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Abstract

We propose an architecture of four complimentary 
technologies increasingly relevant to a growing 
number of home users and organizations: 
cryptography, separation kernels, formal verification, 
and rapidly improving techniques relevant to software 
defect density estimation.  Cryptographic separation 
protects information in transmission and storage.   
Formally proven properties of separation kernel based 
secure virtualization can bound risk for information in 
processing.  Then, within each strongly separated 
domain, risk can be measured as a function of people 
and technology within that domain.  Where hardware, 
software, and their interactions are proven to behave 
as and only as desired under all circumstances, such 
hardware and software can be considered to not 
substantially increase risk.  Where the size or 
complexity of software is beyond such formal proofs, 
we discuss estimating risk related to software defect 
densities, and emerging work related to binary 
analysis with potential for improving software defect 
density estimation. 

1. Introduction, purpose, and motivation 

Perfection is not often tractable in real systems, and 
there are no silver bullets in the increasingly high-
stakes move-counter-move game titled “Computer 
Security.”  However, it is still possible to continue 
making systems increasingly stronger, and it should be 
possible to make systems strong enough to effectively 
neutralize broad categories of malicious actors seeking 
to break or subvert computer systems.  It might even 
be possible to create technology effectively 
neutralizing so many malicious actors that the number 
remaining are so few that national and international 
efforts above and beyond technology might be 
effective in neutralizing them.  However, even if such 
progress might be tractable, such progress is a long 

distance from the exponentially growing billion dollar 
per year problem of online identity theft, a long 
distance from fifteen terabytes of information taken 
from a single military network, and a long distance 
from today’s multi-billon dollar problem of intellectual 
property leakage.

1.2. Outline of paper 

Cryptography stands among the oldest and strongest 
techniques for protecting information.  However, 
effective deployment can be challenging and 
cryptography is not without limits.  Strengths 
challenges and limitations of cryptography are 
reviewed quickly in Section 2.  Because information 
often must be decrypted and exposed for processing to 
be processed effectively, most techniques for 
protecting information in processing involve 
separating the exposed information from other 
information and other factors so that the information is 
exposed to only a limited set of threats.  These 
techniques are discussed at length in Section 3. 
Separation Properties where the paper describes 
advantages of separation kernels.  These advantages 
apply to permanent domains of intranets, extranets, 
safety critical systems, the open Internet, personal 
domains for finance, friends and family, and the many 
ad hoc domains necessary for managing national scale 
emergencies, and international collaboration managing 
natural disasters and transnational threats.    
Additionally, because these separation properties are 
critical to protecting information in scalable systems, it 
may be useful to verify the separation properties 
through formal verification techniques.  These 
techniques, their limits, and the arguments for formal 
verification are discussed at length in Section 4.  
Formal Verification.  Unfortunately, the most thorough 
formal verification techniques do not currently scale to 
formal verification of all properties of all systems.  In 
fact, given scale and complexity of most software 
systems today, with the full functionality and 
complexity often necessary to meet “mission,” 



“operational,” “business,” or “consumer” needs, the 
most thorough forms of formal verification do not even 
scale to the size of most software systems today.  For 
this reason, we consider other approaches for gauging 
the degree to which such large and complex software 
satisfies security requirements.  The other approaches 
considered include lighter forms of formal verification 
and other evaluation techniques, such as testing.  
Specifically, in Section 5, the paper proposes to 
leverage emerging research in model checking and 
binary analysis to improve software defect density 
estimation, and describes some of the limits and 
dangers in using such a gauge.  Section 6 proposes a 
framework for reasoning about transitive risks between 
security domains that are strongly separated through 
cryptographic separation and separation kernels except 
for carefully specified interfaces, and Section 7 
provides a summary.  

2. Cryptography: advantages and hurdles 

Where utilized effectively, strong cryptography has 
long provided sufficient security for transmission and 
storage of information.  However, it is not yet 
pervasive in protection of valuable information for 
several reasons.  Infrastructures for managing a large 
number of cryptographic keys are generally 
cumbersome and expensive.  Encrypted information is 
hard to search, and any fragility of the key 
management infrastructure can have a strong impact on 
the recoverability of information.  Cryptography 
burdens the system with performance impact.  Also, 
encrypted communications and encrypted storage 
provide negligible value when the information is 
readily taken from relatively weak operating systems 
whenever exposed for processing.  However, with the 
emergence of high assurance separation kernels [1, 7] 
as described in Section 2.0, and continued growth of 
excess performance capabilities of hardware, many of 
these concerns are diminishing. 

However, cryptography has profound advantages. 
Cryptography not only protects secrecy of information 
in storage and transmission, but cryptography may also 
be used to protect the integrity and availability of 
information in storage and transmission.  Clearly 
cryptography helps protect the integrity of information 
when cryptographic keys are needed to modify 
information without the tampering being immediately 
obvious.  Also, because cryptography allows relatively 
secure use of untrustworthy storage, cryptography can 
be used to relatively safely replicate information into a 
larger number and wider variety of less trustworthy 
storage sites.  In this manner, cryptography can 
increase the probability of confidential information 

retrieval in the wake of natural faults, and also increase 
the number of malicious actors required to collude to 
deny information retrieval.  Similarly, cryptography 
can be used to increase availability of communications 
by increasing the number and diversity of 
communication paths available.  In these ways, 
cryptography can be used to protect secrecy, integrity, 
and availability of information in transmission and 
storage. However, protecting information exposed for 
processing is a different matter entirely.   

