
Engineering Sufficiently Secure Computing

Brian Witten
Symantec Research Labs
bwitten@symantec.com

Abstract

We propose an architecture of four complimentary
technologies increasingly relevant to a growing
number of home users and organizations:
cryptography, separation kernels, formal verification,
and rapidly improving techniques relevant to software
defect density estimation. Cryptographic separation
protects information in transmission and storage.
Formally proven properties of separation kernel based
secure virtualization can bound risk for information in
processing. Then, within each strongly separated
domain, risk can be measured as a function of people
and technology within that domain. Where hardware,
software, and their interactions are proven to behave
as and only as desired under all circumstances, such
hardware and software can be considered to not
substantially increase risk. Where the size or
complexity of software is beyond such formal proofs,
we discuss estimating risk related to software defect
densities, and emerging work related to binary
analysis with potential for improving software defect
density estimation.

1. Introduction, purpose, and motivation

Perfection is not often tractable in real systems, and
there are no silver bullets in the increasingly high-
stakes move-counter-move game titled “Computer
Security.” However, it is still possible to continue
making systems increasingly stronger, and it should be
possible to make systems strong enough to effectively
neutralize broad categories of malicious actors seeking
to break or subvert computer systems. It might even
be possible to create technology effectively
neutralizing so many malicious actors that the number
remaining are so few that national and international
efforts above and beyond technology might be
effective in neutralizing them. However, even if such
progress might be tractable, such progress is a long

distance from the exponentially growing billion dollar
per year problem of online identity theft, a long
distance from fifteen terabytes of information taken
from a single military network, and a long distance
from today’s multi-billon dollar problem of intellectual
property leakage.

1.2. Outline of paper

Cryptography stands among the oldest and strongest
techniques for protecting information. However,
effective deployment can be challenging and
cryptography is not without limits. Strengths
challenges and limitations of cryptography are
reviewed quickly in Section 2. Because information
often must be decrypted and exposed for processing to
be processed effectively, most techniques for
protecting information in processing involve
separating the exposed information from other
information and other factors so that the information is
exposed to only a limited set of threats. These
techniques are discussed at length in Section 3.
Separation Properties where the paper describes
advantages of separation kernels. These advantages
apply to permanent domains of intranets, extranets,
safety critical systems, the open Internet, personal
domains for finance, friends and family, and the many
ad hoc domains necessary for managing national scale
emergencies, and international collaboration managing
natural disasters and transnational threats.
Additionally, because these separation properties are
critical to protecting information in scalable systems, it
may be useful to verify the separation properties
through formal verification techniques. These
techniques, their limits, and the arguments for formal
verification are discussed at length in Section 4.
Formal Verification. Unfortunately, the most thorough
formal verification techniques do not currently scale to
formal verification of all properties of all systems. In
fact, given scale and complexity of most software
systems today, with the full functionality and
complexity often necessary to meet “mission,”

“operational,” “business,” or “consumer” needs, the
most thorough forms of formal verification do not even
scale to the size of most software systems today. For
this reason, we consider other approaches for gauging
the degree to which such large and complex software
satisfies security requirements. The other approaches
considered include lighter forms of formal verification
and other evaluation techniques, such as testing.
Specifically, in Section 5, the paper proposes to
leverage emerging research in model checking and
binary analysis to improve software defect density
estimation, and describes some of the limits and
dangers in using such a gauge. Section 6 proposes a
framework for reasoning about transitive risks between
security domains that are strongly separated through
cryptographic separation and separation kernels except
for carefully specified interfaces, and Section 7
provides a summary.

2. Cryptography: advantages and hurdles

Where utilized effectively, strong cryptography has
long provided sufficient security for transmission and
storage of information. However, it is not yet
pervasive in protection of valuable information for
several reasons. Infrastructures for managing a large
number of cryptographic keys are generally
cumbersome and expensive. Encrypted information is
hard to search, and any fragility of the key
management infrastructure can have a strong impact on
the recoverability of information. Cryptography
burdens the system with performance impact. Also,
encrypted communications and encrypted storage
provide negligible value when the information is
readily taken from relatively weak operating systems
whenever exposed for processing. However, with the
emergence of high assurance separation kernels [1, 7]
as described in Section 2.0, and continued growth of
excess performance capabilities of hardware, many of
these concerns are diminishing.

However, cryptography has profound advantages.
Cryptography not only protects secrecy of information
in storage and transmission, but cryptography may also
be used to protect the integrity and availability of
information in storage and transmission. Clearly
cryptography helps protect the integrity of information
when cryptographic keys are needed to modify
information without the tampering being immediately
obvious. Also, because cryptography allows relatively
secure use of untrustworthy storage, cryptography can
be used to relatively safely replicate information into a
larger number and wider variety of less trustworthy
storage sites. In this manner, cryptography can
increase the probability of confidential information

retrieval in the wake of natural faults, and also increase
the number of malicious actors required to collude to
deny information retrieval. Similarly, cryptography
can be used to increase availability of communications
by increasing the number and diversity of
communication paths available. In these ways,
cryptography can be used to protect secrecy, integrity,
and availability of information in transmission and
storage. However, protecting information exposed for
processing is a different matter entirely.

3. Separation Properties

As mentioned above, protecting information
exposed for processing is quite different from
protecting information in storage or transmission, and
most techniques for protecting information in
processing involve separating the exposed information
from other information and other factors so that the
information is exposed to only a limited set of threats.
Traditionally, several techniques have been used to
maintain the separation desired to protect information
in processing. These include:

a) Labor-intensively attempting to establish and
maintain networks that have no connectivity
with other networks. Information within the
network is exposed to threats from all other
network participants, but theoretically the threat
should be bounded to the participants of the
“isolated” network. However, in practice most
commonly, strong mission, operational,
business, or consumer needs exist to connect
these networks to other networks, invalidating
the assumptions of bounded risk.

b) This connectivity between “otherwise isolated”
networks is often established through a
restricted set of protected “guards” that serve as
a gateway from one network to another. This
focuses the problem of controlling separation
into a limited number of machines, and it is very
common to use techniques of (c) and (d) to
maintain such separation. However, anytime
bits flow across boundaries, the overt and covert
channels introduce transitive risks that are hard
to manage because they directly violate the
desired separation. Even if the overt and covert
channels are small, the risk can be very large,
particularly if software is being added or
updated in the protected network in large or
frequent increments from potentially
compromised software development lifecycles.
Furthermore, like a large balloon, where
relatively high volume guards protect relatively

large networks, a single pin-prick mistake in the
sealing of the large network can allow very
large volumes to be exfiltrated from the breadth
of the network over time. This argues for
smaller security domains with stronger internal
protections so that a flaw in one corner of the
network does not devastate all participants.

