
Covert and Side Channels due to Processor Architecture*

Zhenghong Wang and Ruby B. Lee
Department of Electrical Engineering, Princeton University

{zhenghon,rblee}@princeton.edu

Abstract

Information leakage through covert channels and

side channels is becoming a serious problem,
especially when these are enhanced by modern
processor architecture features. We show how
processor architecture features such as simultaneous
multithreading, control speculation and shared caches
can inadvertently accelerate such covert channels or
enable new covert channels and side channels. We first
illustrate the reality and severity of this problem by
describing concrete attacks. We identify two new
covert channels. We show orders of magnitude
increases in covert channel capacities. We then
present two solutions, Selective Partitioning and the
novel Random Permutation Cache (RPCache). The
RPCache can thwart most cache-based software side
channel attacks, with minimal hardware costs and
negligible performance impact.

1. Introduction

Covert channels and side channels are two types of
information leakage channels. A covert channel uses
mechanisms that are not intended for communications,
e.g., writing and checking if a file is locked to convey
a �1� or �0�. In a covert channel [1], an insider process
leaks information to an outsider process not normally
allowed to access that information. The insider
(sending) process could be a Trojan horse program
previously inserted stealthily into the computer. An
outsider (receiving) process need only be an
unprivileged process.

In a physical side channel attack, unconventional
techniques are used to deduce secret information.
Typically, the device has been stolen or captured by
the adversary who then has physical access to it for
launching a physical side-channel attack. Traditional
side channel attacks involved differential power

analysis [2-5] and timing analysis [6-10]. Different
amounts of power (or time) used by the device in
performing an encryption can be measured and
analyzed to deduce some or all of the key bits. The
number of trials needed in a power or timing side
channel attack could be much less than that needed in
mathematical cryptanalysis.

In this paper, we consider software side channel
attacks. In these attacks, a victim process inadvertently
assumes the role of the sending process, and a listening
(attacker) process assumes the role of the receiving
process. If the victim process is performing an
encryption using a secret key, a software side channel
attack allows the listening process to get information
that leads to partial or full recovery of the key. The
main contributions of this paper are:

• Identification of two new covert channels due to
processor architecture features, like simultaneous
multi-threading (SMT) and speculation.

• Showing that covert channel capacities have
increased by orders of magnitude.

• Analysis of cache-based side channel attacks.
• Insufficiency of software isolation approaches for

mitigating information leakage through processor-
based covert and side channels.

• Selective partitioning solution for SMT-based
covert channels.

• Novel Random Permutation Cache (RPCache)
solution that can thwart cache-based software side
channel attacks.

Section 2 describes the threat model. Section 3
illustrates the problem with real attacks and analysis of
newly identified cache side channels. Section 4 shows
the insufficiency of software solutions, motivating the
need for hardware solutions to a hardware-induced
problem. Section 5 provides our Selective Partitioning
solution. Section 6 presents our novel Random
Permutation Cache solution, and experimental results
on its performance and security. Section 7 reviews
related work and section 8 presents our conclusions. * This work was supported in part by DARPA and NSF Cybertrust

0430487, and NSF ITR 0326372.

2. Threat model

The threat model is that of an adversary whose goal
is to learn information that he has no legitimate access
to. Within the computer system, an adversary is one or
more unprivileged user processes.

Since our focus in this paper is on the impact of
processor architecture features on the problem, we
assume that the critical modules of the software system
(like the OS kernel and the modules enforcing security
policies) are free of software vulnerabilities. Other
software modules, such as the guest OS in a Virtual
Machine or the application software, may have
security flaws that allow a cooperating process of the
adversary, e.g. an insider, to gain access to the
information. In this case, we assume that appropriate
security policies are enforced so that the cooperating
process is isolated from the adversary. In this paper we
consider software attacks and do not consider physical
attacks like bus probing and power analysis.

3. Processor covert and side channels

3.1. New SMT/FU covert channel

Simultaneous Multi-Threaded (SMT) processors
[15] run many processes concurrently, sharing almost
all processor resources in a very tightly coupled way.
In particular, the concurrent threads share a pool of
functional units (FUs) that are allocated dynamically to
each process every cycle. By contending for the shared
FUs, one process can interfere with another, leading to
covert channels. Though in principle this is a typical
covert timing channel [13], it is orders of magnitude
faster than traditional covert channels.

Consider a system which contains two processes

that are not allowed to communicate at all with each
other. The insider (sender) process can modulate the
use of functional units, e.g. the multipliers, to send
information to the receiver process. Figure 1 shows the
pseudocode for both processes. To send a �1� bit, the
insider calls MULTIPLY() to execute a fixed number
of instructions which try to use up all the integer

multipliers. It calls NULL(), which executes several
hundred NOP instructions, to send a �0� bit. The
observer senses the modulated signal by comparing its
progression with a timer T. By calling RUN(), he
executes integer multiply instructions at a constant
rate. When a �1� is sent, most multipliers are used by
the insider and the observer can detect this because his
execution will be slowed down.