3. Separation Properties 

As mentioned above, protecting information 
exposed for processing is quite different from 
protecting information in storage or transmission, and 
most techniques for protecting information in 
processing involve separating the exposed information 
from other information and other factors so that the 
information is exposed to only a limited set of threats.  
Traditionally, several techniques have been used to 
maintain the separation desired to protect information 
in processing.  These include: 

a) Labor-intensively attempting to establish and 
maintain networks that have no connectivity 
with other networks.  Information within the 
network is exposed to threats from all other 
network participants, but theoretically the threat 
should be bounded to the participants of the 
“isolated” network.  However, in practice most 
commonly, strong mission, operational, 
business, or consumer needs exist to connect 
these networks to other networks, invalidating 
the assumptions of bounded risk. 

b) This connectivity between “otherwise isolated” 
networks is often established through a 
restricted set of protected “guards” that serve as 
a gateway from one network to another.  This 
focuses the problem of controlling separation 
into a limited number of machines, and it is very 
common to use techniques of (c) and (d) to 
maintain such separation.  However, anytime 
bits flow across boundaries, the overt and covert 
channels introduce transitive risks that are hard 
to manage because they directly violate the 
desired separation.  Even if the overt and covert 
channels are small, the risk can be very large, 
particularly if software is being added or 
updated in the protected network in large or 
frequent increments from potentially 
compromised software development lifecycles.  
Furthermore, like a large balloon, where 
relatively high volume guards protect relatively 



large networks, a single pin-prick mistake in the 
sealing of the large network can allow very 
large volumes to be exfiltrated from the breadth 
of the network over time.  This argues for 
smaller security domains with stronger internal 
protections so that a flaw in one corner of the 
network does not devastate all participants. 

c) Several techniques attempt to monitor 
information as it is being processed in a shared 
computing environment to ensure that bits of 
information do not influence each other, even if 
the bits of information exist in a shared 
environment such as a shared processor, shared 
memory, or other shared resource.  These 
techniques include tainting, sandboxing, and 
monitoring the operating system (OS) to ensure 
applications aren’t tampering with the OS.  
More broadly, these techniques include many 
types of current host based intrusion detection, 
intrusion prevention, antivirus, anti-spyware, 
and kernel integrity monitoring. However, many 
of the arguments for the integrity and 
trustworthiness of these techniques are based on 
unproven and potentially invalid assumptions 
about the integrity of the underlying OS, 
hardware, and protections afforded by the 
hardware and OS.  Some of the techniques 
which do not make such assumptions are 
described in Sections 3.3 and 3.6. 

d) Last, where machines must participate in 
multiple security domains, either as guards or as 
workstations facilitating end-user participation 
in multiple security domains, use of 
virtualization is an active area of research to 
facilitate a physical machine hosting multiple 
virtual machines with each virtual machine 
isolated from the other virtual machines and 
participating in a different security domain.  [2, 
3, 4, 5] Given the limits and dangers of the other 
approaches described above, this approach and 
the path for improving it are foci of this paper.  
This approach has the potential to offer security 
greater than the approaches described in (c), 
security improving to rival (a), particularly 
given the risks from “workarounds” and 
“sneakernet.”  Moreover, the flexibility of this 
approach can dramatically exceed the flexibility 
of  (a),  exceed the flexibility of (b), and rival 
the flexibility of (c). 

3.1. Hypervisors and separation kernels 

Virtualization based on separation kernels [6, 7] 
has tremendous advantages over the hypervisor [8 , 9] 
approach currently being pursued with Linux and 
Microsoft operating systems.[2, 8]  Before describing 
the differences between hypervisors and separation 
kernels and advantages of separation kernels over 
hypervisors, it is important to note first that separation 
kernels do not provide the virtualization for full 
functional operating systems to run directly atop the 
separation kernel. However, virtualization can be built 
cleanly and severably atop the separation kernel and 
below the guest OS, and virtualization constructed in 
that manner can provide full virtualization for full 
functional operating systems to run with their full 
functionality.[5]  Unlike para-virtualization, this can be 
done without requiring modification of the guest 
OS.[10]  This has been demonstrated by Green Hills 
Software.[5]  Such clean segregation of virtualization 
code from the code enforcing separation properties 
enables a dramatically smaller Trusted Computing 
Base (TCB), often with a security critical codebase that 
is smaller than 10,000 lines of code, and solidly 
evaluatable through formal verification. In contrast, 
monolithic hypervisors, even “micro” hypervisors  
such as VMware entangle the virtualization and 
separation properties into codebases that most 
commonly near a hundred thousand lines of code, and 
lack clean segregation of any TCB within that 
codebase. In contrast, the separation kernel is roughly 
between 200kb and 500kb.  It is important to note that 
the security properties of some but not all separation 
kernels have been formally verified, and depending 
upon a separation kernel whose security properties 
have not been verified may have hidden risks.  The 
security strength of formally verified separation 
kernels is the primary advantage of separation kernel 
based virtualization over hypervisors.  However, 
separation kernel based virtualization additionally has 
several other advantages over hypervisors.

In addition to introducing less security risk, 
separation kernel based virtualization can also provide 
greater functionality. For instance, because the 
virtualization for each virtual machine is separated by 
the separation kernel from the virtualization underlying 
the other virtual machines, separation kernels naturally 
support parallel virtualization of different hardware 
simultaneously.  In other words, on a single arbitrary 
x86 or ARM hardware platform, separation kernels can 
simultaneously support x86, ARM, SPARC, and other 
virtual machines.  Admittedly, at times this must be 
done through emulation with substantial performance 
penalties but without requiring modification of 



executable code including operating systems that 
would run natively on those hardware platforms.  This 
can substantially reduce the costs of porting software 
and facilitate safe migration from aging legacy 
hardware platforms. 

Also, because the software for enforcing separation 
is cleanly segregated from the software for providing 
virtualization, separation kernels naturally facilitate 
creation of many small and lightweight partitions 
where software may run at native speeds within the 
constraints and strong protection of the separation 
kernel but without the substantial overheads of 
virtualization.  This is critical for efficiently providing 
strong separation and protection of down-graders, re-
graders, cryptographic components, and components 
for mediating covert channels in communications with 
shared devices such as hard drives and network 
interface cards, and protecting those components from 
untrusted partitions of untrusted security domains 
which users must access while their machine also hosts 
such trusted components.  In such an architecture 
based on separation kernels, those many components 
can run safely and relatively securely at native speeds 
without the overhead of virtualization.  By contrast, in 
a hypervisor based architecture, each component 
would either be required to run with the overhead of 
virtualization where the burden of the virtualization 
vastly exceeds the burden of the component itself, or 
they would be required to run outside the hypervisor 
where they would run without benefiting from even the 
softer assurance of separation provided by the 
hypervisor. 