c) Several techniques attempt to monitor
information as it is being processed in a shared
computing environment to ensure that bits of
information do not influence each other, even if
the bits of information exist in a shared
environment such as a shared processor, shared
memory, or other shared resource. These
techniques include tainting, sandboxing, and
monitoring the operating system (OS) to ensure
applications aren’t tampering with the OS.
More broadly, these techniques include many
types of current host based intrusion detection,
intrusion prevention, antivirus, anti-spyware,
and kernel integrity monitoring. However, many
of the arguments for the integrity and
trustworthiness of these techniques are based on
unproven and potentially invalid assumptions
about the integrity of the underlying OS,
hardware, and protections afforded by the
hardware and OS. Some of the techniques
which do not make such assumptions are
described in Sections 3.3 and 3.6.

d) Last, where machines must participate in
multiple security domains, either as guards or as
workstations facilitating end-user participation
in multiple security domains, use of
virtualization is an active area of research to
facilitate a physical machine hosting multiple
virtual machines with each virtual machine
isolated from the other virtual machines and
participating in a different security domain. [2,
3, 4, 5] Given the limits and dangers of the other
approaches described above, this approach and
the path for improving it are foci of this paper.
This approach has the potential to offer security
greater than the approaches described in (c),
security improving to rival (a), particularly
given the risks from “workarounds” and
“sneakernet.” Moreover, the flexibility of this
approach can dramatically exceed the flexibility
of (a), exceed the flexibility of (b), and rival
the flexibility of (c).

3.1. Hypervisors and separation kernels

Virtualization based on separation kernels [6, 7]
has tremendous advantages over the hypervisor [8 , 9]
approach currently being pursued with Linux and
Microsoft operating systems.[2, 8] Before describing
the differences between hypervisors and separation
kernels and advantages of separation kernels over
hypervisors, it is important to note first that separation
kernels do not provide the virtualization for full
functional operating systems to run directly atop the
separation kernel. However, virtualization can be built
cleanly and severably atop the separation kernel and
below the guest OS, and virtualization constructed in
that manner can provide full virtualization for full
functional operating systems to run with their full
functionality.[5] Unlike para-virtualization, this can be
done without requiring modification of the guest
OS.[10] This has been demonstrated by Green Hills
Software.[5] Such clean segregation of virtualization
code from the code enforcing separation properties
enables a dramatically smaller Trusted Computing
Base (TCB), often with a security critical codebase that
is smaller than 10,000 lines of code, and solidly
evaluatable through formal verification. In contrast,
monolithic hypervisors, even “micro” hypervisors
such as VMware entangle the virtualization and
separation properties into codebases that most
commonly near a hundred thousand lines of code, and
lack clean segregation of any TCB within that
codebase. In contrast, the separation kernel is roughly
between 200kb and 500kb. It is important to note that
the security properties of some but not all separation
kernels have been formally verified, and depending
upon a separation kernel whose security properties
have not been verified may have hidden risks. The
security strength of formally verified separation
kernels is the primary advantage of separation kernel
based virtualization over hypervisors. However,
separation kernel based virtualization additionally has
several other advantages over hypervisors.

In addition to introducing less security risk,
separation kernel based virtualization can also provide
greater functionality. For instance, because the
virtualization for each virtual machine is separated by
the separation kernel from the virtualization underlying
the other virtual machines, separation kernels naturally
support parallel virtualization of different hardware
simultaneously. In other words, on a single arbitrary
x86 or ARM hardware platform, separation kernels can
simultaneously support x86, ARM, SPARC, and other
virtual machines. Admittedly, at times this must be
done through emulation with substantial performance
penalties but without requiring modification of

executable code including operating systems that
would run natively on those hardware platforms. This
can substantially reduce the costs of porting software
and facilitate safe migration from aging legacy
hardware platforms.

Also, because the software for enforcing separation
is cleanly segregated from the software for providing
virtualization, separation kernels naturally facilitate
creation of many small and lightweight partitions
where software may run at native speeds within the
constraints and strong protection of the separation
kernel but without the substantial overheads of
virtualization. This is critical for efficiently providing
strong separation and protection of down-graders, re-
graders, cryptographic components, and components
for mediating covert channels in communications with
shared devices such as hard drives and network
interface cards, and protecting those components from
untrusted partitions of untrusted security domains
which users must access while their machine also hosts
such trusted components. In such an architecture
based on separation kernels, those many components
can run safely and relatively securely at native speeds
without the overhead of virtualization. By contrast, in
a hypervisor based architecture, each component
would either be required to run with the overhead of
virtualization where the burden of the virtualization
vastly exceeds the burden of the component itself, or
they would be required to run outside the hypervisor
where they would run without benefiting from even the
softer assurance of separation provided by the
hypervisor.

Last, most hypervisors have little functionality for
controlling communications between the “partitions”
they separate. In contrast, because separation kernels
provide strong separation among these partitions, bi-
directional and uni-directional communications
between partitions can be permitted through
specification of simple policies of who is permitted to
read from whom.

In summary, separation kernels not only provide
stronger separation between security domains forced to
coexist on the same hardware, but separation kernels
also provide high assurance protection of other
technologies critical for effectively protected and
controlled collaboration between domains in very large
networks. Moreover, separation kernels provide high
assurance protection for these technologies even while
easing their deployment. These other technologies
include kernel integrity monitors; release review
components; and well separated instances of strong
software based cryptography, with each instance
appropriately supporting a different single
classification level (or specific directional pair of

classification levels) and each instance appropriately
protected from the untrusted software existing within
that classification domain. Moreover, not only does
the separation kernel facilitate stronger separation of
so many “compartments,” but it can also provide more
strongly controlled communication between
compartments in a manner evaluated far more
thoroughly than can be evaluated in hypervisors. The
formal methods necessary for such strong evaluation
of separation properties simply do not scale to the size
of monolithic hypervisors, and even if the verification
methods scaled, they would simply better illuminate
the tangling of separation and virtualization violating
the separation properties. In contrast, with formally
verified separation provided by the separation kernel,
the set of properties that must be formally verified for
each of the security critical protected components is
vastly minimized, and reduced in some cases to a scale
where the properties of the components themselves can
be formally verified.