We implemented this channel on a Pentium-4
processor with hyper-threading (Intel�s SMT), which
supports only two simultaneous threads [16]. Figure 2
shows an example of the received waveform. The bit
string shown is transmitting �10101010��

10 20 30 40 50 60 70 80 90 100
1050

1100

1150

Receiver Time
Si

gn
al

 A
m

pl
itu

de
(c

yc
le

)

Figure 2. Observed signal waveform

3.2. SMT/cache side channel

In an SMT processor, caches are also shared. An
attacker can run a receiver (or observer) process
simultaneously with the victim process on an SMT
processor. This enables observation of the victim
process�s cache usage at run time. In [12], Percival
demonstrated an attack on RSA using this approach.
The attack is simple: the attacker accesses an array of
his own data repeatedly so that he occupies all cache
lines. During the execution of the victim process, i.e.
the RSA encryption process in this case, if the
encrypting process accesses a cache line, the attacker�s
data will be evicted. The next time the attacker
accesses his data corresponding to this cache line, he
will experience a cache miss. By measuring his
memory access time, the attacker can detect such cache
misses. The attacker therefore can learn the victim
process�s cache access pattern, based on which he can
determine when multiplication and squaring operations
used in RSA encryption occur in the victim process.
He can also learn which table entry is accessed during
a key-dependent table lookup in RSA. The attacker
then can recover the RSA key of the victim process,
based on the observed cache usage information.

In [22] Osvik et al. applied this approach to AES
and demonstrated how easy it is to recover the key.
They showed that after just 800 writes to a Linux dm-
crypt encrypted partition, the full AES key can be
recovered.

int bit;
�
do {
 bit = get_bit();
 if (bit == 1)
 MULTIPLY();
 else
 NULL(); }
while (!TX_end());

int time, dt;
�
time = 0;
do {
 dt = time;
 RUN();
 time = get_time();
 STORE(time-dt); }
while (!RX_end());

insider observer

Figure 1. Pseudocode for SMT/FU channel

3.3. Statistical cache side-channel

In non-SMT processors, cache-based software side
channel attacks are also possible. Bernstein�s attack on
AES [11] illustrates such an attack. The victim is a
software module that can perform AES encryption for
a user. The module is a �black box� and the user is
only able to choose the input to the AES software
module and measure how long it takes to complete the
encryption. He found that for most software AES
implementations running on modern processors, the
execution time of an encryption is input-dependent and
can be exploited to recover the secret encryption key.

Attack Description: The attack consists of three steps.
1. Learning phase: Let the victim use a known key K;

the attacker generates a large number, N, of random
plaintexts P. He then sends the plaintexts to the
cipher program (a remote server in [11]) and
records the encryption time for each plaintext. He
uses the algorithm shown in Figure 3 to obtain the
timing characteristics for K.

2. Attacking phase: Repeat the same operation in the
learning phase except that an unknown key K� is
used. Note that the input set is randomly generated
and not necessarily the same as used in step 1.

3. Key recovery: Given the two sets of timing
characteristics, use the correlation algorithm shown
in Figure 4 to recover the unknown key K�.
Function findMax() searches for the maximum
value in the input array and returns its index.

In Figure 3, P denotes a plaintext block that will be
encrypted with the secret key K. pi and ki denote the i-
th byte of P and K, i∈[0,15] (We assume 128-bit AES
in this example; hence both the block to be encrypted,
P, and the key, K, are 16 bytes long). A large number
of random plaintext blocks P are encrypted with the
same key K. For each byte pi in the plaintext blocks,
find the encryptions where pi = 0, and calculate
tavg

i(0,K) which is the average of the execution times of
the AES encryptions where the ith plaintext byte is 0,
using key K. Repeat for pi = 1, 2, �, 255. This can be
plotted as a timing characteristic chart for byte i using
key K as shown in Figure 5(a), where i=0. (This is
obtained in our experiments over a Pentium M
processor with Cygwin/OpenSSL0.9.7a). The x-axis
represents the value of the plaintext byte pi, from 0 to
255, and the y-axis the average encryption time (minus
a fixed offset). Sixteen such charts are plotted, one for
each byte position of the plaintext blocks. These 16
charts together represent the timing characteristic,
denoted tavg

i(j,K), for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 255, of
AES encryption on a given platform for a given K.

Figure 3. Timing characteristic generation

Figure 4. Key-byte searching algorithm

Experiments show that the average execution time

tavg
i(j,K) is pretty much fixed for a given system

configuration. Furthermore, it is found that when a
different key K� is used, the timing charts roughly
remain the same except that the locations of the bars in
the charts are permuted, as shown in Figure 5 (a) and
(b). More specifically, the following equation holds:

tavg
i(pi , K) = tavg

i(p�i , K�) if p�i ⊕ k�i = pi ⊕ ki (1)
where ⊕ is the bit-wise XOR operation, and ki and k�i
are the i-th byte of K and K� respectively.

Attack Analysis: We try to explain why (a) there are
high bars corresponding to certain x-values in Figure
5, and (b) why these same peaks occur, but are
permuted, when different keys are used.