Last, most hypervisors have little functionality for 
controlling communications between the “partitions” 
they separate.  In contrast, because separation kernels 
provide strong separation among these partitions, bi-
directional and uni-directional communications 
between partitions can be permitted through 
specification of simple policies of who is permitted to 
read from whom. 

In summary, separation kernels not only provide 
stronger separation between security domains forced to 
coexist on the same hardware, but separation kernels 
also provide high assurance protection of other 
technologies critical for effectively protected and 
controlled collaboration between domains in very large 
networks.  Moreover, separation kernels provide high 
assurance protection for these technologies even while 
easing their deployment. These other technologies 
include kernel integrity monitors; release review 
components; and well separated instances of strong 
software based cryptography, with each instance 
appropriately supporting a different single 
classification level (or specific directional pair of 

classification levels) and each instance appropriately 
protected from the untrusted software existing within 
that classification domain.  Moreover, not only does 
the separation kernel facilitate stronger separation of 
so many “compartments,” but it can also provide more 
strongly controlled communication between 
compartments in a manner evaluated far more 
thoroughly than can be evaluated in hypervisors.  The 
formal methods necessary for such strong evaluation 
of separation properties simply do not scale to the size 
of monolithic hypervisors, and even if the verification 
methods scaled, they would simply better illuminate 
the tangling of separation and virtualization violating 
the separation properties.  In contrast, with formally 
verified separation provided by the separation kernel, 
the set of properties that must be formally verified for 
each of the security critical protected components is 
vastly minimized, and reduced in some cases to a scale 
where the properties of the components themselves can 
be formally verified. 

These advantages of separation kernels apply to 
strong separation between effectively permanent 
domains of intranets, extranets, safety critical systems, 
the open Internet, personal domains for finance, 
friends and family, and the many ad hoc domains 
necessary for managing national scale emergencies, 
and international collaboration managing natural 
disasters and transnational threats.  Finally, strong 
separation kernels can provide such separation while 
providing the full functionality to each domain that 
each domain desires.   

3.2. Hardware support of secure virtualization 

Given these strengths of separation kernel based 
virtualization, why seek increasingly secure hardware? 
Although it is possible to do many things in software, 
software cannot effectively attest to the integrity of the 
underlying software and hardware environments.  
Trusted Computing Group standards [11] help address 
the limitation. 

However, other challenges remain.  For instance, 
Unfortunately, the x86 instruction set is not easily 
accurately virtualized.[12]  Kernel code and device 
drivers generally have to operate in privileged mode 
(“ring 0”) in order to execute the instructions that 
directly manipulate hardware, page table registers, etc.  
Historically, most virtualization software has run the 
guest OS code at user level, and trapped privileged 
instructions to emulate the requested activities.  
However, in order to run a guest OS unmodified, it is 
critical that the virtualization system be extremely 
faithful to the expected semantics of the privileged 
instructions and hardware.  Any discrepancies can 



cause the guest OS to crash badly.  For instance, given 
that instructions which write to privileged registers 
trap as expected, but many of the instructions that read 
from a privileged register do not trap at all, a guest 
compartment might be writing changes to the 
virtualized page table base address but reading from 
the actual page table address, possibly causing it to fail 
spectacularly.  In order to overcome this, virtualization 
systems have had to resort to other strategies such as 
inserting breakpoints into every piece of code that 
contains these problematic instructions.  Then ensuring 
that the breakpoints are maintained consistently 
requires tremendous effort and resources.  A complete 
discussion of these sorts of measures can be found in 
[13]. 

However, Intel Corporation has recently added new 
support for virtualization in the form of the 
Vanderpool Technology (VT) instructions included in 
the latest Intel Core processors which, simply put, 
provide a new execution mode (which can be thought 
of as “ring -1”) beneath the previously most privileged 
level.  This allows guest Operating Systems to run at 
level 0, completely unaware of the fact that they are 
running in a virtual environment.  But any attempt to 
access any of the formerly problematic instructions 
will trap to the emulation code provided by the 
virtualization layer.  

Hardware support for virtualization and 
motherboard support for system integrity monitoring 
are now rapidly becoming widely available in the mass 
quantities commercially feasible for use by average 
customers.  Several leading providers of personal 
computing hardware already ship platforms with such 
technology.  For instance, the Intel Corporation 
hardware-assisted virtualization technology known as 
VT is similar to AMD Pacifica Technology.  Further, 
Intel Corporation secure platform technology known as 
LaGrande Technology (LT) [14] is based on TCG 
standards [11] and similar to AMD Presidio 
Technology.  LT and VT already ship embedded 
together from leading providers of desktops and 
servers.  Moreover, TCG compliant technologies 
already ship in desktops, laptops and servers of many 
leading providers. 

3.3. Uses for secure virtualization 

In addition to allowing users to safely and securely 
interact with multiple security domains practically 
simultaneously, and in addition to easing development 
and deployment of guards, secure virtualization has a 
variety of other important use-cases. 

Currently, most host based security technologies 
depend on at least partial integrity of the underlying 

OS, and much of the underlying hardware.  Such host 
based security technologies include antivirus, host 
based intrusion prevention, antispyware, and personal 
firewalls.

Hardware support for secure virtualization can 
narrow the hardware dependencies and eliminate 
dependence on the OS by allowing the security 
technology to exist in an independent partition simply 
watching, and not trusting, the monitored OS.  In fact, 
the security software may even become the virtual 
machine monitor such that the untrusted OS depends 
on the security software without the security software 
depending on the untrusted OS. 

