
The Authorization Service of Tivoli Policy Director

Günter Karjoth
IBM Research

Zurich Research Laboratory

Abstract

This paper presents the Authorization Service provided by
Tivoli Policy Director (PD) and its use by PD family mem-
bers as well as third-party applications. Policies are defined
over an object namespace and stored in a database, which is
managed via a management console and accessed through
an Authorization API. The object namespace abstracts from
heterogeneous systems and thus enables the definition of
consistent policies and their centralized management. ACL
inheritance and delegated management allow these policies
to be managed efficiently. The Authorization API allows ap-
plications with their own access control requirements to de-
couple authorization logic from application logic. By inter-
cepting the traffic over well-defined communication proto-
cols (TCP/IP, HTTP, IIOP, and others), PD familiy members
establish a single entry point to enforce enterprise policies
that regulate access to corporate data.

1 Introduction

As the Internet has become the primary medium for dis-
seminating information to people all over the world, com-
panies and government agencies are increasingly opening
their IT infrastructure to give external customers and part-
ners access to resources, such as product support data, and
internal users access to various corporate data. These orga-
nizations face problems of how to enforce their enterprise
policies that regulate access to corporate data, and how to
manage these policies efficiently. A viable approach is to
provide centralized access control for corporate informa-
tion. By intercepting the traffic over well-defined communi-
cation protocols (TCP/IP, HTTP, IIOP, and others), a single
entry point enforces the domain’s authorization policy.

There are a number of commercially available products
for this type of Web access control [4, 10]. All these prod-
ucts provide a framework for user authentication, autho-
rization management, and access control enforcement for
resources within a secured domain. They centralize autho-
rization rules and provide a finer granularity of access con-

trol than most native access controls in operating systems,
Web servers, and applications do. The notion of authoriza-
tion server is not new, and authorization servers have been
described for instance in [13, 12, 14]. These research proto-
types mostly aim at expressivity increase of the policy lan-
guage, policy neutrality, and for flexible tool provision to
configure the security policies; concerns that are orthogonal
to the ones addressed by the commercial products in this
market, such as scalability and performance.

This paper focuses on Tivoli Policy Director (PD), which
provides a facility for centrally managing policy to govern
access to resources over geographically dispersed intranets
and extranets. Policy Director provides authorization ser-
vices to applications. Applications that are part of the Pol-
icy Director family include WebSEAL, NetSEAL (for TCP-
based applications), Application Server (for CORBA appli-
cations), and MQSeries (for MQSeries queues). Third-party
applications can use Policy Director’s authorization service
by calling its standard-based Authorization API [11]. Be-
sides its policy management features, Policy Director also
supports (additional) external authorization services.

WebSEAL is an HTTP proxy, installed in front of a
Web server or group of Web servers, that controls access to
Web resources by performing authorization checks on URL
names. For that purpose, WebSEAL authenticates users and
then acquires user credentials (e.g., group memberships).
Subsequently, WebSEAL checks authorization (i.e., makes
an access control decision) to protected URL-addressable
resources, including “dynamic URLs” generated by appli-
cations, based on the user’s credentials. Thus, Policy Di-
rector performs as a reverse Web proxy; it appears as a
Web server to clients and as a Web browser to the back-end
servers it is protecting.

Policy Director provides a wide range of built-in authen-
ticators, supports external authenticators, and offers differ-
ent qualities of protection and accounting. To provide scal-
ability, Policy Director can off-load its authentication and
authorization services to separate servers. For example,
front-end replicated WebSEAL servers load balance client
requests; back-end replicated Web servers mirror resources
in a unified name space for high availability.

This paper presents the centralized Policy Director’s au-
thorization service and its utilization. Section 2 outlines the
Policy Director architecture. Section 3 introduces the ele-
ments of the authorization model and explains the logic of
the access decision function. Section 4 depicts the admin-
istration scheme, where permissions on different regions of
the protected object namespace lead to delegated manage-
ment. WebSEAL is elaborated on in Section 5, followed by
an implementation of the Chinese Wall policy in Section 6.
Section 7 draws conclusions.

2 Architecture

In a Policy Director environment, access to a resource
is managed by an application server, which is the reference
monitor for the resource. When a client attempts to perform
an operation on the resource, the reference monitor passes
the client’s identity together with the name of the resource
and the set of permissions required to execute the requested
operation to the Authorization server.

Policy Director’s Authorization Service provides autho-
rization services to applications that are part of the Policy
Director family, WebSEAL for example, or to third-party
applications. Third-party applications access these services
via the Authorization API, a component of the Policy Di-
rector Application Toolkit (ADK), which implements The
Open Group Authorization API standard [11].

Figure 1. Authorization service.