(a) Table lookups are intensively used in various
AES implementations. During the AES encryption, the
tables will gradually be loaded into the cache when
table entries are actually used. If there are no other
cache accesses in addition to these table lookups,
eventually the tables should all be loaded into the
cache and there will not be any cache misses, if the
cache is large enough. In reality, however, there are
wrapper and other background processes that cause
cache accesses which evict some entries of the tables
out of the cache. Moreover, some of these cache
accesses evict cache lines at fixed locations. The index
used in table lookup in the first round is pi ⊕ ki. Given
a key K, some values of pi will cause the table lookup
to access those evicted cache lines and will experience
a cache miss that leads to longer execution time (on

For key K:
For s = 1 to N do begin

Generate a random 128-bit Plaintext block, Ps;
Ts = time taken for AES encryption of Ps using K;

end;
For i = 0 to 15 do begin

For j = 0 to 255 do begin
count = 0;
For s = 1 to N do begin

If pi = j then
TSUMi(j) = TSUMi(j) + Ts;
count = count+1;

end;
tavg

i(j,K) = TSUMi(j)/count;
 end;
end;

For i = 0 to 15 do begin
 For j = 0 to 255 do begin

[]∑
=

⊕•=
255

0
)',(),(][

m

i
avg

i
avg KjmtKmtjCorr

 end;
 ki�= findMax(Corr);
end;

average). These can be seen as high bars in the timing
charts at the x-axis values corresponding to these pi.

(b) When a different key K� is used, since the index
used for a table lookup is the XOR of the plaintext
byte and the key byte, another set of plaintext values
p�i that satisfies pi ⊕ ki = p�i ⊕ k�i will generate the
same index for table lookups using pi and ki, and cause
accesses to the same cache lines. This explains why
their average encryption times are about the same, as
in equation (1). Since Figure 5 (a) and (b) is plotted in
terms of pi and pi�, respectively, they have similar
peaks, but in different locations. In Bernstein�s attack,
the key recovery step exploits this fact: tavg

i(j , K) =
tavg

i(j ⊕ ki ⊕ k�i , K�) that is derived from equation (1).
Since ki is known, the attacker can try all 256 possible
values of k�i to permute the timing charts obtained in
the attacking phase. The correct value of k�i should
make the permuted chart most similar to the one
obtained in the learning phase. The similarity is
quantitatively measured via correlation, using the
algorithm shown in Figure 4.

Byte 0 - Known Key K

-0.5

0

0.5

1

1.5

2

2.5

3

Plaintext byte value (0-255)

Ta
vg

 -
Tm

ea
n

(c
yc

le
s)

(a) Timing characteristic chart for a known key K

Byte 0 - Unknown Key K'

-0.5

0

0.5

1

1.5

2

2.5

3

Plaintext byte value (0-255)

Ta
vg

 -
Tm

ea
n

(c
yc

le
s)

(b) Timing characteristic chart for a different key K�

Figure 5. Timing characteristic charts of byte 0

3.4. New speculation-based covert channel

While the previous examples leak out information
due to contention for shared resources (either cache or
functional units), we have identified a different type of
covert channel based on exposing events to
unprivileged software that were previously not visible
to it (e.g., exceptions). This has happened recently in
some processors supporting speculative execution.

To hide the long latency that a load instruction may
introduce, control speculation in IA-64 allows a load

instruction to execute speculatively [14]. IA-64 adds a
one-bit flag, the NaT bit, to each general-purpose
register. If the speculative load instruction (ld.s) would
cause an exception, the NaT bit of the target register is
set, but the exception is not taken right away. Control
speculation allows deferral of the exception, allowing
the program itself to handle the exception when
necessary. In current Itanium processors, TLB misses
or TLB access bit violations are typical examples of
ld.s exceptions which can be deferred. In addition,
speculative loads may also be deferred by hardware
based on implementation-dependent criteria, such as
the detection of a long-latency cache miss. Such
deferral is referred to as spontaneous deferral [14].

Such a mechanism, however, can be exploited to
facilitate information leakage. For example, in the
cache-based side channel attacks described earlier,
cache misses are detected by measuring cache access
timing. However, if spontaneous deferral is
implemented in a future version of the Itanium
processor such that cache misses can be deferred, the
observer can observe the cache miss using control
speculation. He can access a cache line using the ld.s
instruction to check the NaT bit of the target register.
If the NaT bit is set, a cache miss is detected. In
contrast to timing measurement which suffers from
noise, this mechanism is like a noiseless channel.

Similar methods can be used to detect exceptions
such as a TLB miss. This is particularly useful when an
insider is available. The insider can choose any
exception sources available, not limited to cache or
TLB misses. To encode a bit, the insider makes certain
changes in the system such that later on, when the
observer executes the speculative instruction, these
changes will cause a deferred exception which sets the
NaT bit. The observer can then see the bit sent by
checking the NaT bit.