Moreover, because separation kernels can protect 
components from tampering by other components, they 
facilitate effectively protected insertion of tamper 
resistant host integrity monitors, network intrusion 
prevention systems (N-IPS), and network intrusion 
detection systems (N-IDS).  Additionally, separation 
kernels can force redirection of all interaction from any 
component bound for hardware to become an 
interaction with the appropriate mitigation component.  
In this way they provide non-bypassability to the N-
IDS and N-IPS whose transparent and strongly 
protected integration they facilitate.  Such N-IDS and 
N-IPS can be inserted between the network interface 
card (NIC) and the untrusted OS.  Alternatively, 
separation kernels support protected and transparent 
insertion of such monitors between any Guest OS and 
any cryptographic software, and further ensure that the 
cryptography is not bypassed or tampered. 

In these ways, separation kernels help protect and 
ease deployment and verification [17] of the mitigation 
components mediating communication of untrusted 
fully functional guest operating systems with shared 
hardware and the rest of the outside world.  Worth 
noting, as separation kernels protect the supporting 
compartments from tampering, integration of LT may 
help separation kernels by ensuring secure boot and 
attestation. 

3.4. Secure operating systems today 

Of course, separation kernels are not new, and a 
variety of high assurance operating systems have 
served the community for decades, including Provably 
Secure Operating System (PSOS), GEMSOS, 
MULTICS, and others.  However, the market for high 
assurance and real time operating systems has grown 
dramatically since creation of many of these operating 
systems.  A number of high assurance and real time 
operating systems now have revenue streams from 
commercial applications in avionics and other 
embedded applications driving improvements in 



performance and verifiable functionality.  Although 
this does not change the realm of the possible, it does 
change, dramatically, the realm of the feasible.  
Further, with multi-billion dollar problems of identity 
theft and intellectual property theft climbing 
exponentially, the demand for separation properties 
has never been higher. 

As an example of such a relatively secure 
separation kernel based high assurance real time 
operating system, Green Hills Software has developed 
a separation kernel that is currently being evaluated by 
a Common Criteria Testing Lab, SAIC, in Columbia 
Maryland for meeting the requirements of an 
Evaluation Assurance Level (EAL) of 6+ against the 
Separation Kernel Protection Profile (SKPP).[15]  The 
formal methods artifacts for the EAL6+ evaluation 
were developed by Rockwell Collins Formal Methods 
Center of Excellence under the F/A-22 and F-35 
programs under management of Air Force Research 
Labs.  This separation kernel borrows heavily from a 
Real Time Operating System commercially developed 
by Green Hill Software.  This separation kernel has 
been certified under eight different DO-178B Level A 
certifications for “fly by wire” real-time aircraft 
control and other flight-critical control functions.  This 
separation kernel is also used by the Department of 
Defense in the Joint Tactical Radio System and Intel 
Corporation is projected to soon ship LT for mobile 
hardware.  Also based on this separation kernel, Green 
Hills Software has developed a proof-of-concept multi-
level secure workstation capable of running different 
operating systems in parallel with strong separation 
properties. 

3.5. Limitations of separation kernels 

Despite the strengths of separation kernels, by 
themselves, separation kernels are not sufficient to 
provide separation throughout the entirety of a typical 
workstation.  Separation kernels provide high 
assurance separation of CPU behavior and memory 
interactions and enforce rigorous static allocations of 
timeslots of resources such as CPU time, bus 
bandwidth, and memory, to help ensure that resource 
contention signaling is kept to a minimum.  However, 
typical workstations have peripherals that must be 
shared between security domains, including hard 
drives, hard drive controllers, a video card, network 
interface card, keyboard, mouse, and other Universal 
Serial Bus (USB) peripherals.  Safely and securely 
sharing such resources requires careful development 
and integration of software to mitigate the overt and 
covert channels to and from such peripherals.   

Toward mitigating the overt channels to and from 
storage and communications, all content can be 
encrypted.  However, this leaves both covert channels 
to and from such peripherals, and also covert and overt 
channels to and from other peripherals such as 
keyboard, mouse, and video.  Keyboards and mice are 
simpler cases since these devices simply relay user 
input keeping very little state over time, facilitating 
frequent, clean, and strong resets to trusted “clean” 
states.  Additionally, it might be possible to encrypt all 
communications from such input devices to prevent 
eavesdropping by others.  In many ways, even the 
covert channels to and from keyboard and mice might 
be easier to manage in that masking covert channels of 
a few hundred words per minute seems likely to be 
simpler than masking covert channels to and from near 
gigabit throughput hard drives bursting tracks off 
platters spinning at thousands of revolutions per 
minute. 

Even if the overt channels can be fully encrypted, 
mitigating covert channels to and from high speed 
devices with either persistent state or strong capacity 
for resource contention signaling, such as hard drive 
controllers and network interface cards, requires 
substantial work.  Specifically mitigating such covert 
channels requires integration of mitigation components 
to mask timing channels, sequencing channels, provide 
a layer of indirection in addressing, and mitigate other 
covert channels as well.  Fortunately, since the 
separation kernel provides strong separation of security 
domains in processor and memory, such mitigation 
components can run “protected” in such a shared 
processor and shared memory while mitigating the 
covert channels to and from each peripheral. 

It is important to note that video can be a special 
case.  Specifically, trusted video hardware may be 
needed if untrusted security domains require the ability 
to read status or other feedback related to their section 
of a screen and (a) there is a requirement for video to 
simultaneously display cleartext data (text, image, 
video, etc.) of multiple domains or (b) the video card 
cannot be adequately reset after presentation of content 
from one domain and before presentation of content 
from another domain.  Fortunately, LT includes 
hardware support for constructing trusted paths 
through display adapter hardware.   