These advantages of separation kernels apply to
strong separation between effectively permanent
domains of intranets, extranets, safety critical systems,
the open Internet, personal domains for finance,
friends and family, and the many ad hoc domains
necessary for managing national scale emergencies,
and international collaboration managing natural
disasters and transnational threats. Finally, strong
separation kernels can provide such separation while
providing the full functionality to each domain that
each domain desires.

3.2. Hardware support of secure virtualization

Given these strengths of separation kernel based
virtualization, why seek increasingly secure hardware?
Although it is possible to do many things in software,
software cannot effectively attest to the integrity of the
underlying software and hardware environments.
Trusted Computing Group standards [11] help address
the limitation.

However, other challenges remain. For instance,
Unfortunately, the x86 instruction set is not easily
accurately virtualized.[12] Kernel code and device
drivers generally have to operate in privileged mode
(“ring 0”) in order to execute the instructions that
directly manipulate hardware, page table registers, etc.
Historically, most virtualization software has run the
guest OS code at user level, and trapped privileged
instructions to emulate the requested activities.
However, in order to run a guest OS unmodified, it is
critical that the virtualization system be extremely
faithful to the expected semantics of the privileged
instructions and hardware. Any discrepancies can

cause the guest OS to crash badly. For instance, given
that instructions which write to privileged registers
trap as expected, but many of the instructions that read
from a privileged register do not trap at all, a guest
compartment might be writing changes to the
virtualized page table base address but reading from
the actual page table address, possibly causing it to fail
spectacularly. In order to overcome this, virtualization
systems have had to resort to other strategies such as
inserting breakpoints into every piece of code that
contains these problematic instructions. Then ensuring
that the breakpoints are maintained consistently
requires tremendous effort and resources. A complete
discussion of these sorts of measures can be found in
[13].

However, Intel Corporation has recently added new
support for virtualization in the form of the
Vanderpool Technology (VT) instructions included in
the latest Intel Core processors which, simply put,
provide a new execution mode (which can be thought
of as “ring -1”) beneath the previously most privileged
level. This allows guest Operating Systems to run at
level 0, completely unaware of the fact that they are
running in a virtual environment. But any attempt to
access any of the formerly problematic instructions
will trap to the emulation code provided by the
virtualization layer.

Hardware support for virtualization and
motherboard support for system integrity monitoring
are now rapidly becoming widely available in the mass
quantities commercially feasible for use by average
customers. Several leading providers of personal
computing hardware already ship platforms with such
technology. For instance, the Intel Corporation
hardware-assisted virtualization technology known as
VT is similar to AMD Pacifica Technology. Further,
Intel Corporation secure platform technology known as
LaGrande Technology (LT) [14] is based on TCG
standards [11] and similar to AMD Presidio
Technology. LT and VT already ship embedded
together from leading providers of desktops and
servers. Moreover, TCG compliant technologies
already ship in desktops, laptops and servers of many
leading providers.

3.3. Uses for secure virtualization

In addition to allowing users to safely and securely
interact with multiple security domains practically
simultaneously, and in addition to easing development
and deployment of guards, secure virtualization has a
variety of other important use-cases.

Currently, most host based security technologies
depend on at least partial integrity of the underlying

OS, and much of the underlying hardware. Such host
based security technologies include antivirus, host
based intrusion prevention, antispyware, and personal
firewalls.

Hardware support for secure virtualization can
narrow the hardware dependencies and eliminate
dependence on the OS by allowing the security
technology to exist in an independent partition simply
watching, and not trusting, the monitored OS. In fact,
the security software may even become the virtual
machine monitor such that the untrusted OS depends
on the security software without the security software
depending on the untrusted OS.

Moreover, because separation kernels can protect
components from tampering by other components, they
facilitate effectively protected insertion of tamper
resistant host integrity monitors, network intrusion
prevention systems (N-IPS), and network intrusion
detection systems (N-IDS). Additionally, separation
kernels can force redirection of all interaction from any
component bound for hardware to become an
interaction with the appropriate mitigation component.
In this way they provide non-bypassability to the N-
IDS and N-IPS whose transparent and strongly
protected integration they facilitate. Such N-IDS and
N-IPS can be inserted between the network interface
card (NIC) and the untrusted OS. Alternatively,
separation kernels support protected and transparent
insertion of such monitors between any Guest OS and
any cryptographic software, and further ensure that the
cryptography is not bypassed or tampered.

In these ways, separation kernels help protect and
ease deployment and verification [17] of the mitigation
components mediating communication of untrusted
fully functional guest operating systems with shared
hardware and the rest of the outside world. Worth
noting, as separation kernels protect the supporting
compartments from tampering, integration of LT may
help separation kernels by ensuring secure boot and
attestation.

3.4. Secure operating systems today

Of course, separation kernels are not new, and a
variety of high assurance operating systems have
served the community for decades, including Provably
Secure Operating System (PSOS), GEMSOS,
MULTICS, and others. However, the market for high
assurance and real time operating systems has grown
dramatically since creation of many of these operating
systems. A number of high assurance and real time
operating systems now have revenue streams from
commercial applications in avionics and other
embedded applications driving improvements in

performance and verifiable functionality. Although
this does not change the realm of the possible, it does
change, dramatically, the realm of the feasible.
Further, with multi-billion dollar problems of identity
theft and intellectual property theft climbing
exponentially, the demand for separation properties
has never been higher.

As an example of such a relatively secure
separation kernel based high assurance real time
operating system, Green Hills Software has developed
a separation kernel that is currently being evaluated by
a Common Criteria Testing Lab, SAIC, in Columbia
Maryland for meeting the requirements of an
Evaluation Assurance Level (EAL) of 6+ against the
Separation Kernel Protection Profile (SKPP).[15] The
formal methods artifacts for the EAL6+ evaluation
were developed by Rockwell Collins Formal Methods
Center of Excellence under the F/A-22 and F-35
programs under management of Air Force Research
Labs. This separation kernel borrows heavily from a
Real Time Operating System commercially developed
by Green Hill Software. This separation kernel has
been certified under eight different DO-178B Level A
certifications for “fly by wire” real-time aircraft
control and other flight-critical control functions. This
separation kernel is also used by the Department of
Defense in the Joint Tactical Radio System and Intel
Corporation is projected to soon ship LT for mobile
hardware. Also based on this separation kernel, Green
Hills Software has developed a proof-of-concept multi-
level secure workstation capable of running different
operating systems in parallel with strong separation
properties.