3.5. Data rates of covert channels

Table 1 shows the data rates of the new processor-
based covert channels. To make the data comparable,
we implement the SMT/FU channel on the same
processor as used in [12], i.e., a 2.8GHz Pentium-4
processor with hyper-threading. The rate of the
SMT/Cache channel reported in [12] is approximately
400 Kilobytes per second, or 3.2 Mbps (Megabits per
second). We measured the rate of the SMT/FU channel
as approximately 500 Kbps (Kilobits per second),
which can be even higher if further optimized. We
estimated the rate of the speculation-based channel
based on a processor model with settings typical of an
Itanium (IA-64) processor (1GHz clock rate; a 16-way

2MB cache with 128-byte cache lines.) A conservative
estimation of this rate is about 200Kbps.

In contrast, traditional OS-based covert channels,
e.g., the Inode table channel and the upgraded
directory channel, exploit shared resources at system
level. The resulting rates are much lower, e.g., around
50bps and 0.5bps respectively with typical data in the
1990�s [13]. Even if we assume a linear increase in
such OS covert channel rates with a 100X increase in
processor clock rate, the processor-based covert
channels are still orders of magnitude faster than the
traditional OS-based covert channels.

Table 1. Data rates of new covert channels
SMT/cache SMT/FU Control Spec.

~3.2Mbps ~500Kbps ~200Kbps

4. Insufficiency of software isolation

Software isolation methods providing Mandatory
Access Control (MAC) and Virtual Machine (VM)
technology may erroneously lull us to think that they
also prevent information from being leaked out.
Unfortunately, without being aware of these attacks,
software isolation can be completely ineffective.

Figure 6. A VMM based system.

Figure 6 illustrates a recent trend towards
implementing Virtual Machines, managed by a Virtual
Machine Monitor (VMM), e.g., Terra [17], Xen [18].
A VM could be an open-box one (shown in white),
which is allowed to communicate with other VMs via
legitimate communications channels, or a closed-box
one (shown in gray), which is completely isolated from
other VMs. Security policies need to be established
and enforced by the VMM. Such a system architecture
can provide many desirable properties other than
isolation, e.g., extensibility, compatibility and security.

As an example, consider an online banking
application running in one of the closed-box VMs.
Since it involves the use of important secrets such as
the user�s password, cryptographic keys, bank account
information, etc., it is isolated from all other VMs and
is only allowed to communicate with the authenticated
bank server. The underlying VMM enforces security

policies which disallow any form of communications
between the closed-box VM and all other VMs. This
ensures that the adversary outside the closed-box VM
has no access to the user�s secrets. Even if there is an
insider in the closed-box VM, e.g. a Trojan horse or a
backdoor in the banking application itself, and it gains
access to the secrets, it has no way to distribute them
outside of the VM, except to the trusted bank server.

While this sounds safe at first glance, such software
isolation can be broken by exploiting certain processor
architecture features. As described in section 3, a
recent attack [12] on a hyper-threading processor
allows a user process to extract the RSA key of another
process which is performing RSA encryption. No
special equipment is needed in the attack and the attack
does not even require any software flaw for
exploitation. The spy process only needs to execute a
series of memory accesses and observe the timing
while the victim process is running on the same
processor. A VMM system running on top of a SMT
processor therefore is vulnerable to this attack. An
adversary outside the closed-box VM can steal the
RSA keys involved in the online banking transaction.

A very important observation here is that unlike
other security problems, the information leakage
mechanism shown above does not break any protection
mechanisms and can escape detection. Even with
perfect access control, information flow monitoring
and auditing, information can still be leaked out by
exploiting processor architecture features, without
being detected. In the next two sections, we propose
two solutions to mitigate SMT-based covert channel
attacks and cache-based software side-channel attacks.

5. Selective partitioning solution

The first general solution approach is to minimize
resource sharing, and hence prevent interference
between processes. The SMT/FU covert channel
exploits the sharing of functional units by multiple
simultaneously active threads. A straightforward way
to block such a channel is to disallow any other
processes from running when a protected thread is
scheduled for execution. This strict partitioning can
have severe performance consequences. This can be
meliorated by allowing protected processes to be
executed with other processes, only disallowing the
simultaneous execution of processes that should be
isolated from each other. We refer to this as a selective
partitioning solution. It is similar to a �Chinese Wall�
separation policy, but at the hardware thread level.

Selective partitioning can be implemented in
software, e.g., by having the OS enforce this restriction

in process scheduling. This applies scheduling
restrictions only to critical processes that operate on
sensitive data. These processes may be cryptographic
routines, which tend to have small working sets
compared to other applications. A typical mix of
applications used in ordinary PC systems consists of
mostly non-critical processes.

