or on any other unproven conjecture.

Given any value for the security parameter σ, it can be
proven that the probabilit y of forging just one message is
less than σ for suitably chosen parameters.

This mode requires that both the client and CCC store
a (possibly large) stream of random bits. In addition,
once the one-time pad is exhausted, no additional
transactions may take place.

7.2 CPRNG Mode

In the case where the storage of a large one-time pad is
not practical, pseudo-random numbers can be used
instead. In this mode, a cryptographic pseudo-random
number generator[3] (CPRNG) is used to generate the bits
of the one-time pad as necessary; all other operations are
identical to OTP mode. Only a seed for the CPRNG
needs to be shared between client and CCC. In this mode,
the user can continue engaging in transactions forever –
there is no one-time pad that can be exhausted. However,
the security of the protocol is bounded by the crypto-
graphic strength of the CPRNG used.

7.3 HMAC Mode

The HMAC mode is similar to the CPRNG mode, but
uses HMAC[1][5] in two distinct ways. First, HMAC is
used as the CPRNG to generate one-time identifiers, as in
CPRNG mode. Second, HMAC replaces OTPMAC as
the MAC function. This mode would be most useful
when a cryptographic hash function can be calculated
more quickly or easil y than OTPMAC (perhaps in a
hardware implementation), and when we are not worried
about the lack of proven security for cryptographic hash
functions. There is no one-time pad to exhaust in HMAC
mode, so the client may continue engaging in transactions
for a very long time. A secret key and sequence number
are shared between client and CCC. (Of course, periodic
key changes are always prudent.)

To compute a one-time identity, an HMAC operation
is applied to the sequence number, using the secret key.

Figure 3: Synchronization Process

A
lice

IDA, SYNCA

IDA, SYNCA

B
ob

C
C

C
 IDA, RA

IDA, RA

This generates an unpredictable identifier, which does not
reveal the secret key. The SYNC field is generated in a
similar way, although this calculation may be delayed
since it is not needed in most transactions. The HMAC
mode of our prototype implementation uses 160-bit one-
time identifiers generated by HMAC-SHA-1[6][10].

7.4 Hybrid Modes

The implementation difference between OTP and
CPRNG modes is that OTP mode stores a one-time pad,
while CPRNG mode generates the values as needed. This
means that OTP-mode tends to use more space, while
CPRNG-mode tends to use more time. These modes can
interoperate in a hybrid mode for the benefit of both
customer and CCC.

In hybrid-mode, one party uses a CPRNG to generate a
one-time pad for the other party. The second party uses
the pad as in OTP mode. The first party stores only the
CPRNG, not the precomputed values, and uses it to
regenerate the values as necessary as in CPRNG-mode.

For example, suppose the customer uses a device with
extremely limited computational power, but an acceptable
amount of storage. While the CCC uses a device with
enormous computational power, it is expensive to store
large one-time pads for a large number of clients. A
hybrid mode is best suited to this situation; it reduces
client computation, while also reducing CCC data storage
requirements. This mode can also be used if the CCC
uses a secret generator function, since the CPRNG need
not be disclosed to the clients, and is not extractable from
reverse engineering of the client’s token or software. As
in OTP mode, the client will eventually exhaust the
supply of values from the one-time pad. Also, as in
CPRNG mode, the protocol is as secure as the CPRNG.

8 OTPMAC

8.1 Background

OTPMAC is a MAC function specificall y tailored for
the calculation of MACs using one-time pads instead of
secret keys. In contrast to most MAC functions,
OTPMAC does not rely on the existence of one-way-
functions, or on any other unproven hypothesis. The
probabilit y of an attacker successfull y violating the
integrity of a message can be bounded below a security
parameter σ, for any chosen value of σ.

8.2 Choosing a prime p

OTPMAC uses a large prime number p; it is conven-
ient to choose p as a Mersenne prime (a prime of the form
2b-1). To satisfy the security criterion, p should be greater
than 1/σ. The two primary operations in the calculation

of OTPMAC are addition and multipli cation mod p.
Given a true random one-time pad, OTPMAC returns a
uniformly randomly distributed number mod p.

8.3 Calculation Steps

The first step of OTPMAC is to break the message into
chunks { C0, C1, ..., Cn-1} . Each chunk should correspond
to a number less than p, so less than b bits at a time are
taken from the message to form each chunk. The last
chunk is padded with zeros to a convenient boundary.
Finall y, one additional chunk Cn containing the length of
the original message in bits (plus one) is appended.