3.5. Limitations of separation kernels

Despite the strengths of separation kernels, by
themselves, separation kernels are not sufficient to
provide separation throughout the entirety of a typical
workstation. Separation kernels provide high
assurance separation of CPU behavior and memory
interactions and enforce rigorous static allocations of
timeslots of resources such as CPU time, bus
bandwidth, and memory, to help ensure that resource
contention signaling is kept to a minimum. However,
typical workstations have peripherals that must be
shared between security domains, including hard
drives, hard drive controllers, a video card, network
interface card, keyboard, mouse, and other Universal
Serial Bus (USB) peripherals. Safely and securely
sharing such resources requires careful development
and integration of software to mitigate the overt and
covert channels to and from such peripherals.

Toward mitigating the overt channels to and from
storage and communications, all content can be
encrypted. However, this leaves both covert channels
to and from such peripherals, and also covert and overt
channels to and from other peripherals such as
keyboard, mouse, and video. Keyboards and mice are
simpler cases since these devices simply relay user
input keeping very little state over time, facilitating
frequent, clean, and strong resets to trusted “clean”
states. Additionally, it might be possible to encrypt all
communications from such input devices to prevent
eavesdropping by others. In many ways, even the
covert channels to and from keyboard and mice might
be easier to manage in that masking covert channels of
a few hundred words per minute seems likely to be
simpler than masking covert channels to and from near
gigabit throughput hard drives bursting tracks off
platters spinning at thousands of revolutions per
minute.

Even if the overt channels can be fully encrypted,
mitigating covert channels to and from high speed
devices with either persistent state or strong capacity
for resource contention signaling, such as hard drive
controllers and network interface cards, requires
substantial work. Specifically mitigating such covert
channels requires integration of mitigation components
to mask timing channels, sequencing channels, provide
a layer of indirection in addressing, and mitigate other
covert channels as well. Fortunately, since the
separation kernel provides strong separation of security
domains in processor and memory, such mitigation
components can run “protected” in such a shared
processor and shared memory while mitigating the
covert channels to and from each peripheral.

It is important to note that video can be a special
case. Specifically, trusted video hardware may be
needed if untrusted security domains require the ability
to read status or other feedback related to their section
of a screen and (a) there is a requirement for video to
simultaneously display cleartext data (text, image,
video, etc.) of multiple domains or (b) the video card
cannot be adequately reset after presentation of content
from one domain and before presentation of content
from another domain. Fortunately, LT includes
hardware support for constructing trusted paths
through display adapter hardware.

3.6. Mitigation Components

As mentioned above, even if all content is
encrypted prior to being sent to a shared peripheral, the
covert channels to and from such peripherals must be
mitigated.[16] The potential approach mentioned in
the section above involves integrating strongly
protected and carefully built software components to
mitigate covert channels. Even though such mitigation
components can run protected by the separation kernel,
separation and non-interference of information from
different security domains must be maintained within
the mitigation components for any mitigation
component that interacts with multiple security
domains. Maintaining this separation and non-
interference is important for mitigation of covert
channels even if the overt channels of content are
encrypted before being read into the mitigation
component.

In other words, the separation kernel protects each
supporting compartment from interference or
tampering by other compartments, dramatically easing
formal proofs [17] that the supporting compartments
are correctly built and able to perform their necessary
functions. However, despite this help, the information
flow properties within the mitigation component must
still be verified. Interestingly, these proofs are still
necessary to preserve strict control of covert channels
even if the overt content is encrypted. Fortunately,
separation kernels can provide the high assurance
separation needed to safely and securely decompose
large components into smaller components that are
often small enough to have information flow formally
verified. This often makes formal verification of
mitigation components tractable but still non-trivial.

Also, experience in embedded systems has shown
that even though each of the supporting compartments
runs as an individual compartment for formally
verified control of leakage, these supporting
compartments have a negligible impact on CPU and
other resource utilization of the guest computing
compartments. This is because the supporting
compartments contain only exceptionally small
(trusted) components and do not require loading of
virtualization or an OS atop the separation kernel.

However, given the challenges (and tractable but
near Herculean effort) of verifying the separation
properties of the separation kernel, and given the
necessity of verifying specific properties of the
mitigation components, further attention to formal
verification techniques and their limits seems
appropriate.

4. Formal Verification

Formal verification has advantages over less
rigorous approaches to security evaluation. Formal
verification is repeatable, independently verifiable,
capable of consistent results independent of biases
among evaluators and evaluation contexts, and can
produce systems of much higher assurance. In
contrast, most of the current "Common Criteria"
approach to security evaluation depends upon
correctness of manual generation and manual review
of large volumes of text including security targets,
objectives, configuration guidance, and threat
environments that are susceptible to human error,
susceptible to differing interpretations and differing
judgement, and neither mechanically provably correct
or formally verifiable. Malicious adversaries with
billions of dollars of resources available to them to
compromise computing systems seem capable of
finding flaws that escape manual analysis but are
revealed through mechanical analyses seeking to prove
security or insecurity of a system. Such issues have
long been a concern for organizations facing such
adversaries. However, as organized crime masses
billions upon billions of dollars of damage to
legitimate businesses and unsuspecting consumers
through identity theft and intellectual property theft,
knowingly or unknowingly more parties face such
adversaries every year.

Formal verification has other advantages over
textual common criteria. Among these, formal
verification includes proofs of completeness, and, if
the theorems are well formed, formal checking can be
done very quickly.

Admittedly, formal verification often requires large
volumes of manually written and human readable text
to explain the proofs and what is being proven.
However, the proofs themselves can be mechanically
verified for correctness.

Unfortunately however, fixing all issues revealed
by formal verification to build a provably correct
system is still a painstakingly slow process. Also, the
process of carefully formulating the theorems needing
proof can also be a painstakingly slow process. More
importantly, technologies for formal verification do not
yet scale to support verification of absence of all
possible flaw types for systems as large as modern
operating systems with Pentium class microprocessors
and related chipsets. Verification of Pentium class
chips is currently done piecewise with theorem
proving technology derived from government research
investments made decades ago, most commonly A
Computational Logic and Applicative Common LISP

(ACL2).[18] However, just as the modular
architecture of modern microprocessors facilitates
piecewise formal verification of each module
independently, the formally verified separation
properties of a separation kernel facilitate formal
verification of each of the higher level compartmented
components individually.