Selectively partitioning can also be based on
leveraging existing hardware mechanisms. For the
hardware solution, we leverage the �fairness control�
mechanism implemented in some SMT processors to
prevent overuse of certain shared resources by a
process. For example, in Intel�s hyper-threading
processor, the allocator has fairness control logic for
assigning buffers to micro-ops from different logical
processors and the instruction scheduler has fairness
control on the number of active entries in each
scheduler�s queue. Our hardware solution proposes
that such fairness control logic can be leveraged to
mitigate covert channels as well. For the SMT/FU
covert channel we identified in section 3, the existing
fairness control logic in the instruction scheduler can
be modified slightly so that, when necessary, it
allocates a fixed number of entries for each process in
each queue. This would minimize the interference
between the two concurrent processes running on the
chip.

The performance degradation of the system with
our selective partitioning solution can be estimated as:

 10)1(RpRpR ⋅+−= (3)
where R0 is the throughput when there is no scheduling
restriction, R1 the throughput when a critical process is
running on the processor, and p is the probability of
the occurrence of such restricted execution. The
relative throughput therefore can be written as:

pp
R
R

p
R
R

p
R
R α−=−−=+−= 1)1(1)1(

0

1

0

1

0

 (4)

To estimate the performance degradation incurred
by Selective Partitioning, we first estimate the
coefficient α in (4), by performing a preliminary test
on a HT processor. We wish to compare the
performance of a system with HT enabled versus with
HT disabled (simulating the restricted execution, i.e.
only one process can execute at a time). With HT
enabled, we observed up to 30% performance increase
in terms of overall system throughput, though in a few
occasions we also observed performance degradation.
In general, we found that in most cases, the relative
throughput of HT-disabled vs. HT-enabled system is in
the range of 0.75-0.95, or equivalently, α is in the
range of 0.05-0.25. Figure 7 shows the performance
degradation curve when the probability of restricted
scheduling p changes from 0 to 1. In the worst case,

when α equals 0.25 and p equals 1, the performance
degradation is approximately 25%. In typical cases, p
is likely to be in the range of 0.1 to 0.15, in which case
the performance degradation is less than 5%.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Probability p

R
el

at
iv

e
Th

ro
ug

hp
ut

Peformance Degradation

a = 0.05
a = 0.25

Figure 7. Performance of selective partitioning

6. Random permutation cache solution

A second general solution is to use �signal
randomization�. Any signal sent by the sending
process is randomized with respect to a receiving
process. Our solution is to use different memory-to-
cache mappings for processes that need to be isolated
from others. Other processes cannot deduce what
cache index bits are used by a process when the
mapping is unknown. Furthermore, this mapping
should not be fixed since the attacker may be able to
learn the mapping by doing a number of experiments.

Changing the memory-to-cache mapping for each
process can be implemented by a variety of
mechanisms, such as XORing the cache index bits with
a random number or hashing the cache index bits.
XOR and hash-based mapping are simple to
implement, but may not provide enough randomness.
Rather, we propose to use random permutation that
gives the best 1-to-1 random mapping. This can be
achieved with one level of indirection: keep a table
that contains the permuted index for each original
cache index. When accessing the cache, the original
index is used to look up this table for the
corresponding permuted index, which is then used to
access the cache. This extra level of indirection for
Level 1 data cache accesses is costly in terms of cycle-
time latency or cycles per access. Below, we show
how we achieve random permutation mapping without
an extra level of indirection for table lookup and
without lengthening the cache access time.

6.1. Low-overhead RPCache implementation

Figure 8 shows the functional block diagram of a
generic cache. During a cache access, a portion of the
N bits of the effective address, used to index the cache,
is sent to the address decoder. The decoder outputs 2N
word lines and in each access only one of them is

driven high to select the cache set that contains the
data being accessed. For each word line there is a
comparison module which compares the effective
address A with the current word line number k. The
cache set is selected only when these are equal. We
can add an N-bit register, which we denote a
Permutation Register (PR), for each word line which
contains a permuted cache index, feeding this into the
comparison module instead of the original constant for
the word line number k. We call such a set of
permutation registers a Permutation Register Set
(PRS). By changing the contents of the PRS, arbitrary
cache index mapping can be achieved.

Figure 8. A generic cache architecture.

In real implementations, the comparators in the

address decoder for the cache are not implemented as
separate units. Also, the fact that A is compared to a
constant word line number k is exploited to simplify
circuit design. The only difference between using the
variable contents of a Permutation Register (in our
RPCache) rather than a constant word line number k is
that fixed connections between a grid of wires in the
address decoder circuit are replaced with switches.
Though the drain capacitance of the switches increases
the load in the address decoder circuits, proper circuit
design can easily overcome this problem with no extra
delay introduced.

To prevent the attacker from learning the memory-
to-cache mapping via experiments, the mapping needs
to be gradually changed. This can be implemented by
swapping cache sets, two at a time. To change the
cache mapping, two permutation registers of the PRS
are selected and their contents swapped. The
corresponding cache lines are invalidated, which
triggers the cache mechanism to write back any �dirty�
cache lines, i.e., cache lines that have newer data
written in it since they were brought into the cache
from memory. Subsequent accesses to these
invalidated cache sets will miss in the cache, which
will degrade performance. However, as we will show
in section 6.4, the performance impact is very small.