Next, a key K i is generated for each Ci. K i is a
uniformly random value mod p. Exactly b bits are taken
from the one-time pad for each K i. If the value is equal to
p (i.e. if all bits are ones) then the value is discarded and
the process is repeated. This process guarantees that the
keys are uniformly randomly distributed mod p.

The next step is to multiply (mod p) each Ci by the
corresponding K i. All of the resulting products are
summed (mod p) to obtain the final OTPMAC value.

8.4 Desired Property

A good MAC function should have the following
property: If an attacker has seen a stream of messages
and their MACs, but does not know the keys, the attacker
should not be able to generate a correct MAC (with a
probabilit y greater than that of random guessing) for any
messages other than the ones the attacker saw.

8.5 A Useful Lemma

The product (mod p) of any nonzero constant and a

uniform random variable (mod p) is a uniform random
variable (mod p). Also, the sum (mod p) of any constant
(or independent variable) and a uniform random variable
(mod p) is a uniform random variable (mod p). Thus, any
linear function (mod p) on uniform random variables
(mod p) with at least one nonzero coeff icient (mod p) is a
uniform random variable (mod p). This lemma is useful
in showing that OTPMAC does have the desired property.

8.6 OTPMAC Property

The result of an OTPMAC calculation is a linear

function on the uniform random keys K i. The coeff icients
of the linear function are the message chunks Ci, and the
length of the message plus one. The result of an
OTPMAC calculation is:

C0K0 + C1K1 + … + Cn-1Kn-1 + (n+1)Kn

We will demonstrate that any change to a message will
induce a change in the OTPMAC result. In each case

below, the change will be a linear function on the K i, with
at least one nonzero coeff icient, and with linearly
independent coeff icients from the coeff icients corres-
ponding to the original message. This property guaran-
tees that an attacker, without knowledge of the K i, cannot
calculate the OTPMAC for the changed message with any
probabilit y greater than random guessing. Since the
probabilit y of a correct guess is exactly 1/p, and σ ≥ 1/p,
the OTPMAC check will succeed at the receiver with
probabilit y no greater than σ.

For example, suppose an attacker changes some Ci to
Ci’ . This causes OTPMAC to change by the amount ∆ =
K i(Ci’–Ci) (mod p). (Ci’ -Ci) must be nonzero, so the
difference ∆ is a linear function with at least one nonzero
coeff icient on a uniformly random variable. The result of
such a function is a uniformly random variable.

The same is true if the attacker attempts to modify
more that one chunk of the message. Each Ci which is
changed to a different value Ci’ forces another coeff icient
of ∆ to be nonzero. As long as there is at least one
nonzero coeff icient, ∆ will be a uniform random variable.

In these arguments, we have assumed that the
coeff icients of the changed message are linearly
independent from the coeff icients generated by the
original message. However, since (n+1) is always a
coeff icient, an attacker can’ t pick any set of Ci that are not
li nearly independent. Since OTPMAC requires that the
K i be used only once, an attacker only gets one value
generated using a particular set of K i. This prevents the
attacker from picking a message to be a linear

combination of two other messages – the only linearly
dependent messages must be simple multiples of the
original message. However, since the length (n+1) is not
changed, any change in any coeff icient will result in a
linearly independent set of coeff icients. Therefore, our
assumption is justified.

Next, suppose an attacker modifies a message by
changing its length from n to n’ . If the new length is
shorter than the old length by one, then ∆ is (n-Cn-1)Kn-1 -
(n+1)Kn. Since (n+1) is nonzero, ∆ is again a linear
function on uniform random variables, and thus a random
variable. This argument can be extended to include all
messages shorter than n. ∆ will always contain the term
(n+1)Kn, and will never have any other terms containing
Kn. Since (n+1) is always nonzero, the resulting ∆ will
always be a uniform random variable.

Finall y, suppose an attacker lengthens the message. In
this case, ∆ will always contain a term (n’+1)Kn’. (n’+1)
is again nonzero, so ∆ will be a linear function on uniform
random variables, and thus a random variable.

Since the OTPMAC value cannot be calculated
without the keys K i, an attacker cannot successfull y forge
a message with probabilit y greater than σ.