4.1. Accelerating Evaluation

Given that developing a formally verified high
assurance system such as an ACL2 verified system or
an Common Criteria Evaluated Assurance Level
(EAL) 7 system is a slow process, how much faster is
the development of slightly lower assurance systems?

Obviously systems with much lower assurance, and
systems without semi-formal, mechanical, common
criteria or any thorough evaluation of any form are
much faster to develop. So, a more important question
seems to be, “How much slower is the development of
formally verified systems relative to the development
of slightly lower assurance systems?” Specifically,
this could be asked in comparison of EAL 6+ or EAL
7 systems to EAL 4 or EAL 5 systems. The difference
in cost and calendar time for evaluating otherwise
similar systems at differing EAL levels is an average
factor of two (2) for systems being evaluated at two
levels apart with evaluation of an EAL 4 system
averaging $250,000 over an average of sixteen (16)
months, not counting development.[36] This
practically guarantees that using a meaningfully
evaluated system requires using systems that are
outdated by a year or more and that effectively
evaluating the many patches and updates for most
current commercial and open source software is
practically infeasible.

In this context, the deeper and more important
questions seem to be, “why,” and “to what degree can
this be changed.” EAL 4 and EAL 5 evaluations are
considered expensive and time consuming because of
the costs and delays associated with the manual nature
of generating and reviewing the volumes of
documentation. This manual process of generating and
reviewing artifacts has helped give the current
common criteria process a reputation for producing
evaluation results that are both late and overly costly.

In contrast, formal verification is slow because
formulating the theorems is a slow and careful process,
and because fixing all of the issues revealed by formal
verification requires painstakingly careful effort.

However, once the theorems are formulated
properly specifying the properties desired to be
verified as correct, actually mechanically proving or

disproving the theorems is a relatively fast and
relatively easily repeatable process.

This speed of verification is a particularly important
point where the security critical requirements of a
kernel or component do not change much if at all over
time, even as the kernels and components themselves
evolve. In this sense, once the overhead of
establishing the framework for formal verification has
been established, the assurance of a modified system
can actually be verified much more quickly, not to
mention much more reliably, through formal
verification than through other verification techniques.

This seems counter-intuitive.
However, the micro-processor industry benefited

directly from this advantage. Once the framework was
established for formally verifying micro-processors,
not only did the probability of a flaw escaping
detection decrease, but the time required for
verification of chips was decreased. Unfortunately
however, although it might be possible to realize such
advantages in separation kernels and smaller
components, realizing such advantages on broader
classes of software systems will require increasing
scalability of formal verification techniques.

4.2. Challenges in scaling formal verification

Scaling represents the singular hard problem in
applying theorem proving to modern software systems.
Experiences show that: specifications, the scale of
executable model, and the verification proofs all scale
roughly linearly with the size of the system being
evaluated, where "size" is often measured in a count of
transistors or logical gates. However, as hardware has
been growing exponentially as a function of transistor
density in keeping with Moore's Law, software has
been growing exponentially in response to the
available computing power. To verify systems of the
desired scale, much work must be done in (a)
improving performance of model verification such that
it completes in reasonable time for systems of the
desired scale, and also in (b) creation of tools to
facilitate more rapid specification of Theorems and
Lemmas relevant to desired behavior.

It is important to note that it is not currently known
if such improvements in scalability of formal
verification can be achieved. However, each good
inch of progress in scaling formal verification can
increase the variety and types of software systems that
can have their security critical properties verified to be
correct, and also increases the scale of performance
optimization that can be accomplished within formally
verified components without increasing risk that such
optimization violates desired security properties.

However, even if scalability of formal verification
is increased dramatically, it seems likely that
functional needs will always require software with
functionality whose complexity is beyond formal
verification, regardless of whether the functional needs
are operational, mission, business, or consumer needs.
In such cases, it might make sense to bound the risks
of using such software as tightly as possible through
tightly constraining such software in a segregated
compartment. However, mission, business, and
consumer needs may also require a number of such
software packages to work together in a single security
domain. In such cases, it could be very valuable to
understand the types and degrees of risk each software
package imparts on the others.

5. Defect Density

To estimate the types and degrees of risk each
software package imparts on other software packages
in such cases, we propose leveraging emerging
techniques in model checking and binary analysis to
improve software defect density estimation.[19] The
closest analogy in other fields of engineering seems to
be that it is not always possible or feasible to
effectively non-destructively test and verify the quality
of each cubic inch of all materials going into a large
physical construction. However, some materials have
an acknowledged probability of a defect that might
only demonstrate itself in extended operation. When
such probabilities are known, balanced construction of
higher reliability structures is possible. In software,
the pre-release defect density predicted from static
analysis and the actual pre-release defect density are
strongly correlated at a high degree of statistical
significance.[37] Using such analyses to estimate risks
several advantages, limitations, and dangers when
applied to software and computer security.

Analyzing software to estimate the number of
residual flaws, bugs or vulnerabilities has several
advantages. First and foremost, such information is
useful in assessing relative risk in deploying new code
into sensitive environments. Second, if all of the
known residual vulnerabilities are secretively
monitored through techniques such as vulnerability-
specific and exploit agnostic monitoring techniques,
[20, 21] then having an estimate of the number of
unknown residual vulnerabilities provides a measure of
confidence that if there is an attempt to exploit a
residual vulnerability that the attempt might be
detected.

However, there are several dangers in
oversimplifying the “measure” of confidence toward a

“probability.” Primarily, unlike natural faults which
have a natural distribution, the malicious behavior of
more sophisticated and better resourced adversaries is
often biased toward the vulnerabilities which are more
difficult to discover.

5.1. Steps toward estimating defect densities

Tools for the detection of vulnerabilities in code
have improved significantly from finding “no”
vulnerabilities at livable false positive rates to
detecting substantial fractions of vulnerabilities at
livable false positive rates. However, at the same time
software is continuing to grow in both scale and
complexity. Overall, software defect detection has
improved tremendously from code reading and
functional testing.[22]

With progress of model checking [23, 24] and other
areas of static and dynamic software analysis, tools
such as those distributed by Coverity and Fortify now
scale to effectively analyzing millions and tens of
millions of lines of code. This progress also includes
lowering false positives from hundreds of false
positives per true positive to a level where false
positives and true positives are roughly equal while
dramatically increasing the number of bugs found and
breadth of types of bugs found. Experience annually
evaluating several competing tools has shown that the
best current tools now find about 30% of the inherent
vulnerabilities while reporting only one false positive
per true positive, even in scaling to systems involving
millions of lines of code, and are capable of enabling a
single person to effectively analyze millions of lines of
code in a single week.