After investigating different swapping policies,
including periodically swapping, we have found an
optimal swapping strategy from the information-
theoretic perspective. This is based on realizing that
only cache misses that cause replacements give side-
channel information, so no swapping needs to be done
when there are no such cache misses. Upon a cache
replacement, we swap the cache index of the cache set
that contains the incoming cache line with any one of
the cache sets with equal probability. So for any cache
miss that the receiver process detects, it can be caused
by a victim process�s cache access to any one of all
cache sets with equal probabilities. Hence, when the
receiver process detects a cache miss, he cannot learn
anything about the cache locations used by the sender
process. This cache swapping policy also incurs very
little performance overhead, as shown later.

Processor
Execution

Core

L1 I-Cache

I-TLB

L1 D-Cache

D-TLB

L2 Cache

Permutation Register Sets (PRSs)

Critical Code Page Bits

Figure 9. A processor with RPCache

6.2. RPCache architecture

The RPCache requires permutation registers (PR),
one for each set of the L1 (Level 1) Data cache. In a
direct-mapped cache, there is one PRS register for
each cache line. The processor can contain one or
more sets of such permutation registers. There is also a
new bit per Instruction Translation Look aside Buffer
(ITLB) entry that we call the Critical Code Page (CCP)
bit.

6.3. RPCache usage model

Each PRS set may be associated with a segment of

code that needs to be protected. This may be a whole
process, or a critical part of a process, e.g., the crypto-
related shared library calls. When such a segment of
code is executing on the processor, the corresponding
PRS is used to permute the index to the cache.

The CCP bit in an ITLB entry indicates if the code
on that page needs to be protected. When an
instruction is fetched for execution, the CCP bit in the

corresponding ITLB entry is checked. If it is set, the
cache access of a load or store instruction will go
through the PRS mapping, otherwise the cache access
will use the original cache index. Critical processes
and the critical segments of a process are marked.

The PRS can be managed solely by hardware.
During a context switch, the old PRS values are simply
discarded and a new set of values are generated (if the
ITLB of the new process has its CCP bit set). Dirty
cache lines may need to be written back, because next
time this process is swapped in, it will use a different
PRS to index the cache. It has to get a copy of the data
from the next level cache or from the main memory,
and the freshness of the data must be ensured. For a
write-through cache, however, no such overhead is
necessary since the next level cache always has the
latest data.

The PRS can also be maintained by the OS. Upon
each context switch, the PRS of the process that is
swapping out should be saved as part of the context
and the OS should load the PRS values of the
incoming process to the on chip PRS registers.

SPEC2000 Benchmarks

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

am
mp

ap
plu

eq
ua

ke
ga

lgel

mes
a

mgri
d

wupw
ise

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x

av
era

ge

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

baseline
RPCache

Figure 10. RPCache Performance

6.4. Performance evaluation

The RPCache may introduce extra overhead when a
change of the cache permutation mapping occurs. This
may be during a context switch or when two cache sets
are swapped. For a context switch, the overhead is
insignificant relative to the time between two context
switches. For the hardware-managed swapping, we
swap just the contents of the pair of PRS registers
while invalidating their associated cache lines.

To evaluate the performance degradation, we run a
set of SPEC2000 benchmarks on the Simplescalar
simulator [25]. Figure 10 shows the normalized
execution time. The baseline machine has a 2-way set-
associative write-back L1 data cache. The data marked
with �RPCache� is generated on a machine using the
cache set swapping scheme where the two cache sets to
be swapped are invalidated with dirty lines written
back to the next cache level.

The performance degradation is very low: 1.1%
worst case (perlbmk) and only 0.15% on average. This
appears to be because cache misses and cache line
replacements normally occur infrequently. The
performance degradation is mainly due to the extra
cache misses caused by the invalidation of the cache
lines. However, since each time the invalidated sets are
only two out of all cache sets, the resulting
performance degradation is also insignificant.

Key Searching Chart

0

0.2

0.4

0.6

0.8

1

1.2

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253

Key Byte Value (0-255)

N
or

m
al

iz
ed

 C
or

re
la

tio
n

(a) Key searching chart without cache-index permutation

Key Searching Chart (with permutation)

0

0.2

0.4

0.6

0.8

1

1.2

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253

Key Byte Value (0-255)

N
or

m
al

iz
ed

 C
or

re
la

tio
n

(b) Key searching chart with cache-index permutation

Figure 11. Key searching charts

6.5. Security analysis

Three of the attacks described in sections 3 involve
cache-based information leakage.

Bernstein�s statistical cache attack: We first
evaluate the effectiveness of the RPCache in mitigating
Bernstein�s statistical cache attack and illustrate this in
Figure 11. We simulate the effect of cache permuting
by swapping the memory blocks of the AES tables
once per 25 AES encryptions. This is roughly
equivalent to swapping two cache sets per 10,000
cycles. In Figure 11, the x-axis is the key value that is
used in the key-byte searching algorithm described in
Section 3. The y-axis is the normalized correlation of
the two timing characteristic charts given the
corresponding x value as the guessed key byte. The
higher the y value, the more the two charts match. The
x value that has the highest correlation value is the
discovered key-byte. Figure 11(a) shows a distinct
high y value for a given x value (x=143), leading to a
likely key-byte match. In Figure 11(b), the same key is
used, but with the RPCache remapping, the correlation

is rather random, resulting in non-recovery of the key
byte. In fact, the highest peaks are actually misleading,
since they indicate values that are not the correct key-
byte. This shows the effectiveness of our RPCache
remapping in thwarting Bernstein�s attack.

