Protecting Privacy in Key-Value Search Systems

Yinglian Xie David O’Hallaron
Michael K. Reiter

July 2003
CMU-CS-03-158

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper investigates the general problem of performaygJalue search at untrusted servers
without loss of user privacy. Specifically, given key-vahagrs from multiple owners that are
stored across untrusted servers, how can a client searsh plagrs such that no server, on its
own, can reconstruct any of them?

We propose a protocol, calld@eekabopthat is applicable to any type of key-value search
while protecting both the data owner privacy and the clieivgey. The main idea is to separate
the key-value pairs and store them on different serverschasean important observation that
key-value pairs release information only if they are togettsupported by access control and
user authentication, Peekaboo allows search to be pertoomig by authorized clients without
reducing the levels of user privacy.

Keywords: key-value search, privacy, untrusted servers, accessotamtithentication

Q(e\J - Data owne

Server pool

Client

Figure 1: A typical key-value search system

1 Introduction

Wide area distributed systems often assume that hosts fribenetht administrative domains
will collaborate with each other [16, 28]. With user data @s@d to heterogeneous, untrusted
servers, one major challenge is to store and find informatitimout loss of privacy.

Consider a distributed service discovery system with mpldindependent service providers [6].
Each provider stores service attributes or descriptionsi@tor more directory servers. Clients
submit queries to the directory servers for service locatidormation. This poses a significant
risk to the privacy of both the clients and the service prexsd A curious directory server could
not only follow a client’s queries and infer the client’s iattes, but also exploit its access to
the service types and prices of the providers to infer monsitee information such as the
company financial status.

A similar problem exists in people location services forquious computing environments
such as Aura [10]. Although there are many results [14, 1BaBdut preventing unauthorized
access to user location information, few of them tackle ttodlem of protecting user privacy
with respect to the servers, which may belong to differeganizations and be untrusted. On
one hand, users may not want to expose their location infaoméo the servers. On the other
hand, clients would like to keep their queries secret froensrvers as well.

As another example, consider a distributed stock quotetisgation system where stock
agents publish real time quotes to a number of servers. €lgebmit stock names to the servers
for the most up to date quotes. Since real time quotes are bited, stock agents do not want
the servers to learn the quotes, whereas clients are nangvith let the servers know which
stocks they are interested in.

The question then is how can we efficiently search infornmatvbile protecting the privacy
of the data owners and clients? Without loss of generality key-value search system illus-
trated in Fig. 1, there are data owners, clients, and a pos¢viers. Data owners register their
data represented as key-value pairs at one or more serdeatsGubmit keys as queries and

Key Value Application

Keywords File owners, file names Keyword search, file sharing
Service attributes Service locations, providensService discovery

User names Location information People location service
Stock names Stock quotes Stock quote dissemination
Game names Players, servers On-line game player match
Colleges, classes User names Classmate search

Figure 2: Example applications of key-value search

would like to retrieve all the values that match the keys. unohsa scenario, given key-value
pairs from multiple data owners that are stored across sit&tiservers, how can a client search
keys for values in such a way that no server, in isolation,dmtermine any of the key-value
bindings? To make the problem more concrete, Fig. 2 listeesexample key-value pairs in our
everyday life.

In this paper, we propose a protocol calleeekabopfor performing key-value search at
untrusted servers without loss of user privacy. An impdrtdoservation is that key-value pairs
release information only if they are together. Thus the mdea of Peekaboo is to split the pairs
and introduce a layer of indirection in between. The twoeldht parts of the pairs are stored
separately at two non-colluding servers which jointly perf search to return query results. In
summary, the Peekaboo protocol has the following features:

e Secure.Given a client query expressed as a key, Peekaboo servers eetist of val-
ues matching the key while no server, on its own, can deterhia@ key-value bindings.
Therefore, Peekaboo protects both the data owner privatyhanclient privacy. Further-
more, the Peekaboo access control and user authenticatidmmsms prevent unautho-
rized users from searching the data without reducing theldesf user privacy.

e Flexible. Peekaboo is applicable to any type of key-value search. iGaveser query,
Peekaboo servers can return the matched values using argefised searching criteria.
It can also be easily extended to support advance queriegwibéonly matched values
but also matched keys will be returned in query results (ugzy match).

e Efficient. Peekaboo does not require expensive routing mechanismentb data (or
gueries). Nor does it need specialized encryption algmstion stored data. The per-
formance evaluation shows that the storage costs of Peelssveers are comparable or
even less than legacy centralized servers, whereas thehdagency is on the order of
tens to hundreds of milliseconds, which is acceptable ta ci@nts.

The rest of the paper is organized as follows: Section 2 decour system model and the
privacy properties. In Section 3, we present the Peekabaalsgrotocol of protecting user

2

privacy. In Section 4, we present the Peekaboo access tantt@uthentication mechanisms.
We then discuss the various issues in system deploymeniding possible malicious attacks
in Section 5. Section 6 presents example applications dfdbe® and the system performance.
Section 7 discusses related work before we conclude withdpeg.

2 Model, Definitions and Discussion

In this section, we describe our system model and the pripemyerties that Peekaboo is trying
to achieve. We also discuss the motivation underlying thieidiens and the limitations.

2.1 System Model

The system has three types of entities: data owners (oweeesfter), clients, and Peekaboo
servers. We view the data as a list of key-value pairs. Wenassither the keys or the values
alone do not release useful information about the datg (ke.should not be able to infer
a key-value pair from the key or the value). Peekaboo semansstore data from multiple
independent owners. A query consists of a single key andliget ¢s interested in retrieving a
list of values matching the key.