Unfortunately however, the performance
described above is performance in analyzing source
code, and the process of translating source code into
machine-code level instructions of executable code can
introduce devastating faults. For such reasons, an
ability to perform effective model checking on
practical binaries could be very important.

Fortunately, there has been progress toward model
checking on practical binaries. The general approach
is to extract an “intermediate representation” (IR) from
the executable code. Such IR are neither source code,
nor executable code. Instead, such representations
attempt to infer the source-code constructs which
originated specific patterns in the executable code.
However, such constructs can be represented while
preserving the precise underlying machine code
mechanics of the implementation without any of the
“loss of fidelity” associated with generalizing to source
code. In this context, effective and scalable IR

extraction are needed, and model checkers need to be
ported to run atop extracted IR.

There has been tremendous progress in extracting
IR from binaries through several techniques, including
Aggregate Structure Identification, Affine-Relation
Analysis, and Value Set Analysis.[25, 26, 27, 28, 29].
Without sacrificing fidelity, the completeness of IR
extraction is slowly growing toward a completeness
suitable for model checking. However, none of the
existing highest fidelity IR extraction techniques scale
to the size of programs that can be analyzed with
leading source analysis tools.

This is particularly unfortunate in that model
checking on binaries can not only find bugs not
appearing in source code, but analyzing binaries can
also determine which reported “bugs” were in fact
optimized away by the compiler.[30] Analyzing
binaries also has several other advantages as well,
including: [30]
- Ability to analyze code when source is not available,
- Verifying assumptions such as ANSI-C compliance,
- Analyzing compiler and post-compiler optimizations,
and
- Analyzing inline inclusions of assembly code.

For these reasons, simply analyzing the source
code seems insufficient for gauging the trustworthiness
of a compiled program. In this context, the desired
progress in improving completeness of IR extraction
and improving scalability of IR extraction techniques
as described above seems very important. If such
“model checking of binaries” could be made possible,
then it might be possible to substantially improve
accuracy in estimating the number of unfixed flaws or
bugs within a given binary. Given the rate of progress
in this area, it seems possible and perhaps even likely
that such goals will be reached in research within a few
years, assuming government sponsorship of such
research continues. In interim, various forms of static
analysis in source code including model checking and
taint analysis can be used to enhance testing of
executable binaries.[31] However, given that testing
and dynamic analysis do not necessarily provide full
coverage, or always fully explore the corner cases
more likely to be error prone, integrating such model
checking into the binary analysis suite still seems
valuable.

It seems unlikely that any tool will be able to find
all vulnerabilities in software of size and complexity
beyond formal verification with a thoroughness of
theorem provers such as ACL2. For this reason, the
best that should be expected from analysis of such
software is an estimate of the number of residual bugs,
flaws, and vulnerabilities in the software remaining to
be fixed, and an incomplete list of specific potential

bugs, flaws, and vulnerabilities that might need to be
fixed. Over time, applying analysis tools and
techniques to well studied code bases with a number of
bugs, flaws, and vulnerabilities discovered through
other techniques, it should be possible to begin
estimating the false negative rates of such tools and
analytic techniques along with ratios of false negatives
to true positives and false positives across ranges of
conditions. This facilitates better estimating the
number of residual flaws, bugs, and vulnerabilities in
new code on first analysis, even if the specific false
negatives cannot yet be identified in the new code.

Such techniques for quickly applying a set of tools
to a previously unseen piece of software to estimate the
degree to which it might be safe to trust the software
provide a potentially complimentary alternative to
trusting the developer’s estimates of defect density.
However, where developer’s may be trusted and their
accuracy verified over time, techniques of process
measurement can be very helpful where the developers
track the time and phase that each defect is found and
project forward the number of defects left to be found
in the future.[32]

6. Transitive Risks

Systems have edges and interfaces. Even with
strong separation of separation kernels and
cryptographic separation, most security domains must
interface other security domains. With risk measured
so carefully within an isolated domain, how can we
begin to measure risk for systems that are isolated
except for a finite number of closely studied
interfaces?

We discuss both human-machine interfaces and
interfaces between security domains. We begin with
human-machine-interfaces since the cases of wittingly
or unwittingly allowing a malicious adversary direct
logical, physical, and/or lifecycle access to a system
provide points of origin for coordinated or
uncoordinated malice, even if layers of protective
domains exist between origin and potential targets of
malice. Given the challenges of lifecycle access,
critical unsolved aspects of lifecycle access are
discussed last.

Most large scale systems at least have an interface
to a number of people. Where more than one person
shares a system, the motives and capabilities of other
people are never certain. Psychologists and counter
intelligence staff may reason on motives, and
malicious capabilities are only rarely known with high
certainty. However, worst case estimates of

capabilities may be useful in developing conservative
estimates of a system’s resilience to malice.

Each user may access a surface of the system and
most users may inject a volume of data into the system,
extract a volume of data from the system or both. The
injection may be monitored and may even be filtered.
Whenever a party has access to a shared security
domain, the risk to the other party is practically
unbounded, unless all input can be effectively filtered.

If the appropriate properties can be proven for a
system’s handling of input, then it might be sufficient
to fully consider the input effectively filtered.
However, for systems of a scale and complexity where
such proofs are not possible, it may be appropriate and
necessary to estimate whether or not there exists a
defect that is reachable by the input. Such estimates
might depend heavily on defect density estimation,
size and complexity of input types to be received, and
estimates of the amount of code that might be
reachable by the input where such estimates could be
done through dataflow analysis [33], slicing, [34], or
improved forms of slicing

Vulnerabilities in jpeg rendering and libraries for
simply playing audio files represent excellent examples
of how incredibly common data types can be
sufficiently complex for real trouble. As a more
extreme example, where the surface, volume, and
filtering of a party’s access to a shared system permits
them to introduce arbitrary code without strong
separation of the code from the other party’s interests,
it would be conservative for the other parties to
consider the domain compromised. Injecting arbitrary
code into a shared domain may be as simple as the
unrestricted ability to copy a file from a physical
interface that accepts memory sticks, or a sufficiently
large and ineffectively checked entry via a logical
interface into an electronic form.