SMT/Cache side channel attack: in the SMT/Cache
side channel attack, the receiver process can directly
detect the memory locations used by the sender
(victim) process by detecting cache misses. The
RPCache thwarts this attack since each time the
receiver process observes a cache miss, the swapping
policy ensures that this cache miss can be caused by a
victim process�s cache access to any one of the cache
sets with equal probability. Therefore no information is
gleaned about which cache line was accessed by the
victim (sender) process. This effectively stops
SMT/Cache side channel attacks.

Speculation-enhanced cache attack: the control-
speculation mechanism, described in section 3.4, can
provide a more reliable way to detect cache misses.
However, this will not help if our RPCache is used.
Recall that RPCache does not prevent the attacker
from detecting cache misses. Instead, RPCache makes
the victim process�s cache accesses unrelated to the
attacker�s cache miss pattern, and hence no
information can be inferred even if the attacker can
accurately detect cache misses.

7. Related work

Past work on covert channels analyzed system
specifications and implementations for illegal
information flows [13]. Past work on side-channel
attacks focused on differential power [2-5] and timing
[6-10] analysis. Cache-based side channel attacks were
studied in [26-27]. Some side-channel attacks were
reported recently which allow complete key recovery
during AES and RSA encryption [11][12][22].

The control flow information leakage problem due
to the exposure of address traces on the system
memory bus is studied in [21][24]. Both proposed
probabilistic approaches for hiding the real access
sequence. Our work is different since we focus on
information leakage caused by resource interference,
e.g., cache interference, which has fundamentally
different assumptions. Our solutions are also very
different. In [23], an approach different from ours, i.e.
cache partitioning, was proposed to mitigate one type
of cache-based side channel attacks. This incurs
performance penalties and also requires changes in the
ISA, compiler and operating system. Other relevant
work include special purpose secure devices such as
the IBM 4758 cryptographic coprocessor [20].

8. Summary and conclusions

Information leakage attacks that exploit processor
architecture features are particularly dangerous for
many reasons. They dramatically increase the
bandwidth and reliability of covert and side channels,
and they exist even when strong software isolation
techniques are present.

Unlike traditional covert channels, processor-based
covert channels are much faster and more reliable.
They are much faster because microprocessors operate
at the highest clock rate in the system and resource
sharing can be very tightly coupled, as we showed for
Simultaneous Multi-Threaded (SMT) processors.
Processor-based covert channels also result in more
reliable covert channel communications since the
global on-chip clock makes the synchronization easier.
In fact, we showed that the data rate of these
processor-based covert channels can be orders of
magnitude larger than traditional covert channels.

We showed that processor-based covert channels
are not prevented (or even impacted) by strong
software isolation architectures like Virtual Machine
technology with secure Virtual Machine Monitors or
secure hypervisors. In fact, the software trends toward
portable design methodology and virtualization
techniques both try to �hide� the hardware, making
most of the system design and development
independent of hardware. This can be very dangerous,
since it can lead to oblivion of the serious and growing
threat of hardware processor-based information
leakage. Also, since covert channels and side channels
only rely on legitimate use of the system and do not
directly access secrets, the system can not detect the
existence of such an attack even if perfect access
control, monitoring and auditing mechanisms are
implemented.

This paper demonstrated the information leakage
problem at the processor architecture level, with
detailed covert and side channel examples. We
identified two new convert channels based on highly-
touted processor features, viz., Simultaneous Multi-
Threading and Speculative Execution. We also
provided detailed analysis of why the two recently
publicized cache-based side channel attacks work.

We then suggested two solutions, Selective
Partitioning and the novel RPCache. Selective
partitioning by software (or hardware) can prevent the
SMT/FU covert channel problem. Here, we estimated
the performance degradation at no more than 25%,
with an expected value of less than 10%. Our RPCache
proposal uses an efficient cache-index randomization
solution that thwarts software cache-based side
channel attacks. Performance degradation is less than

1%, and the solution is transparent to software. We
believe this solution can defeat most cache-based
attacks that try to find which cache locations are used
by another process.

In conclusion, hardware processor-based covert
channels and cache side channels can be very
dangerous. Mitigation of these at the hardware level is
often necessary since these hardware-based channels
are not impacted by even strong software isolation
mechanisms. We hope to have alerted both the security
and computer architecture communities to this
processor-induced information leakage threat. Future
work will attempt to identify more processor features
that facilitate covert channels and side channels and
will study other solutions for this growing threat.