3.6. Mitigation Components 

As mentioned above, even if all content is 
encrypted prior to being sent to a shared peripheral, the 
covert channels to and from such peripherals must be 
mitigated.[16]  The potential approach mentioned in 
the section above involves integrating strongly 
protected and carefully built software components to 
mitigate covert channels.  Even though such mitigation 
components can run protected by the separation kernel, 
separation and non-interference of information from 
different security domains must be maintained within 
the mitigation components for any mitigation 
component that interacts with multiple security 
domains.  Maintaining this separation and non-
interference is important for mitigation of covert 
channels even if the overt channels of content are 
encrypted before being read into the mitigation 
component.   

In other words, the separation kernel protects each 
supporting compartment from interference or 
tampering by other compartments, dramatically easing 
formal proofs [17] that the supporting compartments 
are correctly built and able to perform their necessary 
functions.  However, despite this help, the information 
flow properties within the mitigation component must 
still be verified.  Interestingly, these proofs are still 
necessary to preserve strict control of covert channels 
even if the overt content is encrypted.  Fortunately, 
separation kernels can provide the high assurance 
separation needed to safely and securely decompose 
large components into smaller components that are 
often small enough to have information flow formally 
verified.  This often makes formal verification of 
mitigation components tractable but still non-trivial.   

Also, experience in embedded systems has shown 
that even though each of the supporting compartments 
runs as an individual compartment for formally 
verified control of leakage, these supporting 
compartments have a negligible impact on CPU and 
other resource utilization of the guest computing 
compartments.  This is because the supporting 
compartments contain only exceptionally small 
(trusted) components and do not require loading of 
virtualization or an OS atop the separation kernel. 

However, given the challenges (and tractable but 
near Herculean effort) of verifying the separation 
properties of the separation kernel, and given the 
necessity of verifying specific properties of the 
mitigation components, further attention to formal 
verification techniques and their limits seems 
appropriate. 

4. Formal Verification 

Formal verification has advantages over less 
rigorous approaches to security evaluation.  Formal 
verification is repeatable, independently verifiable, 
capable of consistent results independent of biases 
among evaluators and evaluation contexts, and can 
produce systems of much higher assurance.  In 
contrast, most of the current "Common Criteria" 
approach to security evaluation depends upon 
correctness of manual generation and manual review 
of large volumes of text including security targets, 
objectives, configuration guidance, and threat 
environments that are susceptible to human error, 
susceptible to differing interpretations and differing 
judgement, and neither mechanically provably correct 
or formally verifiable.  Malicious adversaries with 
billions of dollars of resources available to them to 
compromise computing systems seem capable of 
finding flaws that escape manual analysis but are 
revealed through mechanical analyses seeking to prove 
security or insecurity of a system.  Such issues have 
long been a concern for organizations facing such 
adversaries.  However, as organized crime masses 
billions upon billions of dollars of damage to 
legitimate businesses and unsuspecting consumers 
through identity theft and intellectual property theft, 
knowingly or unknowingly more parties face such 
adversaries every year. 

Formal verification has other advantages over 
textual common criteria. Among these, formal 
verification includes proofs of completeness, and, if 
the theorems are well formed, formal checking can be 
done very quickly. 

Admittedly, formal verification often requires large 
volumes of manually written and human readable text 
to explain the proofs and what is being proven.  
However, the proofs themselves can be mechanically 
verified for correctness. 

Unfortunately however, fixing all issues revealed 
by formal verification to build a provably correct 
system is still a painstakingly slow process.  Also, the 
process of carefully formulating the theorems needing 
proof can also be a painstakingly slow process.  More 
importantly, technologies for formal verification do not 
yet scale to support verification of absence of all 
possible flaw types for systems as large as modern 
operating systems with Pentium class microprocessors 
and related chipsets.  Verification of Pentium class 
chips is currently done piecewise with theorem 
proving technology derived from government research 
investments made decades ago, most commonly A 
Computational Logic and Applicative Common LISP 



(ACL2).[18]  However, just as the modular 
architecture of modern microprocessors facilitates 
piecewise formal verification of each module 
independently, the formally verified separation 
properties of a separation kernel facilitate formal 
verification of each of the higher level compartmented 
components individually. 

4.1. Accelerating Evaluation 

Given that developing a formally verified high 
assurance system such as an ACL2 verified system or 
an Common Criteria Evaluated Assurance Level 
(EAL) 7 system is a slow process, how much faster is 
the development of slightly lower assurance systems? 

Obviously systems with much lower assurance, and 
systems without semi-formal, mechanical, common 
criteria or any thorough evaluation of any form are 
much faster to develop.  So, a more important question 
seems to be, “How much slower is the development of 
formally verified systems relative to the development 
of slightly lower assurance systems?”  Specifically, 
this could be asked in comparison of EAL 6+ or EAL 
7 systems to EAL 4 or EAL 5 systems.  The difference 
in cost and calendar time for evaluating otherwise 
similar systems at differing EAL levels is an average 
factor of two (2) for systems being evaluated at two 
levels apart with evaluation of an EAL 4 system 
averaging $250,000 over an average of sixteen (16) 
months, not counting development.[36]  This 
practically guarantees that using a meaningfully 
evaluated system requires using systems that are 
outdated by a year or more and that effectively 
evaluating the many patches and updates for most 
current commercial and open source software is 
practically infeasible. 

In this context, the deeper and more important 
questions seem to be, “why,” and “to what degree can 
this be changed.”  EAL 4 and EAL 5 evaluations are 
considered expensive and time consuming because of 
the costs and delays associated with the manual nature 
of generating and reviewing the volumes of 
documentation.  This manual process of generating and 
reviewing artifacts has helped give the current 
common criteria  process a reputation for producing 
evaluation results that are both late and overly costly.   

In contrast, formal verification is slow because 
formulating the theorems is a slow and careful process, 
and because fixing all of the issues revealed by formal 
verification requires painstakingly careful effort. 

However, once the theorems are formulated 
properly specifying the properties desired to be 
verified as correct, actually mechanically proving or 

disproving the theorems is a relatively fast and 
relatively easily repeatable process. 