8.7 OTPMAC Conclusions

• OTPMAC works well for the calculation of MAC

values when a suff icient supply of random bits is
present in the form of a synchronized one-time pad.

Figure 4: Calculation of OTPMAC

K1

OTPMAC

Message

K4 K3 K2

Message
length + 1

• Since the one-time pad is required for both
generation and checking of MAC values, OTPMAC
can only be used in symmetric key systems.

• OTPMAC can be used to provide virtuall y any
degree of security with suitable choices of σ and p.

• OTPMAC can provide guarantees about the
probabilit y of forgery since it does not depend upon
the existence of one-way functions or any other
unproven hypothesis.

9 Performance Issues

9.1 One-time pad consumption

The use of one-time pads requires a significant amount
of storage capacity. However, the required storage is
quite reasonable, as shown by the following examples.

Two examples for OTPMAC parameters are shown in
Table 1. We assume that both parties choose to be
anonymous for all of these examples. For Example 1, we
choose the OTPMAC parameter p = 231-1, which gives a
security parameter σ ≈ 2-31. Using the identifier and
maximum transaction/response sizes shown, 64 bytes of
one-time pad are consumed in each transaction.

Table 1: Example parameter choices

Parameter Example 1 Example 2

Security Parameter (σ) ≈ 2-31 ≈ 2-127

OTPMAC prime (p) 231-1 2127-1

One-time identifier size 32 bits 128 bits

SYNC size 32 bits 128 bits

Transaction size 22 bytes 28 bytes

Response size 13 bytes 14 bytes

One-time pad
consumed per

transaction
64 bytes 128 bytes

For Example 2, we choose the higher security value of

p = 2127-1, which gives a security parameter σ ≈ 2-127.
The sizes of identifiers are also increased, as are the
maximum transaction/response sizes. For these param-
eters, 128 bytes of one-time pad are used per transaction.
These two examples are used to generate performance
estimates for the various parties in the following sections.

9.2 Customer/CCC Performance

A customer using a smart card with 32K of memory
can perform 512 transactions before its one-time pad is

exhausted, under the parameter choices of Example 1.
Even for a heavy card user (average 8 transactions per
day), this card would last about two months before its
one-time pad was exhausted.

Table 2: Performance for a user with a 32K smart
card

Parameter Example 1 Example 2

Number of transactions 512 256

OTP li fetime
(8 per day) ≈ 2 months ≈ 1 month

CCC storage
(1 milli on users)

32 GB 32 GB

The CCC also needs to store copies of all the one-time

pads. Using these parameters, the CCC could service 1
milli on card users using only 32 GB of storage. This
amount of storage is certainly reasonable, especiall y for a
large transaction-processing facilit y. Table 2 detail s these
estimates, and provides the adjusted estimates for the
higher security of Example 2.

9.3 Merchant/CCC Performance

The number of transactions that can be performed
using a smart card is probably insuff icient for merchants.
One alternative would be to distribute the one-time pad to
the merchant on CD-ROM or other large media.

Using the parameters from Example 1 above, a
merchant equipped with a CD-ROM one-time pad could
perform 10.4 milli on transactions. Even performing
20,000 transactions per day, this pad would last 1.4 years.
These examples are detailed in Table 3.

Table 3: Performance for a merchant with
a CD-ROM one-time pad

Parameter Example 1 Example 2

Number of
transactions

10.4
milli on

5.2
milli on

OTP li fetime
(20,000 per day) ≈ 1.4 years ≈ 8 months

CCC offline storage
(5000 merchants)

3 TB 3 TB

CCC online storage
(1 month)

180 GB 360 GB

Although the CCC needs to store copies of all the one-

time pads, it is important to note that each one-time pad is
accessed strictly sequentiall y. This means that the CCC

might store only the active portion of each one-time pad
in online storage, and the remainder off line. The last row
of Table 3 estimates the online storage required to store
suff icient one-time pad to process transactions for at least
one month. This amount of storage is reasonable for a
large processing facilit y. There are also many other
possibiliti es for storage optimization.

9.4 CCC Identity Lookup

Upon receipt of M2, the CCC determines the identities
of the merchant and customer using their one-time
identities. One way for the CCC to perform this lookup is
to use a hash table. The hash table lookup returns the real
identities of the participants, which are used to retrieve
the one-time pads. Once the transaction has completed,
the hash table is updated with the (precomputed) next
one-time identifiers for both parties.