References

[1] Butler W. Lampson, �A note on the confinement
problem�, Communications of the ACM, v.16 n.10, pp.613-
615, Oct. 1973.
[2] C. Kocher, J. Jaffe, and B. Jun, �Differential power
analysis�, Advances in Cryptology - CRYPTO �99, vol. 1666
of Lecture Notes in Computer Science, pp.388-397,
Springer-Verlag, 1999.
[3] J.-S. Coron and L. Goubin, �On Boolean and arithmetic
masking against differential power analysis�, Cryptographic
Hardware and Embedded Systems (CHES 2000), vol. 1965
of Lecture Notes in Computer Science, pp. 231-237,
Springer-Verlag, 2000.
[4] M. Joye, �Smart-card implementations of elliptic curve
cryptography and DPA-type attacks�, Smart Card Research
and Advanced Applications VI, pp.115-125, Kluwer
Academic Publishers, 2004.
[5] J. Waddle and D. Wagner, �Towards efficient second-
order power analysis�, Cryptographic Hardware and
Embedded Systems (CHES 2004), vol. 3156 of Lecture Notes
in Computer Science, pp. 1-15, Springer-Verlag, 2004.
[6] P. Kocher, �Timing attacks in implementations of Diffie-
Hellman, RSA, DSS, and other systems�, Proceedings
Crypto '96, Lecture Notes in Computer Science, vol. 1109,
Springer-Verlag, pp. 104-113.
[7] Werner Schindler, �A Timing Attack against RSA with
the Chinese Remainder Theorem�, CHES 2000, pp.109-124,
2000.
[8] Werner Schindler, �Optimized Timing Attacks against
Public Key Cryptosystems�, Statistics and Decisions,
20:191-210, 2002.
[9] David Brumley and Dan Boneh, �Remote Timing Attacks
are Practical�, Proceedings of the 12th USENIX Security
Symposium, pp.1-14, August 2003.
[10] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J.
Quisquater, and J.-L. Willems, �A practical implementation
of the timing attack�, Proc. CARDIS 1998, Smart Card
Research and Advanced Applications, 1998.
[11] D.J. Bernstein, �Cache-timing Attacks on AES�,
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[12] C. Percival, �Cache Missing for Fun and Profit�,
http://www.daemonology.net/papers/htt.pdf.
[13] National Computer Security Center, �A Guide to
Understanding Covert Channel Analysis of Trusted
Systems�, NCSC-TG-30, November 1993,
http://www.radium.ncsc.mil/tpep/library/rainbow.
[14] Intel Itanium Architecture Software Developer�s
Manuals Volume 1-3,
http://www.intel.com/design/itanium2/documentation.htm.
[15] Dean Tullsen, Susan Eggers, and Henry Levy,
�Simultaneous Multithreading: Maximizing On-Chip
Parallelism�, Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.
[16] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A.
Koufaty, J.A. Miller, M. Upton, �Hyper-Threading
Technology Architecture and Microarchitecture�, Intel
Technology Journal, vol.6, issue 1, pp.4-15, 2002.
[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D.
Boneh, �Terra: A Virtual Machine-Based Platform for
Trusted Computing�, Proceedings of the 19th ACM
Symposium on Operating System Principles, pp. 193-206,
Oct 2003.
[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, A. Warfield, �Xen and the
Art of Virtualization�, Proceedings of the 19th ACM
Symposium on Operating System Principles, pp. 164-177,
Oct 2003.
[19] A. Baratloo, T. Tsai, and N. Singh, �Transparent Run-
Time Defense Against Stack Smashing Attacks�,
Proceedings of the USENIX Annual Technical Conference,
June 2000.
[20] The IBM 4758 PCI cryptographic coprocessor, available
at http://www-03.ibm.com/security/cryptocards.
[21] X. Zhuang, T. Zhang, and S. Pande, �HIDE: an
infrastructure for efficiently protecting information leakage
on the address bus�, ACM 11thInternational Conference on
Architecture Support for Programming Language and
Operating Systems, 2004.
[22] D. A. Osvik, A. Shamir and E. Tromer, �Cache attacks
and Countermeasures: the Case of AES�, Cryptology ePrint
Archive, Report 2005/271, 2005.
[23] D. Page, �Partitioned Cache Architecture as a Side-
Channel Defense Mechanism�, Cryptology ePrint Archive,
Report 2005/280, 2005.
[24] Oded Goldreich, �Towards a theory of software
protection and simulation by oblivious RAMs�, Proceedings
of the Nineteenth Annual ACM Symposium on Theory of
Computing, May 1987.
[25] T Austin, E. Larson, and D. Ernst, �Simplescalar: an
infrastructure for computer system modeling,� IEEE
computer, 35(2), Feb 2002.
[26] Daniel Page, �Theoretical use of cache memory as a
cryptanalytic side-channel�, technical report CSTR-02-003,
Department of Computer Science, University of Bristol,
2002.
[27] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki
Shigeri, Hiroshi Miyauchi, �Cryptanalysis of DES
implemented on computers with cache,� Proc. CHES 2003,
LNCS 2779, 62-76, 2003.