The Peekaboo search protocol consists of two stages: na@ststage and query stage. In
the registration stage, owners publish data at Peekabwersein the query stage, clients inter-
act with Peekaboo servers to resolve queries. Throughdhtdb@ges, each server, in isolation,
should not be able to reconstruct the key-value pairs puddidy the owners. Similarly, no
server, in isolation, should be able to reconstruct thevaye pairs that are retrieved by the
clients.

There are two types of Peekaboo serversiitserverand thev-server The K-server stores
keys only, whereas the V-server stores values only. Dataemaemnd clients talk only to the V-
server. Both servers jointly perform search to resolve iggefWithout loss of generality, we
assume: (1) Peekaboo servers are "honest but curious”. fohew the protocol specifications
exactly, and passively observe the information storedllipead the messages they received.
(2) Peekaboo server do not collude to learn data and quédres does not prevent the servers
from communicating with each other in order to follow the toml.

2.2 Privacy Properties

Privacy is a guarantee that certain information about aityasthidden from other entities. The
privacy property is the definition of what types of infornwatiis hidden from which entity. In a
Peekaboo search system, there are two types of entitiesevphiwacy we would like to protect:
data owners and clients. Fig. 3 shows the types of informatiat will be learned by each
server during the registration and query stages.

Stage K-server| V-server
Registration| Keys Values, ownership
Query Keys Values, client identities

Figure 3: Peekaboo privacy properties

Throughout both registration and query stages, we stripedeent the K-server from learn-
ing the values and the user identities. And we strive to leaknformation about keys to the
V-server. Thus each server, on its own (i.e., without anyirfpom the other server), cannot
determine the key-value bindings. Accordingly, we defireeftillowing privacy properties for
data owners and clients, respectively:

e Owner privacy: The K-server, on its own, should not learn the owner idergity the
list of values in key-value pairs during the registratiom @juery stages. Similarly, the
V-server, on its own, should not learn the keys in key-valaiespduring the registration
and query stages.

¢ Client privacy: The K-server, on its own, should not learn the client idgrditd the list
of values in the query results during the query stage. Sityjlne V-server, on its own,
should not learn the client’s queried keys during the quaages

2.3 Limitations

The Peekaboo privacy properties are general, but haveationits.

We note that the data ownership is stored together with theesan the key-value bindings.
In general, the data ownership can be regarded as an atalsgbciated with the values for
clients to further communicate with owners after search.(@lownloading data in keyword
search, or accessing services in a server discovery systmekaboo requires that values do
not leak user privacy when associated with owner identittes a small number of applications
where values should not be associated with the owner it (&.g., user location service), we
can add one more server (e.g., wireless access point) ts agiraxy talking to the V-server on
behalf of the users.

The Peekaboo search protocol is vulnerable to on-lineaiatly attacks. It allows any
client interested in retrieving the key-value pairs to perf search. In some applications, the
key space may be small (e.g., stock quote dissemination)s &lclient can enumerate keys
in the queries to find out all the stored key-value pairs. \Watlsuch dictionary attacks to be
on-line so that they can be detected and stop. To completelyept dictionary attacks, we
should limit the search to only authorized clients usingeasacontrol and user authentication
mechanisms, which will be discussed in Section 4.

V-Server K-Server

Alice vé\ ~R1 | > K%‘
2 I

v R21 P K3

Bob V) | R31 NS

Ve R4 s k2

’ b

Figure 4: Using rendezvous numbers to bind the keys and theva

3 The Peekaboo Search Protocol

In this section, we describe the Peekaboo search protoaan@ client query of a key, Peeka-
boo servers should return a list of values matching the kelewlch server, in isolation, should
not be able to determine the key-value bindings.

An important observation is that key-value pairs releaserimation only if they are to-
gether. For example, in stock quote dissemination, negtmrk names nor quotes alone are
useful. It is the combination of them that matters. Thus tlnndea is to split the pairs and
introduce a layer of indirection in between. Specificallg store the keys at only the K-server
and the values at only the V-server. To bind the keys and tireggonding values, we generate
a list of rendezvous numbets serve as the layer of indirection (see Fig. 4). Each kdyeva
pair is associated with a unique rendezvous number gederatelomly by the V-server, and
forwarded to the K-server. Owners and clients both comnaieionly with the V-server to
publish data and to perform search. Given a client queryy betvers work jointly to look up
guery results using rendezvous numbers.

Next, we first present the basic Peekaboo search protocathvid based on public key
cryptography. We then describe a protocol extension to atiguvanced queries where not
only matched values but also matched keys can be returnaegkiny gesults (e.g., fuzzy match).
For clarity, we use upper cage€,, K, . . . to denote keys in the key-value pairs, and use lower
casek, ko, . . . to denote encryption keys that will be needed.

3.1 The Basic Peekaboo Protocol

In the basic Peekaboo protocol, the system is configured avigiimgle V-server and a single
K-server. Owners and clients interact only with the V-serzaring the communication, keys
will be forwarded to the K-server without being exposed te Yhserver, while the values are
stored and returned by the V-server. To simplify our desicnip we assume the system has a
single ownerAlice who wants to register a list of key-value pajis;, V1), ..., (K,,V,),and a

single clientC harlie who wants to retrieve the value corresponding to akeyThe K-server’s
public key ispk. The protocol works as follows (illustrated in Fig. 5):

V-Server K-Server
Alice PRV plice, vi, Ri> | EPKKD. R <Ki, Ri>

""""" registration stage| || VT
1 Epk(Ks) Epk(Ks), Rs ; match
| Charlie <Charlie, Rs> <Ks, Rs>
‘ - ,
| Alice, Vi Rs, Ri
""""" query stage | | |

Figure 5: The basic Peekaboo search protocol

Registration stage:

Stepl: To publish a key-value paifK;, V;), Alice encrypts the keys; with the K-server’s
public keypk, and submits the encryptiafi,.(X;) and the corresponding vald€ in plaintext
to the V-server:

Alice — V-server: E,.(K;),V;

Step2: On reception of the registration request, the V-serveraexérthe valuéd/; and the
owner identityAlice from the message, generates a unique rendezvous numband stores
the following entry locally:

V-server: (Alice,V;, R;)

The V-server then forwards the encryptifi, (K;) to the K-server, attaching the newly gener-
ated rendezvous number:

V-server— K-server: E,.(K;), R;

Step3: The K-server decrypt&,, (k) using its private key to g€t’;, and registers the tuple
(K;, R;) locally:

K-server: (K;, R;)

Query stage:

Stepl: To search based on a kéy;,, the client Charlie encrypt&’; with the K-server’s
public keypk, and submits the encryptidi,, () as the query to the V-server:

6

Charlie— V-server: E,.(K,)

Step2: The V-server generates a unique rendezvous nuiibér the query, and registers
the tuple of the client identit€harlieand R, locally:

V-server: (Charlie R;)

The V-server then attaches the rendezvous nurib&w the original query, and submits a search

request to the K-server:
V-server— K-server: E . (K,), R,

Step3: On reception of the search request, the K-server decryptenicryption in the
message using its private key, and obtains the queriedikeyThe K-server then performs
search locally. If a keys; matches the quer(, based on some application match criteria (e.qg.,
numerically equal or string match), the K-server extraotsdorresponding rendezvous number
R;, and returns the tupléR,, R;) as the query result to the V-server, meaning the key with
rendezvous numbek; matches the key with rendezvous numker

K-server— V-server: (R, R;)

Stepd: Given the query resul®; from the K-server, the V-server looks up the corresponding
valueV; and the owner identitplice as the final query result to return to Charlie:

V-server— Charlie : Alice, V;

We note that in the query stage, no owner participation isieé¢o perform search.

Discussion

We can easily see that the above protocol satisfies both #nehspurpose and the privacy
properties we defined in Section 2. Throughout both stagessicommunicate only with the
V-server, which store and return values. With keys encpiader the K-server’s public key,
the V-server has no access to the keys, while the K-servardisdormation about the values or
which user submitted the keys. Each rendezvous humberasiassd with a unique key-value
pair so that the V-server can select the right values tomedarthe query results.

The storage overhead at each server is linear in the numhewdérs and the number of
key-value pairs in total. The communication overhead igdinin the number of query results.
Both overheads are comparable to legacy servers. The datgnhy, however, will be slightly
higher with public key encryption/decryption and one manend-trip communication between
the V-server and the K-server. We will explore the protocarbead in Section 6.

Values sometimes are just owner identities (e.g., on-laragplayer match). In such cases,
we can reduce the storage overhead at the V-server by usilopeBilter [2] to summarize the

7

V-Server K-Server

<Alice, Vi, Ri> <Ki, Ri>
query stage A
‘ Epk(Ks, sk) Epk(Ks, sk), Rs | match
i - = - T y
i Charlie <Charlie, Rs> <Ks, Rs>
| Alice, Vi, Esk(Ki) Esk(Ki), Rs, Ri

Figure 6: Supporting advanced queries {s a one time symmetric encryption key generated
by Charlie.)

list of rendezvous number?. . . ., R, corresponding to the key-value pairs of each owner. To
reduce the storage overhead at the K-server, we can builw/arted index table [29] based on
the keys.

During the data registration, rendezvous numbers can algeherated by owners based on
data context to reduce the query result message size. Fopéxawith keyword prefix match,
an owner can select the rendezvous numbers such that theids/with the same prefix (e.g.,
app*) will share the same digital prefix in the correspondimgdezvous numbers (e.g., 025%).
Therefore, at the query stage, the K-server can summarnzequbry results as a rendezvous
number rangeR;, R;| to reduce the result message size. However, in this casegiiiezvous
numbers should be generated from a large space to avoidatstfifbm different owners.

3.2 Supporting Advanced Queries

In many applications, a client may not only want to get a lisvalues matching the query,
but also be interested in seeing the matched keys as wellexeonple, in a service discovery
system, a client searching for printers on the fourth flodt e interested in getting all the
attributes regarding the list of printers in order to make bbest selection. Another example is
keyword search where a client is searching for all file naneesaining the string “app*”.

To support returning matched keys in the query results, lieatccan attach a one-time
encryption key protected by the K-server’s public key indjuery. For better performance, we
can use symmetric keys instead of public keys. As shown in@;igefore returning the query
results, the K-server encrypts the matched keys using iget grovided encryption keyk, and
sends the encryption together with the query results to tkerver.

4 Access Control and Authentication

In many applications, it is important for the owners to cohthich clients can search which
data. For example, in stock quote dissemination, quotesldhi®e searched only by paying

customers. Moreover, without access control, a maliciaes gan carefully perform on-line
dictionary attacks to slowly gather information about &k tkey-value pairs. Therefore, we
need access control and user authentication mechanisms/&npunauthorized client queries.

Since both the users and the servers may be located at diffenganizations and adminis-
trative domains (ASs), Peekaboo cannot assume a global syzawe. It should support queries
of data from different owners seemlessly. More importanthlike traditional access control
and authentication, the Peekaboo access control mecraslsmld leak as little information
about the data as possible in order to preserve user prikawlly, since search is a frequent op-
eration to be performed daily, both the access control atiteatication mechanisms should be
convenient to the users. Supplying account names or pads\abevery query is unacceptable
to the clients. Our design is guided by the following prineg

1. Inter-operability and expressivityl he system should support users from different orga-
nizations or ASs. Given a query, servers should return ahyuesults (which may be
from different owners) that the client is authorized to Seach owner should be able to
specify which client can access which key-value pairs basedifferent levels of data
sensitivity.