This speed of verification is a particularly important 
point where the security critical requirements of a 
kernel or component do not change much if at all over 
time, even as the kernels and components themselves 
evolve.  In this sense, once the overhead of 
establishing the framework for formal verification has 
been established, the assurance of a modified system 
can actually be verified much more quickly, not to 
mention much more reliably, through formal 
verification than through other verification techniques. 

This seems counter-intuitive. 
However, the micro-processor industry benefited 

directly from this advantage.  Once the framework was 
established for formally verifying micro-processors, 
not only did the probability of a flaw escaping 
detection decrease, but the time required for 
verification of chips was decreased.  Unfortunately 
however, although it might be possible to realize such 
advantages in separation kernels and smaller 
components, realizing such advantages on broader 
classes of software systems will require increasing 
scalability of formal verification techniques. 

4.2. Challenges in scaling formal verification 

Scaling represents the singular hard problem in 
applying theorem proving to modern software systems.  
Experiences show that: specifications, the scale of 
executable model, and the verification proofs all scale 
roughly linearly with the size of the system being 
evaluated, where "size" is often measured in a count of 
transistors or logical gates.  However, as hardware has 
been growing exponentially as a function of transistor 
density in keeping with Moore's Law, software has 
been growing exponentially in response to the 
available computing power.  To verify systems of the 
desired scale, much work must be done in (a) 
improving performance of model verification such that 
it completes in reasonable time for systems of the 
desired scale, and also in (b) creation of tools to 
facilitate more rapid specification of Theorems and 
Lemmas relevant to desired behavior. 

It is important to note that it is not currently known 
if such improvements in scalability of formal 
verification can be achieved.  However, each good 
inch of progress in scaling formal verification can 
increase the variety and types of software systems that 
can have their security critical properties verified to be 
correct, and also increases the scale of performance 
optimization that can be accomplished within formally 
verified components without increasing risk that such 
optimization violates desired security properties. 



However, even if scalability of formal verification 
is increased dramatically, it seems likely that 
functional needs will always require software with 
functionality whose complexity is beyond formal 
verification, regardless of whether the functional needs 
are operational, mission, business, or consumer needs.  
In such cases, it might make sense to bound the risks 
of using such software as tightly as possible through 
tightly constraining such software in a segregated 
compartment.  However, mission, business, and 
consumer needs may also require a number of such 
software packages to work together in a single security 
domain.  In such cases, it could be very valuable to 
understand the types and degrees of risk each software 
package imparts on the others. 

5. Defect Density 

To estimate the types and degrees of risk each 
software package imparts on other software packages 
in such cases, we propose leveraging emerging 
techniques in model checking and binary analysis to 
improve software defect density estimation.[19]  The 
closest analogy in other fields of engineering seems to 
be that it is not always possible or feasible to 
effectively non-destructively test and verify the quality 
of each cubic inch of all materials going into a large 
physical construction.  However, some materials have 
an acknowledged probability of a defect that might 
only demonstrate itself in extended operation.  When 
such probabilities are known, balanced construction of 
higher reliability structures is possible.   In software, 
the pre-release defect density predicted from static 
analysis and the actual pre-release defect density are 
strongly correlated at a high degree of statistical 
significance.[37]  Using such analyses to estimate risks 
several advantages, limitations, and dangers when 
applied to software and computer security. 

Analyzing software to estimate the number of 
residual flaws, bugs or vulnerabilities has several 
advantages.  First and foremost, such information is 
useful in assessing relative risk in deploying new code 
into sensitive environments.  Second, if all of the 
known residual vulnerabilities are secretively 
monitored through techniques such as vulnerability-
specific and exploit agnostic monitoring techniques, 
[20, 21] then having an estimate of the number of 
unknown residual vulnerabilities provides a measure of 
confidence that if there is an attempt to exploit a 
residual vulnerability that the attempt might be 
detected.

However, there are several dangers in 
oversimplifying the “measure” of confidence toward a 

“probability.”  Primarily, unlike natural faults which 
have a natural distribution, the malicious behavior of 
more sophisticated and better resourced adversaries is 
often biased toward the vulnerabilities which are more 
difficult to discover. 

5.1. Steps toward estimating defect densities 

Tools for the detection of vulnerabilities in code 
have improved significantly from finding “no” 
vulnerabilities at livable false positive rates to 
detecting substantial fractions of vulnerabilities at 
livable false positive rates.  However, at the same time 
software is continuing to grow in both scale and 
complexity.  Overall, software defect detection has 
improved tremendously from code reading and 
functional testing.[22] 

With progress of model checking [23, 24] and other 
areas of static and dynamic software analysis, tools 
such as those distributed by Coverity and Fortify now 
scale to effectively analyzing millions and tens of 
millions of lines of code.  This progress also includes 
lowering false positives from hundreds of false 
positives per true positive to a level where false 
positives and true positives are roughly equal while 
dramatically increasing the number of bugs found and 
breadth of types of bugs found.  Experience annually 
evaluating several competing tools has shown that the 
best current tools now find about 30% of the inherent 
vulnerabilities while reporting only one false positive 
per true positive, even in scaling to systems involving 
millions of lines of code, and are capable of enabling a 
single person to effectively analyze millions of lines of 
code in a single week. 

Unfortunately however, the performance 
described above is performance in analyzing source 
code, and the process of translating source code into 
machine-code level instructions of executable code can 
introduce devastating faults.  For such reasons, an 
ability to perform effective model checking on 
practical binaries could be very important. 

Fortunately, there has been progress toward model 
checking on practical binaries.  The general approach 
is to extract an “intermediate representation” (IR) from 
the executable code.  Such IR are neither source code, 
nor executable code.  Instead, such representations 
attempt to infer the source-code constructs which 
originated specific patterns in the executable code.  
However, such constructs can be represented while 
preserving the precise underlying machine code 
mechanics of the implementation without any of the 
“loss of fidelity” associated with generalizing to source 
code.  In this context, effective and scalable IR 



extraction are needed, and model checkers need to be 
ported to run atop extracted IR.