However, with the advantages of secure
virtualization based on increasingly secure hardware,
the size of a domain may be a small share of a single
physical machine, span many physical machines, span
several shares of a single machine, or span several
shares of several machines. In each case, if there is not
strong separation of one party’s code from another
party’s interests, it is reasonable to suspect the domain
might be compromised.

This brings us to interfaces between security
domains. As with human-machine interfaces,
interfaces between security domains have a surface,
permit a volume of content to flow, and a security
domain may attempt to process input to effectively
filter anything potentially malicious. As above, if
input is permitted to arrive via the interface without
effective checking, the domain should be considered

compromised by the input. As above, “effective” is
defined as either fully proven to be effective, or
estimated through estimates of whether or not there
might exist a defect that might be reachable by the
input.

 As above, permitting injection of arbitrary code
should be considered to compromise the security
domain. By “code” we mean “executable instruction.”
In formally verified systems it might be possible to
strongly differentiate between code of the system that
is immalleable and proven to behave properly for all
data, and the data which is processed by the code and
proven to not be permitted to change behavior of the
code or configuration of the environment in any risky
ways. In other cases, we begin down the slippery
slope of analyzing the range of data that might be
received across interfaces, and estimating the potential
for some input to reach a defect. If such input is able
to directly or indirectly reach a defect, such defects
might permit either triggering of instructions,
translation of data into executable code, or changing
behavior of the code or configuration of the
environment in risky ways. Any calculus for
extracting probabilities or risks from such a model
should recognize that well resourced adversaries study
a system until they find a suitable vulnerability. In
such cases, the question is not the probability of a
random adversary finding a vulnerability, but rather
the question of “what level of resources are necessary
to find such vulnerabilities.”

 In that context, attempts to increase verifiability of
systems then drives systems architectures toward
sequences and meshes of much smaller domains with
strongly controlled interfaces. These domains might
often be as small as possible to at least have the
estimated risk minimized and at best have their
properties effectively provable. For example, perhaps
a single physical server might have one domain storing
a set of web pages which the server-daemon domains
may only read. Perhaps only the author’s clearly
separated domain would have permissions to modify
the page storage domain. To ensure that no user
interferes with a server-daemon serving another user, a
new server-daemon domain and new server-daemon
could be instantiated for each new address visiting the
server, each server-daemon domain could spawn input
processing domains for filtering data submitted via
forms interfaces, and the filtering of any input could be
done through a series of domains structured for
decomposing and analyzing the input with each
domain small enough to have provable properties.
Filtered data could be read into transaction processing
domains, and resource utilization could be monitored
from a transaction management domain with all of the

protected components and interfaces small enough and
simple enough to have provable properties.

The performance impact of fragmenting a server
into such “micro-domains” and instantiating such
redundancy are likely impractical for most if not all
applications today. However, with the cost of annual
damages from identity theft and intellectual property
leakage climbing exponentially, the number of life
critical applications of computing climbing
exponentially, system performance climbing
exponentially, and the value of transactions entrusted
to computing likely to eventually near “the entire
economy,” this may not always be the case.

6.1. Lifecycle Access and Transitive Risks

In the scheme described above, arbitrary code is
greatly distrusted unless its properties are proven, and
interfaces are closely monitored for anything with
sufficient complexity as to introduce risks. However,
teams of people routinely write large volumes of code
in scale well beyond formal verification, and this code
is injected routinely into many organizations around
the world. Subtle bugs planted by malicious
developers evade defect detection, [35] and statistics
on defects do not accurately capture the harm that can
be done if there is collusion between a malicious
developer and a party with direct or indirect access at
run time. This may drive development of some types
of applications toward formally verifiable scales, but it
is uncertain that all critical applications can ever be
reduced to such scale, even if there is progress in
scalability of formal verification. Perhaps it might
always be the case that if you buy something
incredibly complex from someone wanting to hurt you,
you might get hurt, badly. Perhaps some problems are
beyond technology. However, when I consider the
range of woes that can be stopped through stronger
separation of information at rest, in transit, and in
processing, when I consider the range of woes that can
be addressed by beginning to quantify and reduce risk
in software, and when I see such progress in binary
analysis, separation kernels, and hardware support for
secure virtualization, I grow optimistic that we might
see a path emerging that might take us a long way
toward safer and more secure computing.

 7. Engineering Sufficient Security

Best practices currently involve adding security
technology into or around computing systems designed
to function with or without security technology.
Examples of such security technology include

firewalls, intrusion detection, antivirus, antispyware,
and antispam. However, it is difficult to measure the
security of the resulting architecture, and difficult to
measure whether risk is increasing or decreasing as
complexity of the network and sophistication of
defenses increase somewhat in parallel. Also, it is
difficult to make claims much beyond protection of
known vulnerabilities.

An alternative approach might be to create a
foundation which can provide provably strong security
where all information is encrypted in transit or storage,
and protected by provably correct enforcement of
separation properties whenever exposed for
processing. In such an architecture, where information
must cross from one security domain to another, it
might be valuable to have a measure of the risks the
information was exposed to while being processed in a
cleanly separated compartment. These risks include
the people and potential software bugs, flaws, and
vulnerabilities that the information was exposed to,
and through various static and dynamic analysis
techniques which are continually improving, it should
be possible to have effective measures of such risks.
With measurable risk and such strong and flexible
means of bounding risk, it becomes possible to
develop coherent risk reduction plans.

The level of security needed may vary greatly with
value or sensitivity of information. However, as
consumers face identity theft, and businesses face
losses of billions of dollars, it seems that such
measures of risk and such a strong foundation might
find broad usage.

8. Acknowledgements

I would like to thank Darrell Kienzle of Symantec
Research Labs, Nic Watson of Green Hills Software,
and Warren Hunt of the University of Texas at Austin
for their substantial and invaluable contributions to this
paper. I would also like to thank Carey Nachenberg,
Tom Haigh, Darren Shou, and Chris Wysopal for their
critique, suggestions, and very helpful
recommendations. The best parts are theirs, and the
rest are mine.

9. References

[1] John Rushby, Kernels for Safety? in Safe and Secure
Computing Systems, chapter 13, pages 210–220. T.
Anderson, editor, Blackwell Scientific Publications, 1989.