The basic components of the Authorization Service
(dashed box in Figure 1) are the primary (master) Autho-
rization Policy database, the Management server (ivmgrd),
the Authorization server (ivacld), and possibly some Exter-
nal Authorization server(s). The Management server main-
tains the primary Authorization Policy Database, replicates
this policy information throughout the secure domain, and
updates the database replicas whenever a change is made to
the primary database. The Authorization server determines

a client’s ability to access a protected resource. The Au-
thorization Service also provides a management interface
(Management Console or thepdadmin utility) that allows
the state of the policy database to be changed.

To increase availability and performance, Authorization
Service components can be replicated. The database is
replicated for each application (local cache mode) or the ap-
plication uses a shared replica cached by the remote Autho-
rization Server. Maintaining distinct stores of authorization
information has also the benefit of making access decisions
faster by generating optimized representations [12]. Gen-
eral and static authorization information stored in the mas-
ter Authorization Policy database is “pushed” to the remote
Authorization Server.

The Policy Director Authorization Service relies on ex-
ternal components to provide and maintain the security at-
tributes of principals. User and group membership infor-
mation, for example, are stored in registries as provided by
DCE, LDAP, Domino, etc.

An application’s reference monitor intercepts requests of
clients to access resources it protects. If necessary, it au-
thenticates the client whose identity is then represented by a
set of privilege attributes. To check whether the client pos-
sesses the required permission to access the resource, the
reference monitor uses the Authorization Service via calls
to Authorization API. The Authorization Service compares
the client’s identity to control attributes associated with the
resource. NetSEAL and Application Server, two members
of the Policy Director family, intercepts ftp or telnet access
or IIOP messages. WebSEAL, another family member, is
described in Section 5.

3 Authorization Model

In Policy Director, an authorization database defines the
authorization state that determines whether a given request
has to be considered authorized. The control attributes are
stored in access control lists (ACLs) and protected object
policies (POPs). Both entities are named and objects in their
own right, called templates. Whereas most ACL systems
store the lists at the resource (within the application), Policy
Director decouples the authorization information by intro-
ducing the notion ofprotected objects, or objects for short,
which are the logical representations of resources. Access
to a resource is controlled by attaching an ACL and/or POP
template to the corresponding object.

In the way the authorization database and thus the autho-
rization state can be changed, Policy Director follows the
administration paradigm, where only a restricted group of
users (security administrators) can change the authorization
state. However, the ownership paradigm is used to control
the capabilities of security administrators to change man-
agement data, for example ACL templates or user defini-

tions.
The specification of access rights in Policy Director is

identity-based – users with similar security properties are
collected into groups, and permissions are granted to users
and to groups, thus establishing an indirect relationship be-
tween users and rights. Only permissions that represent ap-
provals can be given.

3.1 Protected Object Namespace

The protected object namespaceis a hierarchical por-
trayal of resources that belong to a secure domain. Its el-
ements are strings whose syntax and structure are similar
to absolute URIs [1] but without the scheme, machine, and
query components. The slash character (‘/’) is used to de-
limit, from left to right, hierarchical substrings of the ob-
ject’s name. Thus, the strings

/aaaaaaa
/cgi-bin/test-cgi.exe
/pic/pd.gif
/products.nsf/By+Product+Nbr/$SearchForm
/sales/budget/quarter1/New%20York/travel
/7595ed78b0641e0071ed70/99d37fe852564050

are examples of object names.
ACLs and POPs are attached to objects, and objects

without attached ACL (POP) inherit the ACL (POP) of the
closest ancestor. Authorizations are granted to subjects,
which can be singleusersor groups. A user may belong
to several groups but there is no group hierarchy, i.e. groups
cannot be members of other groups. Users are the princi-
pals of the secure domain that can be authenticated. Be-
sides users and groups, there are two additional ACL en-
tries: any-authenticated matches any authenticated
user andunauthenticated matches any unauthenti-
cated user.

Access Control Lists. A permissionis an abstract notion,
in fact it is only a name, whose existence is checked for.
For ease of administration, a permission might denote a cer-
tain type of access (e.g., read, write, execute). However,
different objects might employ different access rights for
the same permission. Additional permissions can be intro-
duced to denote that an external authorization server should
be contacted.

Policy Director’s access control is discretionary in the
sense that some individual users (administrators) are “own-
ers” of ACL templates and therefore have complete discre-
tion over who should be authorized to perform which action
on the object. Ownership is usually acquired as a conse-
quence of creating the ACL template. Granting the control
(c) permission gives “ownership” of the ACL template. It
allows one to create, delete, and change entries in the ACL,

or to delete the ACL template. Subjects with ownership
privilege on an ACL template may grant any permission,
including ownership, to any other user or group.

Besides the 18 standard permissions, an implementer of
an object can define additional 14 permissions for specific
access rights. To support large numbers of operations or
properties on an object, Policy Director also allows one to
define groups of permissions, supporting a total of 32 per-
mission groups (including the primary permission group of
the above standard permissions), with up to 32 permissions
per group. CORBA Security also uses the notion of permis-
sion groups, called rights families, to extend the number of
permissions [7]. A different approach is used in Windows
2000, where the object type field of an ACL entry specifies
to which portion of an object it refers [9].

Protected Object Policies. Whereas ACL policies are the
grounds on which the Authorization service gives a yes/no
answer to a given request,protected object policiesmay im-
pose additional conditions on the request that are passed
back to the Resource Manager along with the “yes” answer.
It is the responsibility of the Resource Manager to enforce
the (returned) POP conditions. Conditions imposed by a
POP apply to all principals.

A POP is a set of attribute-value pairs. Predefined at-
tributes allow one to express quality of protection and audit
levels, to restrict access to a specific time period or to certain
IP endpoints, and to set a warning mode. Administrator-
defined attributes can be used to store information for use
by external authorization services.

Any object is controlled by an ACL and a POP, which
may influence each other. If the POP’s warning mode is
enabled, the conditions setup by a POP become inactive for
every requester, thus providing a way to test ACL and POP
policies before they are made active. On the other hand, a
granted bypass TOD (B) permission in the controlling ACL
overrides the conditions of the time-of-day attribute in the
POP.

POPs resemble to some extent the conditions field of
an access control rule (“assertion”) in KeyNote [3], which
consists of several relational expressions and compliance
value(s), for exampleApproveAndLog. POPs also bear
some similarity to the concept of provisions [6] that pro-
vide conditional authorizations– binary decisions can be
extended to “allow access provided some actions are taken.”
For example, POP templates allow one to specify levels of
authentication, protection and auditing. If necessary Web-
SEAL enforces the required condition by creating a secure
session to the requester or by initiating a step-up authentica-
tion procedure. This implies that access rights are reduced if
a resource is requested over an unencrypted or less strongly
authenticated channel.

3.2 Access Right Propagation

Whereas traditional operating systems create ACLs by
copying entries from the container of an object when it is
created, ACLs are explicitly attached to objects in Policy
Director. However, byACL inheritance, any object without
an attached ACL inherits the nearest ACL attached to an
object above it in the hierarchy. This leads to the concept
of regions, sets of objects that share the same protection
properties. In a region, there is one and only one object with
an ACL attached to it (the root of the region). The other
objects within the region are all the objects below the root
that have no explicitly set ACL and are reachable without
passing through an object with an explicitly set ACL.

Attached ACL templates form regions in a given pro-
tected object namespace. In the protected object namespace
below for example, there are four ACL templatesA, B, C,
andD attached as follows:

A /
B /c1/c2/
C /c1/c2/c3/c4/
D /c1/c2/c3/c4/c5/f2

They establish four nested regions: object/c1/ will be
in regionA; object /c1/c2/f is in regionB; and object
/c1/c2/c3/c4/f is in regionC.

ACL inheritance allows permissions set on an object to
propagate to every object located underneath it until another
ACL occurs. This also includes every new object created
within the scope of the ACL. Thus regions are open; i.e. ob-
jects added later to the tree will be within the scope of the
corresponding region. For example, object/c1/c2/f1
will be within the scope of regionB when added.

Objects in a region are accessible if the requester (ex-
plicitly or implicitly) holds the traverse (T) permission on
each object on the path of the region. Note that POPs are
inherited in the same way as ACLs, except that inheritance
cannot be blocked by a missing Traverse permission on a
higher POP.

3.3 Fine-grained Access Control

Policy Director provides mechanisms to provide fine-
grained access control for legacy data, whose HTML rep-
resentation is generated dynamically by a gateway pro-
gram. Queryable resources are dynamic document bases
that, when addressed by a URL request supplemented with
parameters (query string), will return a dynamic content dis-
playable by a Web browser. Dynamic URL mappings allow
access control on URL requests with parameters.

Dynamic URLs. Whereas ordinary URLs are links to
static documents on the Web, a dynamic URL is a
URL with name-value pairs in the query component.
Depending on the values provided, a request com-
mand might respond with different content encoded in
HTML. For example, if the resource is the Java servlet
Savings , which needs a value for user and a value for
property, then the URLhttp://server/Savings?
user=alice&property=job+title addresses this
resource.

/db/redshirt /db.cgi*product=shirt*color=red*
/app/snoop /rt[25]/servlet/snoop
/app/snoopA /rt?/servlet/snoop
/app/cnt/ejb /examples/HitCount\?src=EJB
/app/cnt /examples/HitCount*

Figure 2. Example of URL mapping.

To apply access control to specific values of a dynamic
URL, Policy Director offers the possibility to map sets of
object names to single object names. When a dynamic URL
has been resolved to a namespace object, PD uses the ob-
ject’s ACL for the subsequent authorization check. Other-
wise, PD uses the URL itself.

Mappings are defined by entries in a configuration file
and become activated by command execution. In Figure 2, a
sample dynamic URL mapping is given. The objects on the
left represent some Web applications, whose corresponding
dynamic URLs are denoted by wildcard patterns, a subset
of shell-style pattern matching. Note that the mapping is
dependent on the order of the entries in the configuration
file.

Performing access control on a dynamic URL is
shown in Figure 3, where a dynamic URL map-
ping maps objects from the set/sales/web/db.
cgi*product=shirt*color=red* on object
/sales/web/db.cgi/redshirt (2). Thus,
the request http://www.acme.com/sales/
web/db.cgi?service=SoftWear&catalog=
clothing&product=shirt&color=red is mapped
to object /sales/web/db.cgi/redshirt (1), and
the ACL associated with this object (3) will be used for the
authorization check.

Although wildcard patterns can be used everywhere in an
object name, their use should be restricted to the query com-
ponent of the object name to avoid clashes with the concept
of ACL inheritance. If wildcard patterns occur before the
query component, they may possibly introduce deviations
from the longest matching prefix rule, whose consequences
are discussed at the end of Section 3.4.

External Authorization Service. The expressivity of
Policy Director can also be extended by the use of External

Figure 3. Authorization on a dynamic URL.

Authorization services, which are freely programmable, and
included into the access decision evaluation process. Each
External Authorization service (EAS), a separate (external)
authorization server program, is represented by a new per-
mission. When encountering such a permission during an
authorization check, the corresponding external authoriza-
tion service is referred to for additional authorization de-
cisions. For example, a customized EAS might map un-
registered users, which provide an appropriate attribute cer-
tificate, to a pseudo user or group owning the correspond-
ing permissions. The EAS architecture allows the full in-
tegration of an organization’s existing security service by
integrating legacy servers into the authorization decision-
making process.

Policy Director’s external authorization services resem-
ble thePolicyEvaluatorobjects in CORBA’s resource ac-
cess decision service [2]. By encapsulating the representa-
tion and evaluation of arbitrary authorization policies, pol-
icy evaluation objects can be dynamically added to and re-
moved from the authorization service.

3.4 Access Decision Function

Whereas ACLs are the units of granting or revoking, ac-
cess decisions are made based on individual permissions.
Policy Director employs a two-step procedure, checking
whether the requester holds the necessary permissions on
the region of the objectandwhether the region is accessible

for the requester. Both authorization checks use an evalua-
tion scheme on ACLs, as found in Posix or DCE [8].

For a given client, determined by its user identifier and a
possibly empty set of group identifiers, the algorithm deter-
mines the set of permissions granted by a specific ACL, per-
forming a sequence ofattempted matchesagainst ACL en-
try types. First, it checks whether the user identifier matches
one of the ACL’s user entries. If so, it returns the asso-
ciated set of permissions. Otherwise, the algorithm com-
putes the union of all permissions the user holds by match-
ing group entries. If the computed union of permissions
does not match the required set of permissions, the algo-
rithm next checks theany-authenticated entry, and
finally the unauthenticated entry. For the last entry,
the set of effective permissions is determined by a bitwise
“and” operation against theany-authenticated entry.

When PD has determined the ACL and POP templates
that define the access policy to the requested object, it first
checks the IP endpoint authentication method attribute, then
the ACL permissions, the time-of-day attribute of the POP,
and finally determines the audit level. To check ACL per-
missions, the decision function first checks whether the re-
quired permissions are granted to the requester. Next, it
sends an authorization request to each external authoriza-
tion service whose permission appears in the ACL. If a de-
nial occurs, Policy Director will deny the authorization re-
quest. If an external authorization service is not available,
access will also be denied.

Default rules ensure the consistency of policies defined
in Policy Director. For each possible request, auniqueac-
cess decision exists because there are no negative autho-
rizations, and the decision will either grant or deny access,
because there is always an ACL template attached to the
root, and there is at least one matching entry as there is an
implicit ACL entry for subjectunauthenticated .

By removing the Traverse permission, the security ad-
ministrator can deny access to a subtree of objects. How-
ever, as mentioned before, a dynamic URL mapping may
introduce a second (access) path to an object in the subtree
that bypasses the root of the subtree. To guarantee consis-
tency on the accessibility of objects we postulate the fol-
lowing rule:

The authorization state of a policy database is
consistent if for any two objectso1 ando2, with o1

being a prefix ofo2, the objectD(o2) determined
by the URL mapping is only accessible ifo1 is
accessible.

This is the least assumption we can make. To introduce
an ordering on the strength of permissions is not feasible
because, depending on the purpose, the administrator might
either only give access to some parameters of an executable
or might simply exclude some parameters.

4 Management

Advanced services can employ complex access mod-
els, which must be both economically implemented and se-
curely managed. The large number of users and objects,
the varying working relationships among users in such en-
vironments, and the frequent changes of access control in-
formation pose challenges to the design of the authorization
system. In this section, we elaborate on Policy Director’s
concept of regions and their use for delegating administra-
tion tasks to subordinated security administrators, providing
leverage for dealing with the problem of scale in security
policy management.

4.1 Regions

Manipulation of protected objects are controlled by per-
missions to create or modify (m), to delete (d), and to list
or view (v) an object. To browse the namespace below an
object, browse (b) permission is needed.

Policy Director’s protected object namespace has differ-
ent categories of objects, and each category has its own
permissions. Policy Director uses the following standard
namespace categories:

I Web objects (/WebSEAL)

II Network objects (/NetSEAL)

III Management objects (/Management)

IV User-defined objects (third-party namespace)

In the following, we describe in more detail the four cate-
gories of objects and the permissions associated with them.

Web objects. The objects in region/WebSEAL represent
WebSEAL servers, directories, files, and executables (CGI
programs, Java Servlets, JSP). The node below/WebSEAL
identifies the machine on which the WebSEAL server is
running. This node is the root for the local file system of
the WebSEAL server. The namespaces of other parts of the
local file system of the WebSEAL machine as well as of
other Web servers can be appended via a junction1 to any
node in this subtree.

To access resources directly provided by the WebSEAL
Web server, the list (l) permission is needed for a directory,
the read (r) permission for a host of file, and the execute
(x) permission for an executable. Access to objects, which
include directories and CGI programs, across junctions is
only controlled using the read (r) permission.

Management objects. The objects in region
/Management represent ACL templates and POPs,
WebSEAL servers, customized actions (new permissions),
and policy databases.

Permissions on object/Management/ACL control
ACL templates. The control (c) permission gives “owner-
ship” of the ACL, i.e. it allows one to create, delete, and
change entries in the ACL, or to delete the ACL template.
Subjects with ownership privilege on an ACL template may
grant any permission, including ownership, to any other
user or group. The attach (a) permission allows one to
attach/remove ACL templates to/from objects. On region
/Management/POP , permission Bypass TOD (B) over-
rides the time-of-day POP attribute.

Permissions on object/Management/Server con-
trol the creation/deletion of a server definition, the exe-
cution of server administration tasks (such as start, stop,
suspend, resume), and the listing of servers or to view a
server’s properties. Permission view (v) granted on object
/Management/Replica allows one to read the primary
authorization database and permission modify (m) autho-
rizes modifications of the replica database(s).

The capability to create new actions (permissions)
and action groups or to delete an existing action/action
group is controlled by corresponding permissions on object
/Management/Action .

1A junction is a physical TCP/IP connection between a front-end Web-
SEAL server and a back-end application server. The back-end server can
be another WebSEAL server or a third-party application server. See Sec-
tion 5 for more details.

The management of user accounts and of groups
and group membership are controlled by objects
/Management/Users and /Management/Groups ,
respectively. Whereas the create (N) permission is needed
to create a new user account and optionally to assign that
user to a group, or to create a new group and to import
group data from the user registry, the modify (m) permis-
sion is restricted to the update of user account details and
group descriptions. There are also two special permissions:
The password (W) permission on/Management/Users
allows password resets, and the add (A) permissions on
/Management/Groups allows one to add an existing
user to a group. In Section 4.2, we show how Policy
Director uses the above regions to support the delegation of
certain management activities and can restrict an adminis-
trator’s ability to set security policy to a subset the object
space.

User-defined objects. To extend Policy Director’s au-
thorization service to objects belonging to a third-party
application, the user-defined object namespace must be
described. User-defined object namespace regions can
be created bypdadmin objectspace commands or al-
ternatively through a special mapping file. The name
of the root object for a third-party object namespace
and the location of the mapping file are listed in the
[object-spaces] stanza of the Management server
configuration file (ivmgrd.conf). This file lists the ob-
jects belonging to the third-party object namespace and in-
dicates their hierarchical relationship. The namespace is ap-
pended at the root (/) of the protected object namespace.
Each third-party application is free to select its permissions
and to define their meaning.

All Policy Director servers maintain a local copy of the
authorization database. Policy Director servers include all
Security Managers (secmgrd) and Authorization servers
(ivacld). Initially, all servers have view permission. In
particular, groupivacld-servers needs the view per-
mission to be able to apply changes to the authorization
database.

4.2 Delegating Administration Tasks

Policy Director supports delegated management of ob-
jects in subregions of the object namespace. If the object
namespace of a large organization is organized into regions
representing departments or divisions, then a manager fa-
miliar with the issues and needs of that branch can receive
sub-management responsibilities.2

The chief security administrator can create management
accounts and can assign to these accounts appropriate con-

2Permissions could also be transfered to all members of a group to
establish self-managing teams if wanted.

trols for specific regions of the object namespace. For ex-
ample, an “ACL administrator” can attach ACL templates
to objects within its subregion if (s)he holds the permissions
attach and browse, and an “ACL policy administrator” can
be the only user allowed to create, delete, and modify ACL
templates (requires permissions browse, delete, manage,
and view on/Management or /Management/ACL).
Server management and authorization action management
are other delegated administration tasks.

A “group administrator” can create groups and fill these
groups with existing users (add (A) permission) as well as
with new users (create (N) permission). The group admin-
istrator can perform an operation on a user of his group(s) if
that group administrator has the appropriate permission as-
signed to that group. Note that if an ‘outside’ user is placed
into a group, the administrator of that group now has also
gained control over that user, shared with the administrator
of /Management/Users and possibly with other group
administrators.

A helpdesk operator, who has the password (W) permis-
sion on a group or a group container, can force a user in that
group or groups to change the password at the next login.

5 WebSEAL

WebSEAL controls access to back-end servers, where
the use of firewalls and filtering router technology estab-
lishes a buffer network (DMZ) between the private network
and the Internet. A WebSEAL server connects to back-end
servers via junctions. Each junction links a back-end server
to a particular branch in the namespace. A client can re-
quest resources from a particular back-end server by prefix-
ing the path of the URL with the configured junction name,
thus providing a uniform URL namespace. Figure 4 shows
a typical WebSEAL configuration, where two WebSEAL
servers load-balance across a number of back-end servers.
Depending on the security requirements, a WebSEAL junc-
tion can be configured with different protection: A junc-
tion over a TCP connection does not provide secure com-
munication whereas SSL junctions additionally encrypt all
communication. An SSL junction can be unauthenticated,
(back-end) server authenticated, or mutually authenticated.

As Policy Director performs access decisions based on
the names of protected objects, it is important that Web-
SEAL and the back-end servers treat URLs the same way.
By default, WebSEAL expects servers to be case-sensitive.
To avoid back doors that bypass WebSEAL, it can be con-
figured to treat URLs as case-insensitive, to remove trailing
dots from file names, and to disallow the 8.3 file name for-
mat.

When a client accesses a junctioned back-end server, the
returned data can be plain HTML or a client application, for

Figure 4. WebSEAL configuration.

example a Java applet or a JavaScript. Any page generated
by this data is likely to contain links to other resources on
that back-end server or elsewhere. WebSEAL filters data
of type “text/html” that it receives from junctioned servers;
server-relative and absolute URLs are modified to reflect the
junction point of the junctioned server. To avoid the com-
plexity of filtering scripts, WebSEAL can also be configured
to provide junction information when a failed request con-
tains an absolute or server-relative URL.

WebSEAL recognizes four authentication methods for
use in the step-up authentication mechanism: unauthenti-
cated, password, token-card, certificate. Any order of the
methods can be defined, as long as unauthenticated is the
last element.

The three strikes login policy enables the specification
of a maximum number of failed login attemptsn and a
penalty lockout timex, such that aftern failed login attempts
a user is locked out forx seconds (or the account is dis-
abled). Thus, for example, some users might be governed
by a stronger (weaker) minimum password length policy.

5.1 Access Enforcement

When WebSEAL intercepts a request to access a re-
source, it (1) maps the user operation (request) to the set
of required permissions to grant access; (2) maps the name
of the resource to a protected object name; and (3) ob-
tains information about the initiator (a credential). Provided
with above information, the Authorization service checks
whether access could be granted according to the informa-
tion stored in the authorization database. If access is denied,
WebSEAL returns a “Forbidden” page, no matter whether

the object maps to an existing resource or not. If access is
granted, then the requester, however, may observe two dif-
ferent behaviors: There will be a “Not Found” page if the
object does not map to a resource that can be retrieved by
the Web server. Otherwise, the content of the resource will
be returned.

The visible part of the object namespace, as seen at the
PD Management Console for example, is determined by

• the filesystem of the WebSEAL server,

• the local filesystem on the WebSEAL server machine
(if mounted into the PD namespace),

• the “filesystem” of the back-end Web servers (as re-
turned byquery-contents , a customizable CGI
script),

• third-party objects introduced by
[object-spaces] stanzas (in file
ivmgrd.conf),

• dynamic URLs (as defined in the configuration file
www/lib/dynurl.conf).

It is critical to understand that the URL of the request is
mapped on two (related) namespaces, the set of resources
and the above set of object names. An access policy is only
consistent if the identified object is indeed the proxy for the
requested resource.

Let Σ : L → R denote the mapping from object names
to resources. This mapping is defined by the way Web
servers interpret a given URL to identify an abstract or
physical resource. For example, the IBM HTTP Server also
executes the CGI programtest-cgi.exe even if the
HTTP request only provides its nametest-cgi without
extension .exe . This means that both object names
map to the same resource,C:/Program Files/IBM
HTTP Server/cgi-bin/test-cgi.exe for
example, and that Σ(/cgi-bin/test-cgi) =
Σ(/cgi-bin/test-cgi.exe).

Assume that an ACL template, which denies access for
requester Alice, is attached to objecttest-cgi.exe but
Alice may access any other object otherwise. WebSEAL
shows different behavior depending how the program is ad-
dressed and where the program is located. If fully named
(test-cgi.exe), WebSEAL denies access no matter
which HTTP server hosts the program. However, if the re-
quester only partly names the executable, WebSEAL grants
access. Depending where the resource is located, the result
would be either the execution of the program or the page
“Not Found”.

There are also situations in which POP-defined policies
might not be correctly implemented. For example, a re-
source controlled by a POP time constraint might also be
accessible in the time-out period when it is stored in the

cache of the Web browser (or the WebSEAL server). The
IP address used by WebSEAL to enforce the network-based
authentication policy should be the IP address of the orig-
inator of the TCP connection. However, WebSEAL might
not be able to definitely identify the true client IP address in
the case of HTTP proxies or IP address attacks.

5.2 Personalization

To support security-aware applications, WebSEAL can
be instructed to insert PD-specific client identity and group
membership information into the headers of the HTTP re-
quests. This enables applications on junctioned servers to
perform user-specific actions based on the client’s PD iden-
tity. This information is accessible as global variables for
CGI scripts or as header names for Java servlets. Addition-
ally, encoded as a PD credential, it can be used by the appli-
cation to call the Authorization server via the Authorization
API.

A personalization junction instructs WebSEAL to pro-
vide to a personalization service, for example implemented
by a servlet, the list of applications that the requesting user
has access to. This list of applications, in fact a list of pro-
tected objects, is placed in the HTTP header and passed
across to the junction to be processed by the personaliza-
tion service. After processing the list, the personalization
service can return information such as a customized menu
for this user. When WebSEAL generates this list of pro-
tected objects it actually checks for specific ACL permis-
sions. The list of ACL permissions and the region of the
protected object namespace to be searched is configurable.
A portal stanza in fileiv.conf such as

/portal/cgi-bin/script = /objectspace/obj:r

maps a server-relative back-end Web object to a protected
object and a permission.

A personalization junction uses the Authorization API
to instruct the Authorization Service to obtain an entitle-
ment that consists of a list of objects within a given region
for which the given user credential has the specified access
privileges. In general, an entitlement is a data structure that
contains externalized policy information, formatted in such
a way that it is understandable to a specific application. For
example, an entitlement service may use a specific attribute-
value pair stored in POPs to provide “expense limit” infor-
mation of customers.

Policy Director’s capability to pass user information to
security-aware Web applications, enables them to tailor
their responses to the user’s access rights, needs, and prefer-
ences. This allows application integration (for example by
employing user directory information) to serve up person-
alized content with less development time.

6 Chinese Walls

In this section, we illustrate the power of the Policy Di-
rector authorization service by showing how a commercial
non-disclosure policy can be implemented by employing
an External Authorization Service. In the Chinese Wall
policy, resources are grouped into company datasets, and
a (symmetric) conflict-of-interest relation denotes whether
two companies are in competition. For example, people are
not permitted to advice an organization when they have in-
sider knowledge of another competing organization.

Figure 5. Implementing the Chinese Wall pol-
icy.

Like Foley who represents Chinese Walls as user groups
[5], we allocate for every organizationa ∈ Org a unique
group-id, denotedgorg(a). Each resource containing data
from organizationa is controlled by an ACL template that
gives access rights only to members of groupgorg(a). For
example, the ACL protecting a resource that contains data
from company IBM contains the following entries:

any-authenticated k
groupibm lrx
usercell admin c

Only group entryibm grants lrx permissions. At any
momentmbrs(gorg(a)) represent the users who may ac-
cess resources of organizationa. Initially, groupgorg(a) is
empty for every organizationa.

However, when a useru who is not member of group
gorg(a) requests access to a resource belonging to orga-
nization a, Policy Director calls the External Authoriza-
tion Sercice associated with thek permission set in entry
any-authenticated . The EAS checks whether user

u can be granted access to organizationa’s resources. If
the conflict-of-interest relation indicates no conflict with
the current user memberships, the user is added to group
gorg(a) and EAS returns a “granted” result. Access deci-
sions for subsequent calls of the same user do not need to
invoke the EAS. However, if there is a conflict, EAS returns
a “rejected” result. Figure 5 shows the involved components
and its interfaces to the conflict-of-interest database and the
user registry.

7 Conclusion

In this paper we presented the Authorization Service pro-
vided by Tivoli Policy Director and its use by PD family
members as well as distributed applications. Policy Direc-
tor centrally stores its authorization information in the form
of ACL and POP templates attached to protected objects
that represent resources. POP templates allow one to ex-
press time and state constraints and thus to increase the ex-
pressivity of a traditional ACL model. The dynamic URL
mapping facility extends access control to method parame-
ters.

Object names form a hierarchical namespace and Pol-
icy Director uses this hierarchy to implement a sparse ACL
model using inheritance. This abstraction facilitates mainte-
nance, and makes answering questions about a user’s access
rights very simple. However, beside the question of whether
it is possible to abstract all resources into object names, one
also has to be aware that Policy Director protects the name-
space but not the physical resources. Therefore, setting up a
correct policy requires a good understanding of the behavior
of the controlled Web servers.

The protected object namespace, which separates access
control information from their storage at the resources, is a
flexible concept and makes Policy Director the foundation
for other access control systems. For example, Policy Di-
rector can be used as an authorization engine from a pure
Java 3 environment, and is used by the Tivoli Privacy Man-
ager to support authorization based on dynamic roles for
privacy and other applications.

Acknowledgments

The author would like to thank his colleagues Bob Blak-
ley, Vaughan Harper, Heather Hinton, Tony Nadalin, Avery
Salmon, Brian Turner, and Michael Tuton for their help in
the preparation of this paper. Thanks also to the anonymous
reviewers for their informative feedback.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifiers (URI): Generic syntax. RFC 2396,

Aug. 1998.
[2] K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley.

A resource access decision service for CORBA-based
distributed systems. In15th Annual Computer Security
Applications Conference (ACSAC’99), pg. 310–319, 1999.

[3] M. Blaze, J. Feigenbaum, and A.D. Keromytis. KeyNote:
Trust management for public-key infrastructures. In
Security Protocols—6th Int’l Workshop, Lecture Notes in
Computer Science 1550, pg. 59–66. Springer, 1999.

[4] S. Blount. Securing Your Insecurities on the Web. In15th
Annual Computer Security Applications Conference
(ACSAC’99), 1999.www.acsac.org/1999/papers/
thu-c-1300-netegrity.pdf

[5] S. Foley. Implementing Chinese Walls in Unix.Computers
and Security Journal, 16(6):551–563, 1997.

[6] S. Jajodia, M. Kudo, and V.S. Subrahmanian. Provisional
authorization. InRecent Advances in Secure and Private
E-Commerce, Kluwer Academic Publishers, 2001.

[7] G. Karjoth. Authorization in CORBA security.Journal of
Computer Security, 8(2/3):89–108, 2000.

[8] J. Pato.DCE Access Control Lists (ACL’s). OSF DCE
Specifications, 1990.

[9] M. Swift, C. Van Dyke, P. Brundrett, P. Garg, A. Hopkins,
M. Goertzel, S. Chan, and G. Jensensworth. Improving the
granularity of access control in Windows NT. In6th ACM
Symposium on Access Control Models and Technologies
(SACMAT 2001), pg. 87–96, 2001.

[10] J. Snyder. The New Holy Grail?Information Security
Magazine, Oct. 2000.

[11] The Open Group. Authorization (AZN) API. Open Group
Technical Standard C908, Jan. 2000.

[12] V. Varadharajan, C. Crall, and J. Pato. Authorization in
Enterprise-wide Distributed System – A Practical Design
and Implementation. In14th Annual Computer Security
Applications Conference (ACSAC’98), 1998.

[13] T.Y.C. Woo and S.S. Lam. A Framework for Distributed
Authorization. In1st ACM Conference on Computer and
Communications Security, pg. 112–118. ACM Press, 1993.

[14] M.E. Zurko, R. Simon and T. Sanfilippo. A user-centered
modular authorization service built on RBAC foundation.
1999 IEEE Symposium on Security and Privacy, pg. 57–71.
IEEE Computer Society, 1999.