There has been tremendous progress in extracting 
IR from binaries through several techniques, including 
Aggregate Structure Identification, Affine-Relation 
Analysis, and Value Set Analysis.[25, 26, 27, 28, 29].  
Without sacrificing fidelity, the completeness of IR 
extraction is slowly growing toward a completeness 
suitable for model checking.  However, none of the 
existing highest fidelity IR extraction techniques scale 
to the size of programs that can be analyzed with 
leading source analysis tools. 

This is particularly unfortunate in that model 
checking on binaries can not only find bugs not 
appearing in source code, but analyzing binaries can 
also determine which reported “bugs” were in fact 
optimized away by the compiler.[30]  Analyzing 
binaries also has several other advantages as well, 
including: [30] 
- Ability to analyze code when source is not available, 
- Verifying assumptions such as ANSI-C compliance, 
- Analyzing compiler and post-compiler optimizations, 
and
- Analyzing inline inclusions of assembly code.

For these reasons, simply analyzing the source 
code seems insufficient for gauging the trustworthiness 
of a compiled program.  In this context, the desired 
progress in improving completeness of IR extraction 
and improving scalability of IR extraction techniques 
as described above seems very important.  If such 
“model checking of binaries” could be made possible, 
then it might be possible to substantially improve 
accuracy in estimating the number of unfixed flaws or 
bugs within a given binary.  Given the rate of progress 
in this area, it seems possible and perhaps even likely 
that such goals will be reached in research within a few 
years, assuming government sponsorship of such 
research continues.  In interim, various forms of static 
analysis in source code including model checking and 
taint analysis can be used to enhance testing of 
executable binaries.[31]  However, given that testing 
and dynamic analysis do not necessarily provide full 
coverage, or always fully explore the corner cases 
more likely to be error prone, integrating such model 
checking into the binary analysis suite still seems 
valuable.  

It seems unlikely that any tool will be able to find 
all vulnerabilities in software of size and complexity 
beyond formal verification with a thoroughness of 
theorem provers such as ACL2.  For this reason, the 
best that should be expected from analysis of such 
software is an estimate of the number of residual bugs, 
flaws, and vulnerabilities in the software remaining to 
be fixed, and an incomplete list of specific potential 

bugs, flaws, and vulnerabilities that might need to be 
fixed.  Over time, applying analysis tools and 
techniques to well studied code bases with a number of 
bugs, flaws, and vulnerabilities discovered through 
other techniques, it should be possible to begin 
estimating the false negative rates of such tools and 
analytic techniques along with ratios of false negatives 
to true positives and false positives across ranges of 
conditions.  This facilitates better estimating the 
number of residual flaws, bugs, and vulnerabilities in 
new code on first analysis, even if the specific false 
negatives cannot yet be identified in the new code. 

Such techniques for quickly applying a set of tools 
to a previously unseen piece of software to estimate the 
degree to which it might be safe to trust the software 
provide a potentially complimentary alternative to 
trusting the developer’s estimates of defect density.  
However, where developer’s may be trusted and their 
accuracy verified over time, techniques of process 
measurement can be very helpful where the developers 
track the time and phase that each defect is found and 
project forward the number of defects left to be found 
in the future.[32] 

6. Transitive Risks 

Systems have edges and interfaces.  Even with 
strong separation of separation kernels and 
cryptographic separation, most security domains must 
interface other security domains.  With risk measured 
so carefully within an isolated domain, how can we 
begin to measure risk for systems that are isolated 
except for a finite number of closely studied 
interfaces? 

We discuss both human-machine interfaces and 
interfaces between security domains.  We begin with 
human-machine-interfaces since the cases of wittingly 
or unwittingly allowing a malicious adversary direct 
logical, physical, and/or lifecycle access to a system 
provide points of origin for coordinated or 
uncoordinated malice, even if layers of protective 
domains exist between origin and potential targets of 
malice.  Given the challenges of lifecycle access, 
critical unsolved aspects of lifecycle access are 
discussed last. 

Most large scale systems at least have an interface 
to a number of people.  Where more than one person 
shares a system, the motives and capabilities of other 
people are never certain.  Psychologists and counter 
intelligence staff may reason on motives, and 
malicious capabilities are only rarely known with high 
certainty.  However, worst case estimates of 



capabilities may be useful in developing conservative 
estimates of a system’s resilience to malice. 

Each user may access a surface of the system and 
most users may inject a volume of data into the system, 
extract a volume of data from the system or both.  The 
injection may be monitored and may even be filtered.  
Whenever a party has access to a shared security 
domain, the risk to the other party is practically 
unbounded, unless all input can be effectively filtered. 

If the appropriate properties can be proven for a 
system’s handling of input, then it might be sufficient 
to fully consider the input effectively filtered.  
However, for systems of a scale and complexity where 
such proofs are not possible, it may be appropriate and 
necessary to estimate whether or not there exists a 
defect that is reachable by the input. Such estimates 
might depend heavily on defect density estimation, 
size and complexity of input types to be received, and 
estimates of the amount of code that might be 
reachable by the input where such estimates could be 
done through dataflow analysis [33], slicing, [34], or 
improved forms of slicing 

Vulnerabilities in jpeg rendering and libraries for 
simply playing audio files represent excellent examples 
of how incredibly common data types can be 
sufficiently complex for real trouble.  As a more 
extreme example, where the surface, volume, and 
filtering of a party’s access to a shared system permits 
them to introduce arbitrary code without strong 
separation of the code from the other party’s interests, 
it would be conservative for the other parties to 
consider the domain compromised.  Injecting arbitrary 
code into a shared domain may be as simple as the 
unrestricted ability to copy a file from a physical 
interface that accepts memory sticks, or a sufficiently 
large and ineffectively checked entry via a logical 
interface into an electronic form.   