[2] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D.
Boneh, Terra: A Virtual Machine-Based Platform for Trusted

Computing, Proceedings of the 19th Symposium on
Operating System Principles, October 2003. Proceedings of
the nineteenth ACM Symposium on Operating systems
principles, pp. 193-206.

[3]Meushaw , et al., Device for and method of secure
computing using virtual machines, United States Patent
6,922,774, Awarded July 26, 2005, Assignee: The United
States of America as represented by the National Security
Agency (Washington, DC), Application No.: 09/854,818
Filed: May 14, 2001

[4] NetTop: Technology Profile Fact Sheet,
http://www.nsa.gov/techtrans/techt00011.cfm

[5] INTEGRITY PC Secure Virtualization Solution for
Linux and Legacy Applications,
http://www.ghs.com/products/rtos/integrity_pc.html

[6] U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness,
Version 1.0. Information Assurance Directorate, National
Security Agency

[7] D. Greve, M. Wilding, and W. M. Vanfleet, “A
Separation Kernel Formal Security Policy”, Fourth
International Workshop on the ACL2 Prover and Its
Applications (ACL2-2003), Boulder, CO, July 2003.

[8] P. Barham, B. Dragovic, K. Fraser, S.Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, A. Warfied, Xen and the Art of
Virtualization, Proceedings of the 19th Symposium on
Operating System Principles, October 2003.

[9] VMM Software Architecture Options,
http://www.intel.com/technology/itj/2006/v10i3/2-io/3-vmm-
software-architecture.htm

[10] Intel Virtualization Technology for Directed I/O
Architecture Specification, Intel Corporation, D51397-001,
February 2006.

[11] Trusted Platform Module Main. Part 1 Design
Principles, Specification Version 1.2, Revision 94, Trusted
Computing Group, March 2006.

[12] J. S. Robin and C. E. Irvine, Analysis of the Intel
Pentiums Ability to Support a Secure Virtual Machine
Monitor, Proceedings of the 9th Usenix Security
Symposium, XP002247347, Denver, Colorado, pp. 129–144,
Aug. 14, 2000.

[13] Kevin Lawton, Running multiple operating systems
concurrently on an IA32 PC using virtualization techniques
available at
http://www.floobydust.com/virtualization/lawton_1999.txt

[14] LaGrande Technology Preliminary Architecture
Specification, Intel Corporation, May 2006.

[15] INTEGRITY-178B Separation Kernel Security Target,
Green Hills Software, 2005.

[16] Partitioning Communication System Protection Profile,
Objective Interface Systems, 2005.

[17] J. Rushby, Design and Verification of Secure systems,
Proceedings of the 8 th ACM Symposium on Operating
System Principles, Pacific Grove, California, 14-16
December 1981.

[18] Matt Kaufmann, J. S. Moore, ACL2: An Industrial
Strength Version of Nqthm, Compass'96: Eleventh Annual
Conference on Computer Assurance, 1996.

[19] Security Vulnerabilities in Software Systems:
A Quantitative Perspective, O. H. Alhazmi, Y. K. Malaiya
and I. Ray, Colorado State University,
http://www.cs.colostate.edu/~malaiya/635/IFIP-
10.pdf#search=%22%22software%20defect%20density%20e
stimation%22%22

[20] Carey Nachenberg, Generic Exploit Blocking, Virus
Bulletin, February, 2005.

[21] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and
Alf Zugenmaier,,Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits
In the Proceedings of ACM SIGCOMM, August, 2004,
Portland, OR.

[22] C. M. Lott and H. D. Rombach, Repeatable software
engineering experiments for comparing defect-detection
techniques, Journal of Empirical Software Engineering, 1(3),
1996.

[23] Engler, D., D.Y. Chen, S. Hallem, A. Chou, and B.
Chelf.. Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code, In SOSP 2001. 2001.

[24] Chen, H., D. Dean, and D. Wagner, Model Checking
One Million Lines of C Code, In Symp. on Network and
Distributed Systems Security (NDSS), 2004.

[25] Ramalingam, G., J. Field, and F. Tip, Aggregate
Structure Identification and Its Application to Program
Analysis, In POPL 1999.

[26] M. Karr, Affine relationships among variables of a
program, Acta Informatica, 6:133--151, 1976.

[27] Müller-Olm, M. and H. Seidl, Interprocedural Analysis
of Modular Arithmetic, in ESOP. 2005.

[28] Müller-Olm, M., H. Seidl, and B. Steffen,
Interprocedural Analysis (Almost) For Free, in ESOP. 2005.

[29] Codesurfer/x86-a platform for analyzing x86
executables, in R. Bodk, editor, CC, volume 3443 of Lecture
Notes in Computer Science, pages 250--254.

[30] Reps, T., Balakrishnan, G., and Lim, J, Intermediate-
representation recovery from low-level code, in Proc.
Workshop on Partial Evaluation and Program Manipulation
(PEPM), (Charleston, SC, Jan. 9-10, 2006).

[31] Michael D. Ernst, Static and dynamic analysis: Synergy
and duality, in WODA 2003: ICSE Workshop on Dynamic
Analysis, (Portland, OR), May 9, 2003, pp. 24-27.

[32]Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf,
A., Best Practices in Software Measurement, How to use
metrics to improve project and process performance; 2005,
XII, , Hardcover ISBN: 3-540-20867-4 .

[33] Reps, T., Horwitz, S., and Sagiv, M., Precise
interprocedural dataflow analysis via graph reachability. In
Conference Record of the Twenty-Second ACM Symposium
on Principles of Programming Languages, (San Francisco,
CA, Jan. 23-25, 1995), pp. 49-61.

[34] Mark Weiser. "Program slicing," IEEE Transactions on
Software Engineering, vol. SE-10, no. 4, July 1984.

[35]Ken Thompson, Reflections on Trusting Trust,
Communication of the ACM, Vol. 27, No. 8, August 1984,
pp. 761-763.

[36] United States (US) Government Accountability Office
(GAO) report GAO-06-392, “INFORMATION
ASSURANCE: National Partnership Offers Benefits, but
Faces Considerable Challenges,” March, 2006.

[37] Nachiappan Nagappan, and Thomas Ball, Static
Analysis Tools as Early Indicators of Pre-Release Defect
Density, Proceedings of the 27th international conference on
Software engineering, St. Louis, MO, USA, Pages: 580 –
586, May, 2005, ISBN:1-59593-963-2