2. Privacy non-disclosureServers should not be able to infer the key-value pairs fitoen t
access control and user authentication information.

3. Convenience to the usdoth the access control specification and the user autlatiotic
should be convenient. Owners should be able to revoke egisitcess permissions of
their data easily. Clients should not need to know which @ataers can potentially
satisfy their queries prior to search.

With all users talking only to the V-server, one natural cieois to authenticate users at
the V-server. In order to prevent the V-server from perforgnon-line dictionary attacks by
granting access permissions to itself, we must enforcesaccentrol at the K-server. For
inter-operability, the Peekaboo access control and ugéeatication mechanisms are based
on public key cryptography and we assume an available pkéyjiénfrastructure (e.g., [17]).

4.1 Access Control

A straightforward way to handle access control is to let eaeher create an Access Control List
(ACL) for a key value pair, specifying a list of clients thatrcaccess the pair. The owner then
stores this ACL together with the corresponding keys at treekrer for permission checking.
However, the client information in ACLs can be used to intee torresponding key-value
pairs. For example, an ACL with a list of New York clients migiorrespond to a key-value
pair related with New York. Moreover, it is difficult to perfm permission checking at the
K-server without client identity information.

We propose a novel solution that hides client identities@LA while still enforcing access
permission checking. The idea is to use client pseudonyrtigeiccess control specification.
The client pseudonym mappings are created by each data avdegrendently. They are kept
secret to the Peekaboo servers, and released partiallg tdiémts at the query stage for per-
mission checking. We describe the scheme using the samepéxdescribed in Section 3.1.
Registration stage:

Stepl: For each key-value pa{iis;, V;), the owner Alice creates an access control4i6tZ;
consisting of a list of client$C, C,, ...} that can search the pair:

Alice <KZ, V;,ACLJ
ACL7 == {CI; 02, .. }

For each clienC; in AC'L;, Alice creates a pseudonyfrj, and replace€’; with C! in AC L;:
Alice : ACL; ={C},C5,...}

To register(K;, V;) with access control information, Alice encrypts both thg k€& and the
correspondingAC'L; with the K-server’s public keyk so that only the K-server will be able to
see the key and the access control specification. To hellvegbe client-pseudonym mapping,
Alice also encrypts the client pseudonyihwith C;’s public keypc;. Finally, Alice submits the
encryptionE,(K;, ACL;), the corresponding valug;, and the client-pseudonym mappings
{{C1, E), (C)), (Ca, Epe, (Ch)), ...} to the V-server:

Alice — V-server : E,(K;, ACL;),V;,
{<Clv Epcl (C{»: <027 EPC2 (Cé»a .- }

Step2: On reception of the registration request, the V-serverstegs the ownership, the
value, and the client-pseudonym mappings locally:

V-server : (Alice, V;, R;)
{(C1, Bpe, (C1)) (Ca, Epe, (C3)), -}

The V-server then forwards the encryptii, (K;, ACL;) as well as the newly generated ren-
dezvous numbeR; to the K-server:

V-server— K-server: E,,(K;, ACL;), R;

Step3: The K-server decrypts the message and registers the datharmatcess control
information locally:

K-server: (K;, R;, ACL;)

10

Query stage:
Stepl: To search based on a kéy,, the client Charlie first submits a "ready-to-search”
request to the V-server with his identi@harlie:

Charlie — V-server: Charlie

Step2: Given the "ready-to-search” request from Charlie, the Mseextracts Charlie’s
pseudonym based on the client-pseudonym mappinlriie, E,.(C')) if one exists, and
presents the encrypted part to Charlie:

V-server— Charlie: E,.(C")

Step3: Charlie decrypts the message and finds out his pseud6hyio send his query,
and his pseudonyry’ to the K-server without leaking the information to the Vagar Charlie
re-encrypts botli’; andC’ with the K-server’s public keyk, and sends the encryption back to
the V-server:

Charlie— V-server: E,.(K,,C")

Stepd: The V-server creates a rendezvous nuntbgrand registers the entfy’ harlie, Ry)
for this query locally:
V-server: (Charlie Ry)

The V-server then forwards the encrypted message from i€harthe K-server, attaching the
rendezvous numbei,:

V-server— K-server: E,.(K,, C'), R,

Step5: On reception of the query, the K-server decrypts the enedypart, and gets both
the queried key<, and the corresponding client pseudongin The K-server then performs
both search and access permission checking. Only thosg tparlts that are allowed to be
accessed by Charlie’s pseudongt(e.g.,R;) will be returned to the V-server:

K-server— V-server: R, R;

Step6: Finally, the V-server looks up the values based on the Kegeeturned rendezvous
numbers, and sends the query results back to Charlie:

V-server— Charlie : Alice,V;

Discussion

Access control checking is only performed on private datar gublic data that can be
searched by anonymous clients, Alice simply tags them asligiwat both the K-server and the
V-server for better search performance.

11

To supportgroups Alice can create a pseudony@ for each groups in ACL specifica-
tion. For each membaer; in GG, Alice encrypts the group pseudony@ together withC;’s
pseudonyn®; usingC;'s public keypc;, and obtains the encryptidi,., (C;, G). Finally, Alice
sends the client-pseudonym mapping with groups to the ¥eseluring the data registration:

Alice — V-server: (C;, E,.,(C}, GQ))

To revoke a client;'s access rights on a particular key-value pdif;, V), Alice simply
needs to remove’;’s pseudonynC; from the correspondinglC'L; at the K-server. Such per-
mission revocation can take effect immediately withouhgenoticed by the client at all.

Since each owner selects client pseudonyms independantlient may need to decrypt
multiple different pseudonyms from different owners dgriihe query stage. To reduce the
guery overhead, pseudonyms can be cached at the clieninsille first query, and reused at
subsequent queries so that the V-server does not need enpergcrypted pseudonyms to the
client for decryption every time. An alternative solutiantd let each client select a unique
pseudonym and register it at different owners for permrssipecification. When submitting
gueries, a client simply attaches their pseudonym with therigd keys. However, with a
unique pseudonym for each client, if two owners Alice and Both have granted permissions
to the client Charlie, Bob could perform search, pretendonbe Charlie by using Charlie’s
pseudonym, and easily find out all the key-value pairs fromeAlhat are search-able by Char-
lie to break Alice’s privacy.

During the query stage, only clients can decrypt and getdhesponding client-pseudonym
mappings. Thus a cheating client could modify them. To prepseudonym modification,
owners can select pseudonyms from a large space (e.g.,t528dtihat the K-server can easily
detect a non-existing pseudonym to catch a misbehavingtclie

4.2 User Authentication

For inter-operability, the Peekaboo user authenticagdmaised on conventional digital signa-
tures [9]. To defend against replay attacks, we use timeysdaand assume loosely synchro-
nized clocks. When submitting a query to the V-server, tlentlCharlie generates a timestamp
T, signs the timestamp and the encrypted quewy,.(K, C') with Charlie’s private key, and
sends the timestamp, the encrypted query, and the sigrattive V-server irStep3:

Charlie— V-server: T, B, (K, C'), Sig(T, By (K, C'))

On reception of the message, the V-server verifies the sigmasing Charlie’s public key,
which can be obtained from a public key infrastructure. TkseXer then extracts the encrypted
query E,.(K,, C") from the message, and forwards it to the K-server to perfaanch using
the process described above. For message integrity andieotidlity, we assume a protected
channel such as TLS [27] between the K-server and the V-serve

12

In summary, the revised Peekaboo protocol with accessalard user authentication is

illustrated in Fig. 7.

V-Server

Epk(Ki,C), Vi
Charlie, Epc(C’)

<Alice, Vi, Ri>
Charlie, Epc(C’

A

1. Charlie
2. Epc(C)
3. T, E, Sig(T, E)

(E = Epk(Ks,C")
6. Alice, Vi

query stage

v

| Charlie <Charlie, Rs>

Figure 7: The revised Peekaboo search protocol with acoedsot and user authentication

5 Deployment and Vulnerabilities

In this section, we discuss the various issues in systenogey@nt. We also outline the types
of malicious attacks that Peekaboo is vulnerable to andesigmpssible solutions. Completely
addressing these attacks is beyond the scope of this paper.

5.1 Deployment Issues

A basic assumption of the Peekaboo search protocol is teaKiberver has no information
about the user identity or the data values. Therefore, imledeployment, the K-server should
not have access to the network packets routed toward the/&rse

Local area networkslf both the K-server and the V-server are located on the safié, L
they should be configured at different network segments, (gegarated by bridges). In a cam-
pus or company scale network with firewalls, we can confighes\tserver to sit inside the
firewall while the K-server can be configured outside the faégo that it does not see the user
traffic (Fig. 8).

Wide area networks.If both servers are on a wide area network, we require theriese
not be configured on transitive network backbones. NotethigakK-server and the V-server can
belong to different organizations or ASs. Therefore, ea&hcAn deploy a V-server to accept
user queries, while the K-server can be provided by a diitesS (Fig. 9 (a)).

13

(\ (\ Backbone LA! Firewall
B B K-Server

Bridge | V-Server

(a) Bridged LAN (b) W{th firewalls

V-Server

K-Server

Figure 8: Deploying Peekaboo in LAN

(a) WAN (b) Chord overlay networks

Figure 9: Deploying Peekaboo in WAN and overlay networks

Overlay networks. We are open to discussions of how to deploy Peekaboo on gverla
networks, but here are some suggestions. In an overlay riesmch as Freenet [5], data and
gueries are routed incrementally in the application layaus users can encrypt their identities
(e.g., IP addresses) using the V-server’s public key sotheaK-server does not know who is
the true message initiator. InRistributed Hash Tabl€DHT) overlay network, for example,
Chord [25], each host can serve as a V-server or a K-servereyAv&lue pair can be routed
based on the hashing of the keys to locate the V-server, wiel&-server can be the very next
successor to the V-server on the Chord ring (Fig. 9 (b)).

5.2 \Wulnerabilities and Possible Solutions

Both the K-server and the V-server could be active. For exantpe V-server could produce
bogus search results to the clients without forwarding txerigs to the K-server. Similarly,
the K-server could return arbitrary query results withoetfprming the actual search. To de-
tect misbehaving servers, we can use both owner-initiaiddiag and client-initiated auditing
based on random sampling so that the more the server miggglthe higher the probability
that it will be caught. For server non-repudiation, bottvees can sign their responses in query
results.

14

V-Server Al A2 An K-Server

| Alice — "= <Alice,Va,Ry> — > KRy, R}—— <R, R > ... |KRh-1, R »—» | <Ka, Rn3

,,,

E(Ks) E(Ks),R’ E(Ks), R E(Ks), Rl match
3 I — R — e
! Charlie <Charlie, R} > <Re,R'p <RORP [<Rir Ry <Ks, R>
! -~ - -~ -~
Alice, Va Ry, R Ry, Ry R, R

Figure 10: The Peekaboo multi-server search protocol

A more serious threat is server collusion, where the K-seanel the V-server cooperate
to reconstruct the key-value pairs by matching rendezvausbers. One approach is to in-
troduce further layers of indirection by adding auxiliagngers in the system. As illustrated
in Fig. 10, all the servers connect with each other into aegerhain. A registration request
(Ey(K,), Va) is first submitted to the V-server, who creates a rendezvaosber?, and for-
wards (E,;(K,), Ry) to the first auxiliary server in the chain. Each auxiliaryveer4;, on
reception of the message, randomly generates a new rengeaumberR; to replace the old
oneR; ; in the message to forward to the next hop server, until theesifinally reaches the
K-server. Similarly, a user query is also routed incremigntdong the server chain from the
V-server to the K-server. Query results are then propadade#l in the reserve direction. To
tolerate the brute force collusion of up#te- 1 servers, we need at ledst 2 auxiliary servers
between the K-server and the V-server.

However, the multi-server Peekaboo protocol is vulnerabtening attacks with the collu-
sion between the K-server and the V-server. For examplb,dssters could jointly measure the
time needed between the V-server forwarding a query and tkerter receiving it, or submit
gueries one by one to learn the data and the queries. To teisgah attacks, we can use solu-
tions from [7, 26]. For example, each auxiliary server caffdoand reorder messages within a
small time frame. In addition, auxiliary servers can setalefclients to audit the K-server and
the V-server by sending a batch of queries each time to détpeotries are hold and submitted
from the V-server one by one.

Peekaboo servers could perform traffic pattern analysisfes a particular key-value pair
by measuring the frequency of the corresponding rendezroasoer in query results. There
are two approaches to mitigate such threat. First, ownerseggeat the registration process to
update the key-value pairs more frequently. Second, owssrgurposely add noise in their
data by allowing false positives in the query results.

With access control enforced by the K-server, a maliciouselrer could submit queries as
a client itself, returning all the rendezvous numbers okthquery results that it is interested

15

in. One solution is to let the V-server check if the K-servas lieturned a private data entry
whose owner has not granted any permission to the clienttfigre is no corresponding client-
pseudonym mapping created by the owner). Meanwhile, ther¥es can report the client
guery and the K-server returned query results to the cosreipg owners based on random
sampling to catch a misbehaving K-server. For strongerrgg@gainst a malicious K-server,
the V-server can trade off performance to check if the twbeitexts about client pseudonyms
(e.9.,E,.(C") andE,;(C")) correspond to the same plaintext (ed’) using techniques such as
non-interactive zero-knowledge proofs [3], and to detenisbehaving K-server or client.

Finally, like many other distributed systems, both the IKkveeand the V-server are vulner-
able to various forms of denial-of-service attacks.

6 Example Applications and Performance

In this section, we describe an example application of filerisig such as Napster [20] to
illustrate how Peekaboo can be used to perform keywordis&atisout loss of user privacy. We
then evaluate the protocol overhead using trace-basediqres and compare its performance
with regular centralized servers.

In a Napster-like file sharing system, owner store files orrfdenes at servers. Each file
has a owner-assigned local ID. Clients submit queries awdels to the servers. If a file or
file name matches the query, the servers return the localfilenid the corresponding owner
identity (e.g., IP address) as query results. Clients can ttownload the file directly using the
local file ID from the corresponding file owner.

Using the Peekaboo protocol, in the registration stage eosvregister the file names (or
file content) as the keys, and the local file IDs as the valuéiseaK-server and the V-server,
respectively. For each file, the V-server randomly gensratenique 128-bit string as the ren-
dezvous number. To support efficient query search, the xesepmputes a hash based inverted
index of rendezvous numbers, while the K-server computésvanted index table of keywords
based on file names (or file content). In the query stage tslsrbmit keywords as the queried
keys, and get a list of matched values represented as thiefiled®s and the corresponding
file owner IP addresses. When advanced queries are suppdrezd matched keys should be
returned in query results, the servers also return theflistaiched file names (or relevant file
content) encrypted by the client provided one-time endoyypitey.

To evaluate the Peekaboo protocol, we implemented botlstgpservers to support key-
word search of file sharing. We use a Gnutella [12] trace gathat CMU to conduct trace
based experiments, and evaluate the system performanue fiolfiowing three aspects: (1) the
storage costs at both servers, (2) the search latency peddsy the client, and (3) the overhead
of access control and user authentications. For compangseralso implemented a regular
centralized server that performs both data registratiahcpreries, and repeat our experiments.
All the servers are implemented in C++ in Linux, running ol BBOMHz machines with 128
RAM in a 10BaseT Ethernet LAN. The public key encryption uies RSA algorithm [22]

16

with 1024-bit keys, and the one-time symmetric key encoiptises the AES algorithm [1]
with 128-bit keys. Both algorithms are implemented by thepg@a++ library (version 4.2) [8].
Each data point in the figures below is the average of ten runs.

6.1 What are the Storage Costs at Both Servers?

—— Regular server
-=a- V-server
-0 K-server

Index table size (Kbyte)

10° 10* 10° 10°
Number of files indexed

Figure 11: Index table size vs. number of indexed files

To evaluate the storage costs, we extract file names frometirels reply messages in the
Gnutella trace and register them using a fake owner progrmamlating different file owners
who have submitted the reply messages in the trace. Fig.dvsstie index table sizes of the
Peekaboo servers and the regular centralized server asrtboh of the number of indexed
files. We can observe that the storage costs increase lresmthe number of indexed files at
the servers. The K-server index table sizes are slightgelacompared with a regular server,
while the V-server index sizes are only about a third of thafsseregular server. In general, the
storage costs are small at both types of Peekaboo servers.

6.2 Whatis the Search Latency Perceived by Clients?

In this section, we present the search latencies of the Beelgarotocol. We implemented a
client program running at a third machine (PIll 550MHz witt81RAM) in the same Ethernet
LAN. For each query, the servers return the first 100 matcHesl éis query results. Fig. 12
shows the search latencies measured by the client. Compiétethe regular server, Peekaboo
incurs much higher search latency. When we use the advancstkesg to support returning
matched keys (i.e., matched file names), the search latecogases only slightly compared
with the basic Peekaboo protocol.

To further examine the search latency, we list the timestdpararious steps of processing
a query in Fig. 13. We fix the number of files indexed to be 100,Ghd show both the

17

N
o

Il Regular
[Regular-advanced —

] Peekaboo — 1
[Peekaboo-advanced

w
a

w
o

3]

3

Average search latency (ms)
= [nN N
o o

o (4]

1000 10000 100000
Number of files indexed

Figure 12: Peekaboo search latency

| | Total | Network| Look up| RSAen.| RSA de.| AES en.| AES de.| Other|

Mean 36475 6427 3041 1575 23834 581 781 236
Std dev 2869 2831 53 10 38 14 1 5
Percentagg 100.0%| 17.6% 8.3% 4.3%| 63.34% 1.6% 2.1%| 0.6%

Figure 13: Time to process a search request using 1024-Bitke$s and 128-bit AES keys
(18).

mean and the standard deviation of latency as well as themp@ge of the total latency. The
“Total” column corresponds to the time elapsed between liratcsubmission of a query and
getting back the reply in plain text. During the query prateg, RSA decryption and network
transmission are the most expensive steps, whereas AE§pénarand decryption are fast,
accounting for less than 5% of the processing time in totak ook up” time includes both
the K-server lookup and the V-server lookup, and depende@niumber of files indexed. The
“Other” line consists of the time spent for the V-server tdféuand forward client requests to
the K-server as well as the time spent to buffer and forwar® &Bcrypted replies back to the
client. In general, the search latency is acceptable toliets since the network latencies on
WAN are usually or the order of tens of milliseconds. By optimg the security operations
(e.g., by using cryptographic routines implemented in wvare), we expect the performance
penalties due to security to decrease. Furthermore, ifitsli@ill submit multiple queries in a
row, they can set up symmetric session keys with the K-séovencrypting/decrypting queried
keys to amortize the costs of RSA decryption.

18

6.3 What is the Overhead of Access control and Authenticatio?

The Peekaboo access control and user authentication mgetsantroduce the following extra
steps during the query processing: (1) client signatuneisiggand verification, and (2) client
pseudonym encryption and decryption. While the digitahaigre based client authentication
has a relatively constant cost, the cost of decrypting pseyds can grow linearly with the
number of client pseudonyms assigned by different ownesguRately, such expensive com-
putations are performed by the clients which will less kkeécome overloaded compared with
the servers. In addition, the client pseudonyms can be daahthe client side to reduce the
search latency.

180

1601

& 140f

.
o
=]

.
o
S

Average search latency
2 o
3 8

IS
S

N
S

i

12 4 12 4 12 4 12 4
1000 files 100000 files 1000 files 100000 files
No caching Caching

o

Figure 14: Search latency with access control and user atith&@on. The client is associated
with 1, 2, 4 pseudonyms, respectively

Fig. 14 shows the search latency with the Peekaboo accesslcamd user authentication
mechanisms by varying the number of indexed files and the puwitclient pseudonyms. For
comparison, we list the processing time spent at varioutienas well as the time spent on
network transmission. Without pseudonym caching, thentBede processing takes the longest
time due to the expensive RSA decryptions. In general, tbhieease of the number of files has
little effect on search latency. The client side processimg increases proportionally to the
number of client pseudonyms, while the server side proogdaiency increases only slightly
with the increasing number of client pseudonyms. By caclulgnt pseudonyms, we can
greatly reduce the client processing time, and therefateae the overall search latency.

7 Related Work

Related work comes from four areas: searching over enahygdéa, anonymous communica-
tions, private information retrieval, and multi-party cputation.

Song, Wagner, and Perrig have proposed a cryptographicnecfa search on encrypted
data [23] at untrusted servers. In their scheme, data iedtor encrypted forms at servers.

19

A client query is also encrypted and the servers perfornchday sequentially checking if the
guery string and the encrypted data strings follow the saatteiqms. Since both data and queries
are encrypted, their schemes require the clients to sharseafme encryption keys used by the
data owner in order to perform search, limiting the searchegerformed by highly trusted
clients. In addition, the number of cryptographic openagigrow linearly with the document
lengths, limiting the amount of data to be stored and sedtche

There has been a large body of literature on anonymous comatioms to prevent discov-
ery of source-destination patterns. In general, therevemaypes of approaches for achieving
user anonymity: proxy based approaches and mix based aja®aln the proxy based ap-
proaches, the system interposes an additional proxy batteesender and the receiver to
hide the sender’s identity from the receiver. Examplesudelemail pseudonym servers [19],
Janus [15], and Crowds [21]. The Peekaboo V-server bears somilarity with a proxy in that
all user traffic goes through it. However, the primary pugosthe Peekaboo protocol is not to
hide user identities, but rather to perform search witheutaling the key-value pairs. Thus the
Peekaboo V-server is not only a proxy as it actively paréits in storing and returning values.
In the mix based approaches (e.g., [7, 26]), a chain of psdie interposed between the sender
and the receiver to achieve unlinkability between the seadd the receiver. We showed in
Section 5.2 where we used mix based approaches to preveng tatiacks in the multi-server
Peekaboo protocol. Compared with these approaches, Reegeaiiects key-value pairs as well
as user identities. Our two-server protocol implementasonuch more lightweight and thus
more practical to use. However, Peekaboo does not provililekability between key-value
pairs in the presence of server collusion.

The problem of Private Information Retrieval (PIR) [4, 1Hshbeen well studied so that
clients can access entries in distributed databases witeeealing which entries they are inter-
ested in. These works model the database as-lih string, and the user retrieves thh bit,
while servers gain no information about the indeAlthough PIR schemes can achieve very
strong security, they are generally not practical to usecolmtrast, Peekaboo protects both the
owner privacy and client privacy in more general key-valearsh systems. It requires only 2
servers and is efficient in search performance.

Secure multi-party computation (SMC) is also intenselylsd [13] where datd are di-
vided and stored at servers, which jointly perform a computation to recondtilovhile no
n — 1 servers can compute. Key-value search can be viewed as a special type of muity-pa
computation. However, SMC solutions usually have high cgi@aon and communication
complexity, and thus are not efficient enough for practica. u

8 Conclusion

In this paper, we have proposed a protocol caRedkabopfor performing general key-value
search at untrusted servers without loss of user privacgcifgally, given a set of key-value
pairs from multiple owners that are stored across untruséeders, Peekaboo allows a client

20

to search these pairs in such a way that each server, inigglaannot determine any of the
key-value bindings. Since key-value pairs release inftionaonly if they are together, our
main idea is to separate the key-value pairs and store thedifferent servers. Supported by
access control and user authentication, Peekaboo is: dd)esi that search can be performed
only by authorized clients while protecting the privacy otlbthe data owners and the clients,
(2) flexible in that it is applicable to any type of key-valieasch, and can be easily extended to
support advanced queries, and (3) efficient in that it hadl steeiage cost and search latency,
and hence practical to use today.

References

[1] AES. http://csrc.nist.gov/CryptoToolkit/aes/rijael.

[2] B. Bloom. Space/time trade-offs in hash coding withalidle errorsCommnications of the ACM
13(7):422-426.

[3] M. Blum, A.D. Santis, S. Micali, and G Persiano. Non-iratetive zero knowledgeSIAM Journal
of Computing20(6):1084-1118, November 1991.

[4] B. Chor, O. Goldreich, and M. Kushilevitz, E.and Sudamivéte information retrieval. INEEE
Symposium on Foundations of Computer Scieh885.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freerfetistributed anonymous information
storage and retrieval system. Dresigning Privacy Enhancing Technologies:Internatiokiébrk-
shop on Design Issues in Anonymity and Unobservability, &IR@00

[6] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthényoseph, and Randy H. Katz. An
architecture for a secure service discovery serviceMdmile Computing and Networkingages
24-35, 1999.

[7] Chaum D. Untraceable electronic mail, return addresmas digital pseudonym&€ommunications
of the ACM 24(2):84-88, February 1981.

[8] Wei Dai. Crypto++.
http://www.eskimo.com/“weidai/cryptlib.html.

[9] Digital signature standard (DSSjederal Information Processing Standards Publication,18ay
1994,

[10] D. Garlan, D. Siewiorek, A. Smailagic, and P. SteerkidProject Aura: Towards distraction-free
pervasive computing. IEEEE Pervasive Computing pages 22-31, 2002.

[11] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Reating data privacy in private information
retrieval schemeslournal of Computer and System Sciences (JO&E%3):592—-629, 2000.

[12] Gnutella hosts. http://www.gnutellahosts.com.

21

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

O. Goldreich. Secure multi-party computation. Firstsion posted in June 1998. Final revision
posted October 2002.

U. Hengartner and P. Steenkiste. Protecting accessdpl@ location information. IRroceedings
of the First International Conference on Security in PeivasComputing2003.

The Lucent Personalized Web Assistant. http://wwlitlads.com/project/Ipwa/history.html.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.t&ig D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OcearSthn Architecture for Global-
Scale Persistent Storage. ASPLOS 2000November.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Autheation in distributed systems: Theory
and practice ACM Trans. Computer Systeni€)(4):265-310, November 1992.

U. Leonhardt and J. Magee. Security considerationsfdistributed location servicelournal of
Network and Systems Managemd&nb1-70, 1998.

D. Mazieres and M. F. Kaashoek. The design and operafian e-mail pseudonym server. 3th
ACM Conference on Computer and Communications Secd8§8.

Napster. http://www.napster.com.

M.K. Reiter and A.D. Rubin. Crowds: Anonymity for welatrsactions.ACM Transactions on
Information and System Securit(1):66—92, November 1998.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method fortaiming digital signatures and public-
key cryptosystemsCommunications of the ACN7(2), February 1978.

Dawn X. Song, D. Wagner, and A. Perrig. Practical solsifor search on encrypted datallHEE
Symposium on Security and Privadfay 2000.

M. Spreitzer and M. Theimer. Providing location infaation in a ubiquitious computing environ-
ment. InProceedings of SIGOPS’9Bages 270-283, 1993.

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and Hldkaishnan. Chord: A scalable peer-to-
peer lookup service for Internet applications.Arceedings of ACM Sigcommugust 2001.

P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonysnconnections and onion routing. In
Proceedings of the 1997 IEEE symposium on Security and &¢it897.

The TLS Protocol. http://www.ietf.org/rfc/rfc2248&t.

M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaumatuog Objects in Wide Area Systems.
In IEEE Communications Magazinpages 104-109, 1998.

I.H. Witten, A. Moffat, and T.C. Bell. Managing gigal®g: Compressing and indexing documents
and imagesSecond ed. Morgan Kaufmant999.

22