However, with the advantages of secure 
virtualization based on increasingly secure hardware, 
the size of a domain may be a small share of a single 
physical machine, span many physical machines, span 
several shares of a single machine, or span several 
shares of several machines.  In each case, if there is not 
strong separation of one party’s code from another 
party’s interests, it is reasonable to suspect the domain 
might be compromised. 

This brings us to interfaces between security 
domains.  As with human-machine interfaces, 
interfaces between security domains have a surface, 
permit a volume of content to flow, and a security 
domain may attempt to process input to effectively 
filter anything potentially malicious.  As above, if 
input is permitted to arrive via the interface without 
effective checking, the domain should be considered 

compromised by the input.  As above, “effective” is 
defined as either fully proven to be effective, or 
estimated through estimates of whether or not there 
might exist a defect that might be reachable by the 
input.   

 As above, permitting injection of arbitrary code 
should be considered to compromise the security 
domain.  By “code” we mean “executable instruction.”  
In formally verified systems it might be possible to 
strongly differentiate between code of the system that 
is immalleable and proven to behave properly for all 
data, and the data which is processed by the code and 
proven to not be permitted to change behavior of the 
code or configuration of the environment in any risky 
ways.  In other cases, we begin down the slippery 
slope of analyzing the range of data that might be 
received across interfaces, and estimating the potential 
for some input to reach a defect.  If such input is able 
to directly or indirectly reach a defect, such defects 
might permit either triggering of instructions, 
translation of data into executable code, or changing 
behavior of the code or configuration of the 
environment in risky ways.  Any calculus for 
extracting probabilities or risks from such a model 
should recognize that well resourced adversaries study 
a system until they find a suitable vulnerability.  In 
such cases, the question is not the probability of a 
random adversary finding a vulnerability, but rather 
the question of “what level of resources are necessary 
to find such vulnerabilities.” 

 In that context, attempts to increase verifiability of 
systems then drives systems architectures toward 
sequences and meshes of much smaller domains with 
strongly controlled interfaces.  These domains might 
often be as small as possible to at least have the 
estimated risk minimized and at best have their 
properties effectively provable.  For example, perhaps 
a single physical server might have one domain storing 
a set of web pages which the server-daemon domains 
may only read.  Perhaps only the author’s clearly 
separated domain would have permissions to modify 
the page storage domain.  To ensure that no user 
interferes with a server-daemon serving another user, a 
new server-daemon domain and new server-daemon 
could be instantiated for each new address visiting the 
server, each server-daemon domain could spawn input 
processing domains for filtering data submitted via 
forms interfaces, and the filtering of any input could be 
done through a series of domains structured for 
decomposing and analyzing the input with each 
domain small enough to have provable properties.  
Filtered data could be read into transaction processing 
domains, and resource utilization could be monitored 
from a transaction management domain with all of the 



protected components and interfaces small enough and 
simple enough to have provable properties. 

The performance impact of fragmenting a server 
into such “micro-domains” and instantiating such 
redundancy are likely impractical for most if not all 
applications today.  However, with the cost of annual 
damages from identity theft and intellectual property 
leakage climbing exponentially, the number of life 
critical applications of computing climbing 
exponentially, system performance climbing 
exponentially, and the value of transactions entrusted 
to computing likely to eventually near “the entire 
economy,” this may not always be the case. 

6.1. Lifecycle Access and Transitive Risks 

In the scheme described above, arbitrary code is 
greatly distrusted unless its properties are proven, and 
interfaces are closely monitored for anything with 
sufficient complexity as to introduce risks.  However, 
teams of people routinely write large volumes of code 
in scale well beyond formal verification, and this code 
is injected routinely into many organizations around 
the world.  Subtle bugs planted by malicious 
developers evade defect detection, [35] and statistics 
on defects do not accurately capture the harm that can 
be done if there is collusion between a malicious 
developer and a party with direct or indirect access at 
run time.  This may drive development of some types 
of applications toward formally verifiable scales, but it 
is uncertain that all critical applications can ever be 
reduced to such scale, even if there is progress in 
scalability of formal verification.  Perhaps it might 
always be the case that if you buy something 
incredibly complex from someone wanting to hurt you, 
you might get hurt, badly.  Perhaps some problems are 
beyond technology.  However, when I consider the 
range of woes that can be stopped through stronger 
separation of information at rest, in transit, and in 
processing, when I consider the range of woes that can 
be addressed by beginning to quantify and reduce risk 
in software, and when I see such progress in binary 
analysis, separation kernels, and hardware support for 
secure virtualization, I grow optimistic that we might 
see a path emerging that might take us a long way 
toward safer and more secure computing. 

 7. Engineering Sufficient Security 

Best practices currently involve adding security 
technology into or around computing systems designed 
to function with or without security technology.  
Examples of such security technology include 

firewalls, intrusion detection, antivirus, antispyware, 
and antispam.  However, it is difficult to measure the 
security of the resulting architecture, and difficult to 
measure whether risk is increasing or decreasing as 
complexity of the network and sophistication of 
defenses increase somewhat in parallel.  Also, it is 
difficult to make claims much beyond protection of 
known vulnerabilities. 

An alternative approach might be to create a 
foundation which can provide provably strong security 
where all information is encrypted in transit or storage, 
and protected by provably correct enforcement of 
separation properties whenever exposed for 
processing.  In such an architecture, where information 
must cross from one security domain to another, it 
might be valuable to have a measure of the risks the 
information was exposed to while being processed in a 
cleanly separated compartment.  These risks include 
the people and potential software bugs, flaws, and 
vulnerabilities that the information was exposed to, 
and through various static and dynamic analysis 
techniques which are continually improving, it should 
be possible to have effective measures of such risks.  
With measurable risk and such strong and flexible 
means of bounding risk, it becomes possible to 
develop coherent risk reduction plans. 

The level of security needed may vary greatly with 
value or sensitivity of information.  However, as 
consumers face identity theft, and businesses face 
losses of billions of dollars, it seems that such 
measures of risk and such a strong foundation might 
find broad usage.  
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