Since the hash table contains only on a single one-time
identifier for each user, it is much smaller than the entire
collection of one-time pads. The size of the hash table is
only a function of the identifier size, and not on the length
of the one-time pads stored for each user. For the 32-bit
identifiers and 100,000 users in the examples above, the
hash table could occupy only about three megabytes,
depending upon the hash implementation.

In the extremely unli kely event that multiple users
correspond to the same one-time identifier, the CCC can
perform the MAC verification for each of the candidate
users. With overwhelming probabilit y, the MAC will
match for only one of the clients.

10 Related Work

Several other commerce and electronic cash protocols
have been proposed. However, none of these provide the
provable security and anonymity/unlinkabilit y possible
with one-time identifiers and OTPMAC.

Mondex International Ltd. has created the Mondex
electronic cash system, which uses smart cards or other
tokens with stored value[9]. Although the full protocol is
undisclosed, there is a unique 16-digit identifier for each
card, as well as an audit trail . These could reveal users’
identities, or link a customer to multiple purchases.

DigiCash’s eCash[11] is an electronic cash system that
does provide anonymity and unlinkabilit y of multiple
transactions to a single party, even by the CCC.
However, eCash requires RSA, which does not provide
the provable security nor speed of OTPMAC.

The NetBill [13] commerce system is optimized for
services deli vered over a network, instead of face-to-face
transactions. The NetBill t ransaction protocol uses eight
messages, three more than required by our OTPMAC-
based protocol. NetBill uses a static customer identifier,
and provides neither provable security nor unlinkabilit y.

The Milli cent System[4][7] provides a commerce
protocol optimized for small transactions over the
Internet. Milli cent uses a version of electronic cash called
scrip, which is restricted to a specific vendor. Milli cent
requires at least three or four cryptographic operations per
transaction; our protocol requires only two. Milli cent
provides neither provable security nor unlinkabilit y.

SET[8][12] is a set of standards designed for secure
credit card transactions. Since SET uses digital certificate
chains, it requires many more signature verifications than
our commerce protocol. Although SET can provide non-
repudiation, SET’s digital certificates provide neither
provable security nor unlinkabilit y.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk, "Keyed Hash

Functions and Message Authentication", Advances in
Cryptography, Crypto96 Proceeding, June 1996. pp. 1-
15. (http://www.research.ibm.com/security/keyed-
md5.html)

[2] B. Cox, J.D. Tygar, M. Sirbu. “NetBill Security and
Transaction Protocol.” Proceedings of the First USENIX
Workshop on Electronic Commerce

[3] D. Eastlake, 3rd, S. Crocker, J. Schill er. RFC 1750:
Randomness Recommendations for Security. December
1994.

[4] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, P.
Sobalvarro. “The Milli Cent Protocol for Inexpensive
Electronic Commerce.” Proceedings of the 4th
International World Wide Web Conference. December
1995.

[5] H. Krawczyk, M. Bellare, R. Canetti. RFC 2104:
HMAC: Keyed-Hashing for Message Authentication.
February 1997.

[6] C. Madson, R. Glenn. RFC 2404: The Use of HMAC-
SHA-1-96 within ESP and AH. November 1998.

[7] M. S. Manasse. “The Milli Cent Protocols for Electronic
Commerce.” Proceedings of the 1st USENIX workshop
on Electronic Commerce. July 1995.

[8] M. S. Merkow, J. Breithaupt, K. Wheeler. Building SET
Applications for Secure Transactions. John Wiley &
Sons, New York. 1998.

[9] Mondex Electronic Cash. “How Private is a Mondex
Transaction?” Frequently Asked Questions (via
http://www.mondex.com)

[10] NIST, FIPS PUB 180-1: Secure Hash Standard. April
1995. (http://csrc.nist.gov/fips/fip180-1.txt)

[11] B. Schoenmakers. “Basic Security of the ecash Payment
System.” Computer Security and Industrial
Cryptography: State of the Art and Evolution. ESAT
Course, Leuven, Belgium. June 1997.

[12] SET Secure Electronic Transaction LLC. SET Secure
Electronic Transaction Specification. December 1997.

[13] M. Sirbu, J. D. Tygar. “NetBill : An Internet Commerce
System Optimized for Network Deli vered Services.”
Prepared for the IEEE CompCon Conference. March
1995.

