
Towards Database Firewall: Mining the Damage Spreading Patterns

Kun Bai Peng Liu
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

{kbai, pliu}@ist.psu.edu

Abstract

Access control and integrity constraints are well known ap-
proaches to ensure data integrity in commercial database systems.
However, due to operational mistakes, malicious intent of insiders
or vulnerabilities exploited by outsiders, data stored in a database
can still be compromised. When the database is under an attack,
rolling back and re-executing the damaged transactions are the
most used mechanisms during system recovery. This kind of mech-
anism either stops (or greatly restricts) the database service dur-
ing repair, which causes unacceptable availability loss or denial-
of-service for mission critical applications, or may cause serious
damage spreading during on-the-fly recovery where many clean
data items are accidentally corrupted by legitimate new trans-
actions. To resolve this dilemma, we devise a novel mechanism,
called database firewall in this paper. This firewall is designed to
protect good data from being corrupted due to damage spreading.
Pattern mining and Bayesian network techniques are adopted in
the framework to mine frequent damage spreading patterns and to
predict the data integrity in the face of attack. Our approach pro-
vides a probability based strategy to estimate the data integrity on
the fly. With this feature, the database firewall is able to enforce a
policy of transaction filtering to dynamically filter out the potential
spreading transactions.

1 Introduction

Transactional processing systems (e.g., database sys-
tems) have become increasingly sophisticated and been
critical to most cyber infrastructures, such as banking, e-
Commerce, military combat-field command centers, etc.
Data availability and integrity are crucial for these infras-
tructures. However, it is well known that system vulnerabil-
ities cannot be completely eliminated, and such vulnerabil-
ities can be exploited by skillful attackers.

The topic of surviving the database system from an at-
tack has recently received considerable attention because of
the increasingly critical role that database systems are play-
ing in web-based services. People have seen more and more

cyber attacks for a few reasons. For instance, more criti-
cal and valuable information is now processed through the
web, which is world wide accessible. In addition, an insuf-
ficiently protected web based service is not very difficult to
break through [20].

In general, web-based OLTP systems are often a
combination of the following components: web servers,
databases, and application specific code (e.g., server-side
transaction procedures). