
Secure Blue: An Architecture for a Scalable, Reliable
High Volume SSL Internet Server

Ron Mraz
IBM T.J. Watson Research Center

30 Saw Mill River Road, Hawthorne, NY 10532
mraz@us.ibm.com

Abstract

Although there exist accelerator products to increase
throughput of encrypted transactions produced by an In-
ternet HTTP server, there are no current architectures that
provide a truly coordinated and scalable solution for Se-
cure Socket Layer (SSL) encrypted communications. This
paper presents an architecture that facilitates high volume
SSL Internet serving, scaling from thousands to millions of
independently active SSL sessions. Reliability, availability,
serviceability, and on-line error recovery requirements for
such an application are also addressed.

Our approach is to offload SSL set-up protocol activity
that was traditionally executed by Transaction Engines (and
dedicated co-processors), to a scalable array of SSL Hand-
shake Protocol specific servers. This significantly reduces
utilization on the Transaction Engines since SSL session
set-up is a CPU intensive operation. Additionally, the ac-
tual encryption/decryption processing is offloaded as well,
to a dedicated and scalable array of In-Line Encryption En-
gine(s). The In-Line Encryption Engine is architected such
that requests and responses flowing to and from the Trans-
action Servers are in clear text. A benefit of this arrange-
ment is that Transaction Engines (as well as Web Acceler-
ator Proxies) will retain the ability to cache web objects,
while firewalls will retain the ability to perform packet level
inspection of all traffic directed to the transaction engines.
Such features have been sacrificed in prior SSL implemen-
tations.

1 Introduction

Existing Secure Socket Layer (SSL) communication
protocols [6] [7] are intended to provide a mechanism for
the secure transfer of customer and payment information
when purchasing consumer goods over the Internet. The
layering of the secure operations on top of TCP/IP allows

web clients to easily invoke a secure session from an HTML
link. Initially, there is a high amount of set-up overhead as
encryption keys are created and exchanged. Once set-up is
complete, data can be transferred across the encrypted link.
Hardware accelerators may be used during actual data trans-
fer to enable encryption and decryption of data at Internet
transfer speeds.

SSL implements a timer which is used to limit the “Ses-
sion ID Lifetime” [7] of the encryption key state. Expi-
ration of the timer forces a renegotiation of the encryption
keys after a specified “timeout” period. Once the initial SSL
negotiation is completed, there is usually ample time for a
consumer to review and edit entries in an e-commerce shop-
ping cart (as well as provide shipping and credit card infor-
mation) before the keys in the connection must be refreshed.
However, problems arise when an e-commerce application
requires the SSL connection to be active for an extended
period of time.

The requirement to uniquely create and periodically re-
new the shared secret encryption keys of SSL makes this
protocol effective for short duration shopping cart evalu-
ations and purchase execution. Conversely, this periodic
renegotiation makes SSL cumbersome for long term oper-
ations, such as extended duration stock portfolio monitor-
ing as well as analysis and trading, the continuous reporting
required for auction services, or the scalable connection re-
quirements of Internet based voting. This is because each
long term continuous connection requires periodic renewal
of the SSL encryption keys whereas a client accessing the
site multiple times for short periods of time would most
likely reuse the previous key state by preserving the session
ID across invocations, effectively stretching the duration of
key renewal over an extended period of wall clock time.

Figure 1 provides definitions for different classes of SSL
connectivity. The Gaant Chart shows there are three types
of connections supported by SSL today. They are the One-
Time Connection, the Intermittent Connection and the Con-
tinuous Connection. The One-Time connection is the typ-
ical e-commerce shopping cart model. In this variant, the

1



client establishes an SSL connection and then uses it to
transfer information in a session that is shorter than the SSL
timeout parameter. The Intermittent Connection is one in
which the client makes many short connections over an ex-
tended period of time. The SSL protocol attempts to reuse
the encryption session state from one TCP/IP connection to
another. If reconnection occurs prior to the timeout, the ses-
sion information is reused; if not, a renegotiation handshake
is required. The Intermittent Connection is the model used
for transactions associated with an e-commerce auction site
over an extended period of time. The Continuous Connec-
tion is one where the client and server continuously transfer
data over an extended period of time. This model could
be applied by a brokerage information system in which an
on-line trader continually monitors quotes and on-line stock
transactions over an extended period of time.

The timeout parameter shown in Figure 1 can be set from
5 seconds to 24 hours in SSL products as referenced in the
Mozilla on-line documentation, see our reference [5]. Typ-
ical sites maintain a 100-300 second timeout default and a
transaction count limit of 500 is used as well. The duration
of this timer exposes a vulnerability in that someone sniff-
ing the session is provided this amount of time to extract
the SSL keys and subsequently decrypt data. Shortening
the timer duration will strengthen security of the connection
but increases the computational load on the servers due to
additional key generation activities. Lengthening the timer
duration will weaken site security but usually reduces server
loading. However, it may be necessary to use stronger
(longer) encryption keys to compensate for the exposures
introduced by lengthening the timer duration. Additionally,
the load balancing operations are more deterministic when
the traffic is of the One-Time Connection type. This con-
nection type is characterized by high computational loads
during the initialization phase followed by sustained lower
demands during the data transfer phase of a connection. The
other connection types provide periodic surges in computa-
tional loads when multiple connections are active for ex-
tended periods of time. When these surge periods align,
there can be overloading of the server and significant de-
lays in client-server interaction even to the point of TCP/IP
connection retry and or timeout.

The version of HTTP traffic coming to the web site also
impacts the performance of SSL operations. HTTP Ver-
sion 1.0 [10] requires each web page component or object
to be transported over a separate TCP socket connection.
This most closely maps to the Intermittent Connect model
shown in Figure 1 for even a single page transfer. HTTP
Version 1.0 would not map to the One-Time Connection
(unless only a single object is requested) and Continuous
Connect Traffic Pattern of Figure 1 since a separate con-
nection is required for each object. HTTP Version 1.1 [11]
provides for multiple objects to be requested in a single ses-

sion. This allows Version 1.1 to map to each of the Traffic
Patterns shown in our Figure 1.

A detailed study [1] shows that if an Internet content
server can serve 250-300 HTML plaintext (port 80) trans-
actions per second, the same server can support 5-80 en-
crypted (port 443) pages per second depending on the fre-
quency of handshake operations required. If the same server
is used to support SSL handshake operations, the perfor-
mance of the server will be further degraded since the num-
ber of handshakes this server can support is 20-40 per sec-
ond. It is the frequency of the SSL handshake operations
that will determine Internet Server SSL connection capac-
ity since a typical server takes 48.5 milli-seconds to 24.2
milli-seconds, depending on the strength of the encryption
method, for processing of the TLS Handshake Protocol.
Furthermore, when SSL processing coexists within the con-
tent transaction servers, due to the natural affinity of the
SSL session state and the user transaction state, site opera-
tions can slow beyond the5=250 ratio of encrypted pages to
plain text pages served.

Two distinct approaches are being applied to this offload
SSL problem. The first is the addition of hardware accel-
erator cards, such as the IBM 4197 [8], to the server to im-
prove computational encryption capabilities. Although this
reduces the computational overhead, there is little benefit
in overall latency reduction of the initial SSL handshake. A
second approach uses an in-line companion proxy that inter-
cepts SSL operations on their way to the transaction server
and responds to all requests in such a way that this is trans-
parent to the server. In this way, the transaction server is re-
sponding to all requests with plain text. These proxy servers
typically contain a machine with a hardware accelerator en-
gine(s) to offload encryption processing. This approach
forces connection affinity of both content and reusable SSL
state to a specific companion proxy pair and has a poten-
tially negative impact on load balancing as the site scales to
1,000,000’s of active SSL connections.

Performance of these SSL servers cannot be helped by
traditional Internet cache appliances when scalability is re-
quired. Since all SSL clients have a unique set of encryption
keys for their connection, the requested objects cannot be
reused from one client to another even if the served content
is static. This forces the site architect to further increase the
number of transaction servers to staggering levels to handle
peak loading periods. Although, this practice is desirable
from a server vendors point of view, supporting and manag-
ing the transactions from a site of several hundred servers
with attached appliances can increase maintenance and can
lead to configuration errors.

Load balancing affinity is an issue for traditional web
site systems that rely on sniffing the packet and viewing the
cookie for user identification. When SSL is invoked, cook-
ies are encrypted with the rest of the data. In our Secure

2



Blue architecture all data appears as plain text to the load
balancers and servers. This allows for any number of meth-
ods to be used for server affinity mapping.

Additionally, the reason and justification for employing
an SSL implementation is the protection of data while in-
transit across the open and public Internet. It is ironic that
the use of SSL eliminates ones’ ability to provide content
examination with a packet sniffing firewall. Encrypting the
data packets with advanced encryption and information hid-
ing techniques (such as default packet sizes) drastically re-
duces the effectiveness of current Intrusion Detection Sys-
tems and packet filtering firewalls. In fact, hacker resources
on the Internet boast that given the choice between Port 80
and Port 443, the hacker will use the SSL Port 443 connec-
tion every time to gain access to the site.

This paper analyzes the requirements for, and presents
the architecture and design of a high volume SSL server that
achieves scalability by partitioning and optimizing func-
tionality involved in serving SSL content. The major func-
tions we designate for high volume serving are: in-line en-
cryption and decryption, SSL handshake processing, and
TCP/IP socket redirect or hand-off. It is our position that
SSL processing is problematic when competing for CPU
resources in the transaction server of the site. Redirecting
or handing off SSL operations, at appropriate times, to spe-
cialized parallel resources not only scale the operations, but,
provides wall clock speed-up for the operations. Since the
resources for each function are parallel and redundant in na-
ture, effective system reliability and servicing of error con-
ditions without significant loss of performance is provided
as an artifact of the system architecture. In addition, there
are natural, plain text interfaces, that allow the architecture
to incorporate web caching techniques to improve object ac-
cess time and packet inspection firewalls for hardening of
Internet Security.

This paper provides a system overview of a High Volume
SSL Server Architecture and the remainder is organized as
follows. Section 2 provides a high level description of the
High Volume SSL Server Architecture and defines require-
ments for each of the components functionality based on
the SSL protocol. Namely, in-line encryption and decryp-
tion, SSL handshake processing, and the TCP/IP State Mi-
gration and Management Mechanism. Section 3 describes
the TCP/IP socket redirection and hand-off function. Sec-
tion 4 describes the role of the Network Dispatcher in the
architecture. Section 5 describes the scalable SSL hand-
shake processing function. Section 6 describes the design
and requirements for our in-line encryption/decryption en-
gine. Section 7 provides performance estimates and Section
8 provides a discussion of Reliability and Availability. Sec-
tion 9 provides a review of Related Work and Section 10
includes a brief Summary and Conclusions as well as rec-
ommendations for future work.

2 High Volume SSL Server
Architecture

The architecture we are proposing scales by function
rather than arrays of system components. In other words,
rather than scaling the server components, we split apart and
scale the major operations that the servers perform. The ma-
jor components of our Secure Blue System are: Transaction
Servers, the SSL Handshake Engines, the In-Line Crypto-
Engines and the site load balance mechanism termed the
Network Dispatcher. These components and their relation-
ships are shown in Figure 2. These components support
scalable operation of our 3 functions, namely, in-line en-
cryption and decryption, SSL handshake processing, and
the TCP/IP State Migration and Management Mechanism.
It is possible that further partitioning of these major compo-
nents can be achieved to allow more efficient system scal-
ing.

The Transaction Servers are the customer’s e-commerce
HTML site servers. These provide the page or fragment
serving of content and queries to the back-office database
system for transaction execution. Whenever a secure socket
connection is referenced, this TCP/IP connection is then
handed off to a scalable set of SSL Handshake engines. The
use of socket hand-off for Internet related operations was
introduced by Song in [2] and independently by Tracey in
[3] to support scalable load balancing. This is an implemen-
tation of a TCP/IP State Migration and Management Mech-
anism. These engines provide the initial handshake required
for processing and storing of the encryption state for secure
operation. The engines perform this operation masquerad-
ing as the original TCP/IP address. The state required for
supporting TCP/IP State Migration also affords them his-
torical references of socket origination. This is useful to
transfer the socket back to the original Transaction Server
when Transaction Machine affinity is required for content
serving.

Once a session has been negotiated, 2 operations are
then initiated to begin the SSL session. They are 1) the
Key/Management Control state set up and 2) TCP/IP socket
transference back to the original Transaction Server. The
Key/Management Control state is migrated to our in-line
Encryption/Decryption Module for action on that specific
TCP/IP socket connection. From this point forward, all
incoming packets for this TCP/IP port will be decrypted
and forwarded by plain text to the Network Dispatcher.
The TCP/IP Socket is then transferred back to the original
Transaction Server for plain text operation.

The Transaction Server continues operation in plain text
which is routed through the Network Dispatcher and en-
crypted through the In-line Crypto- Engine. These opera-
tions are transparent to the End User Clients who are seeing
a single system image for SSL web page serving. Content

3



serving continues until the SSL session requires an update
to the session keys. At this time we require another set of
key exchanges. At this time, the TCP/IP socket is again
handed off to a SSL Handshake engine for update and cre-
ation of a new set of encryption keys. Once a new encryp-
tion state is determined, the Key/Management State is up-
dated and the TCP/IP socket is transferred back to the orig-
inal Transaction Server.

The Network Dispatcher provides the initial load bal-
ancing routing for the initial socket connection. Since the
handshake operation is offloaded to the SSL Handshake En-
gines, affinity to any existing SSL state can be done when
the socket is redirected to the appropriate handshake engine.

This cycle is repeated until the Client or Transaction
Server terminates the TCP/IP socket. If the SSL Handshake
Engine determines that the socket should be terminated it
terminates the socket and provides a termination notice to
the originating Transaction Server for clean-up of reserved
resources within the TCP/IP stack.

The fundamental advantage of the Secure Blue archi-
tecture is it’s scalability using traditional servers running
specialized software. There is no need to use specialized,
single function appliances that require specialized hardware
design for performance improvements. Secure Blue scales
with parallelism, network bandwidth, and CPU speed in-
creases predicted by Moore’s Law.

3 Transaction Servers

These are standard web servers that have their TCP/IP
stacks augmented with the ability to migrate or “hand-off”
a TCP/IP socket to a known server for handshake. This is
done through a user level command to migrate the socket.
This feature can be integrated as part of the middle-ware
services of the web server.

Since the TCP/IP socket will be returned for service to
this Transaction Server, a holding area should be maintained
for a deterministic period of time while the secure session
state is being constructed. This is because there may be a
user affinity to that particular server in prior plain text trans-
action state. If the socket port assignments are not reserved
for the return, they would most likely be reassigned for use
to another connection. This feature is independent of the
use of a proxy server that renames the global IP address for
a single system image address.

All packets for TCP/IP Port 443 would be received by
an application proxy on each web server. The proxy would
examine the headers and content of each packet for identifi-
cation of a required SSL handshake. At this time the proxy
would migrate the socket to a dedicated handshake engine
for key negotiation. Once the negotiation is finished and the
bulk in-line encryption engine is set up for this processing,
the socket returns to this server for content serving. The

protocol and semantics of this operation will be defined as
a formal TCP/IP State Migration and Management Mecha-
nism.

The application proxy examines the data (as it is in clear-
text) and, if it is not an SSL protocol request, proxies it to
the HTTP (port 80) of the local host machine. Note that
the web server application does not have any knowledge or
requirement to support this feature. All interactions will be
in clear text.

4 Network Dispatcher

The Network Dispatcher provides the initial load bal-
ancing routing for the initial socket connection. Since the
handshake operation is offloaded to the SSL Handshake En-
gines, affinity to any existing SSL state can be done when
the socket is redirected to the appropriate handshake engine.

5 Scalable SSL Handshake Engines

These servers are an array of CPUs optimized (in mem-
ory, speed and function) to efficiently perform SSL hand-
shake operations. These are application proxies that use the
call functions of SSL to coordinate and negotiate the SSL
key exchange. The baseline functions can be performed by
an array of CPUs based on PowerPC [9] Embedded Pro-
cessors. These processors support open OSs such as Linux
and have on-chip hardware for Ethernet and a PCI bus in-
terface. Commodity PCI chip sets can be used to support
encryption functions or custom CPUs can be provided with
on-chip encryption core support.

These machines have TCP/IP stacks that allow socket
migration from a hand-off server. This requires the spoofing
of the source address in the TCP/IP header to reflect that of
the original server machines IP address and TCP port num-
ber.

The application proxy will set up the keys for the in-line
encryption engine. The TCP/IP socket is then transferred
back to the original server for information exchange.

6 High Volume In-line Crypto-Engine

This component provides high speed, in-line encryption
and decryption of TCP/IP packet payloads to specifications
of a state configuration specified by the SSL Handshake En-
gines. A key component of this architecture is an associa-
tive look-up based on TCP/IP port and address assignments.
The lookup provides the state information for cypher state
encryption and/or decryption. An example would be a set
of DES3 keys for decryption and encryption of packet pay-
loads. This component would have the ability to modify the

4



TCP/IP packet to conform to encryption rules of the cypher
paradigm.

In addition, since incoming information is decrypted, a
high performance packet sniffing firewall can be appended
to this function to search for specific binary patterns in con-
tent and intrusion alerts for hacker penetration attempts.

The engines are based on a multi-threaded encryption
engine as described by Pierson in [17] and [18] for high
performance and reduced end to end object latency.

7 Performance Estimates and Scalability
Requirements

Reference [15] provides a example sizing of an e-
commerce site (CDnow) that contains two pages of approx-
imately 11.1 K bytes of content. The first page contains
11 GIF images and one HTML page and the second page
contains 12 GIF images and one HTML page. Within the
context of HTML Version 1.1 we expect all of these objects
to be requested within one HTTP session access. For the
purposes of this discussion we require site performance to
allow both pages to be served to users within a typical 100
second handshake SSL timeout period.

Using our performance metric ratios referenced in the
Introduction, each Transaction Server, at full capacity, is
now capable of serving 2000 static pages per second. At
11K bytes per page, this is 22,000,000 bytes per second or
176 mega bits per second. Over the entire timeout period of
100 seconds, this is a total of 200,000 pages at 11K bytes of
information.

The maximum number of static content sessions to
be supported over the handshake period is200; 000=2 or
100,000. By definition, all session encryption keys must be
reset during the handshake period. Handshakes can be done
at a rate of 20 Handshakes per CPU-second. The number of
handshake engines required to support full capacity of a sin-
gle transaction server is100; 000=20� 100 or 50 handshake
servers.

The In-Line Crypto-Engine would require in-line pro-
cessing capability of 176 Mbits/sec per transaction en-
gine. Additionally, state information for 100,000 sessions
is required for full scale operation of the SSL Transaction
Server.

Since typical transaction oriented databases can sustain
transactions at the rate of 1000 per second, this scenario
can be envisioned in other industries where erratic swings
in load are common place. These would include bid and
auction services, stock market trading, and subscribed real-
time monitoring of global events such as the Olympics.

These scaling effects have not been seen by typical SSL
site administrators because when a transaction server is per-
forming the SSL encryption and decryption its full capacity
loading is at 200-400 pages per second. In addition, SSL

serving is typically personalized dynamic content which re-
quires higher CPU loading than traditional static content.
Each functional element can scale for performance and/or
reliability.

8 System Reliability and Availability

The ability to partition the system by function rather than
components provided us with scalability. This ability also
facilitates redundancy which enhances reliability and avail-
ability. We will address issues of reliability for each of
our specialized functions independently as they each have
unique configurations with respect to functional state.

Transaction server reliability can be treated in the context
of an array of processing engines. An interruption in service
of one server would require its processing load to be shared
among the remaining Transaction Servers. If the interrup-
tion occurs during connections, it is possible that some state
of a client, not transferred to persistent store, may be lost.
Socket communications may be terminated through time-
outs forcing clients to re-establish communications with the
site.

The SSL Handshake Engines are inherently stateless
since the handshake operation relies on the generation of
the next set of encryption values. There is no requirement
for client or server affinity to be designed into these sys-
tems at the architectural level. Therefore, an interruption in
service of any one handshake server would require its share
of the processing load to be divided among the remaining
Transaction Servers.

In a production environment, the above sizing suggests
that a dedicated set of 100 Handshake Engines would be as-
signed to a specific Transaction Server. In addition, a shared
pool of Handshake Engines would be available to smooth
over any peak loading conditions or service interruptions of
the Handshake Engines. Scheduling of the Handshake En-
gines for operation would be entirely up to the Transaction
Servers Handoff Algorithm. Future work will show loading
conditions for a variety of scheduling algorithms including
round robin, random and load balanced operations.

The keys, encryption state, and the SSL Session ID used
to uniquely identify SSL sessions can be in one of 4 states.
They are 1) valid and in-use, 2) invalid and in-use, 3) valid
and not-in-use, and 4) invalid and not-in-use. The “valid”
state represents when a Session ID has not yet expired. An
“invalid” state represents when a Session ID has expired.
This can occur independently of the session being in or not-
in-use. Finally, an in-valid and not-in-use state has only
archival value for forensic analysis.

The in-use states would be active within the Handshake
Engines and the In-Line Crypto Engines. The valid and not-
in-use Session IDs and corresponding state may be kept in
a distributed fashion across the handshake engines or in a

5



centralized dedicated server for look-up. Since all packets
in the site are in plain text, the Network Dispatcher can dis-
tribute traffic (based on cookies, or user IDs in the packet
headers) with affinity. By this affinity association, individ-
ual Session ID’s would be local to a subset of Handshake
Engines reserved for a specific (set) of Transaction Engines.

The In-Line Crypto-Engine represents a potential sin-
gle point of failure from an architecture perspective. This
function will be provided as an array of identical redundant
components. Since each TCP/IP connection requires a set
of encryption/decryption keys for operation, all connection
state information is available on each In-Line Crypto En-
gine. This is to allow seamless migration of packets from
one Engine to another in the event of an interruption in ser-
vice.

9 Related Work

This section includes an overview of competing products
by Intel (IPivot acquition) [13] and [16], and Alteon (Cur-
rently part of Nortel Networks and 3COM). The problem of
high volume SSL proxy serving is highlighted in the press
at [12].

Ipivot’s solution provides an inline SSL encryp-
tion engine that handles both the protocol and encryp-
tion/decryption of SSL processing. It is unclear from the
marketing literature how the system scales for high volume
(millions of active connections) use. Our Secure Blue ar-
chitecture is different since we split the SSL processing into
the In-Line Crypto Engine and the SSL Handshake Engines.
Having separate clusters to support SSL Handshake and En-
cryption functions allows the site administrator to tune the
number of Handshake Processors and encryption processors
to support specific aggressive SSL ID Timeouts and encryp-
tion strength. Finally, the use of socket handoff provides a
scalable solution with low overhead as well as Transaction
Server connection affinity.

Alteon’s solution [14] is to provide an SSL Offload En-
gine in parallel with the Internet Traffic Manager. All SSL
related packets are sent to the SSL Offload Engine for en-
cryption processing. HTTPS requests appear as plain text
HTTP requests to the Transaction Engines. Our Secure
Blue architecture is different since we split the SSL pro-
cessing into The In-Line Crypto Engine and the SSL Hand-
shake Engines. An advantage is that In-Line decryption of
the packets at entrance to the site allows the the traffic man-
ager to provide cookie based traffic management. (as cook-
ies are encrypted in traditional SSL packets) Additionally,
having separate handshake engines gives the site adminis-
trator to scale the number of Handshake Processors to sup-
port aggressive SSL ID Timeouts. Finally, the use of socket
handoff provides a scalable solution with low overhead as
well as Transaction Server connection affinity.

Additionally, in these related offerings, the HTTPS
socket connects from the client to the Traffic Manager or
SSL Accelerator. The HTTPS content requests are for-
warded onto the Transaction Servers. In Secure Blue, the
use of TCP/IP State Migration or handoff affords the oppor-
tunity to manage the socket connection from client to Trans-
action Server with only the In-Line Encryption Engine and
Network Dispatcher adding delays to the request routing.
This offers reduced request response latency. In addition,
Transaction Servers in Secure Blue are no longer restricted
to the amount of SSL processing provided by one or two in-
line SSL processing engines (that do both Handshake and
Encryption). The Secure Blue architecture supports any
number of engines within a functional cluster to insure that
the Transaction Server can now serve at a pages/second rate
equal to that of traditional plain text serving performance.

10 Summary and Conclusions

This paper analyzes the requirements for, and presents
the architecture and design of a high volume SSL server that
achieves scalability by partitioning and optimizing func-
tionality involved in serving SSL content. The major func-
tions we designate for high volume serving are in-line en-
cryption and decryption, SSL handshake processing, and
TCP/IP socket redirect or hand-off. It is our position that
SSL processing is problematic when competing for CPU
resources in the transaction server of the site. Redirecting
or handing off SSL operations, at appropriate times, to spe-
cialized parallel resources not only scale the operations, but
provides wall clock speed-up for the operations. Since the
resources for each function is parallel and redundant in na-
ture, effective system reliability and servicing of error con-
ditions without significant loss of performance is provided
as an artifact of the system architecture. In addition, trans-
action servers now see natural plain text interfaces, that al-
low the architecture to incorporate site wide web caching
and packet inspection firewalls for hardening of Internet Se-
curity.

The fundamental advantage of the Secure Blue architec-
ture is its scalability by function using traditional servers
running specialized software. Secure Blue scales with par-
allelism, network bandwidth, and CPU speed increases pre-
dicted by Moore’s Law. We believe that the methodology
of partitioning the SSL application by function and having
dedicated clusters of computers has possibilities for many
other Internet applications. We call this paradigm a “Multi-
Cluster Application Architecture for Internet Servers”. This
is based on the similarity between this application scaling
methodology and a hardware architecture cited in [4].

As computers continue to improve in performance [19]
and capability, which may include integrated hardware for
encryption, it is feasible that general purpose processors

6



will have integrated support for cryptographic operations in
a few short “Internet Years”. Software that allows direct IP
packet transmission and receiving, such as the raw socket
Pcap library [20] [21], allow much of the specialized Inter-
net router functions to be prototyped in user level software.
Since the functions of Secure Blue can scale on commod-
ity components, the implementation of this system, at min-
imum, is an integrated set of software components that run
on scalable functional clusters of server appliances.

Continued investigations will consider the impact of dy-
namic content generation vs. static content serving, client
certificates and the operational aspects of such an archi-
tecture for LDAP (Lightweight Directory Access Protocol)
with SSL access.

11 Acknowledgments

The authors would like to thank Junehwa Song, (cur-
rently on sabbatical in Korea) and John Tracey for their
insight into Socket Connection Handoff operation. Karen
Witting is prototyping the first version of Secure Blue. The
authors would also like to thank Paul Dantzig, Dan Dias
and Nagui Halim who provided management support for
this work. Robert Filepp provided many helpful comments
in the editing of this document. Many thanks to Gabriel
Silberman, Kattamuri Ekanadham and Kemal Ebcioglu for
suggesting the term, Multi-Cluster Application Architec-
ture, as a formal name for our scaling methodology. Fi-
nally the comments of the anonymous reviewers who have
strengthened and clarified this paper.

References

[1] George Apostolopoulos, Vinod Peris, Debanjan Saha “Trans-
port Layer Security: How much does it really cost?”, IEEE
INFOCOMM 2000, June 2000

[2] Junehwa Song, Eric Levy-Abegnoli, Arun Iyengar, and
Daniel Dias “Design Alternatives for Scalable Web Server
Accelerators” , Proc. of IEEE International Symposium on
Performance Analysis of Systems and Software, 2000

[3] Guerney Hunt, Eric Nahum, and John Tracey “Enabling
Content-Based Load Distribution for Scalable Services”,
Draft document, unpublished.

[4] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko
Vranesic “The Multicluster Architecture: reducing Cycle
Time Through Partitioning”, Proc. of IEEE Micro-30, De-
cember 1-3, 1997 Research Triangle Park, North Carolina.

[5] Sean Cotter, “SSL Reference”http://-www.-mozilla.-org/-
projects/security/pki/nss/ref/ssl/index.html, netscape public
mozilla crypto newsgroup, October, 2000

[6] E. Resorla, “HTTP Over TLS (RFC 2818)”http://www.-ietf.-
org/rfc/, IETF RFC 2818, May, 2000

[7] T. Dierksand C. Allen, “The TLS Protocol (RFC 2246)”
http://-www.-ietf.-org/rfc/, IETF RFC 2246, January, 1999

[8] White Paper, “IBM 4197 Cryptographic Accelerator”http://-
www.-ibm.-com/, IBM Corporation, 2000

[9] White Paper, “The PowerPC 405 Core”http://-www.-chips.-
ibm.-com/products/powerpc/cores/405cr wp.pdf, IBM Cor-
poration, 1998

[10] T. Berners-Lee, R. Fielding, H. Frystyk, “HyperText Trans-
fer Protocol (HTTP), Version 1.0 (RFC 1945)”http://-www.-
ietf.-org/rfc/, IETF RFC 1945, May, 1996

[11] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Kasin-
ter, P. Leach, T. Berners-Lee, “Hypertext Transfer Protocol
(HTTP), Version 1.1 (RFC 2616)”http://-www.-ietf.-org/rfc/,
IETF RFC 2616, June, 1999

[12] Paula Musich, “Mega-proxy servers: A load of trouble?” PC
Week, March 31, 2000

[13] Technical Marketing Reference, “Persistence Mecha-
nisms: enabling today’s dynamic e-Business transactions”
http://www.-intel.-com/network/documents/, Intel Corpora-
tion, 2000

[14] Technical Marketing Reference, “Integrated Service
Director, iSD - SSL Accelerator”http://-www.-alteon-web-
systems.-com/collateral/isd-ssl.pdf/, Alteon Corporation,
2000

[15] White Paper, “Designing a Secured Website: What you need
to know about SSL benchmarking”http://-www.-intel.-com/-
network/white papers/, Intel Corporation, 2000

[16] White Paper, “The Mega-proxy Problem for e-Commerce
Providers: Persistence during secure sessions”http://-www.-
intel.-com/network/white papers/, Intel Corporation, 2000

[17] Tarman, Hutchinson, Pierson, Sholander and Witzke,
“Algorithm-Agile Encryption in ATM Networks”, IEEE
Computer, September 1998.

[18] Chris Burroughs, “Sandia Researchers Develop World’s
Fastest Encryptor - Device encrypts data at more then 6.7
billion bits per second”Sandia National Labs Press Release,
June, 1999

[19] Ray Kurzweil, “The Age of Spiritual Machines” Penguin
Books, New York, NY 1999

[20] Van Jacobson, Craig Leres, and Steve McCanne. “libpcap”
ftp://-ftp.-ee.-lbl.-gov/, 1994

[21] W. Richard Stevens. “Unix Network Programming: Volume
1” Prentice Hall, Upper Saddle River, NJ 1998

7



Time

Continuous Connection

Intermittent Connection

One−Time Connection

= SSL Handshake Operation

= Secure Data Transfer

SSL Timeout Setting
 Session ID Lifetime

Figure 1. Definition of SSL Client-Server Traffic Pattern Types.

End User
Clients. Internet Network

Dispatcher
Encryption

Decryption

SSL 
Handshake
Engines

Transaction
Servers

Socket Handoff

Key/Mgt Control Plain Text
Serving

Handshake
Protocol

     In−Line 
Crypto−Engine

Figure 2. A high level view of the Secure Blue Architecture.

8


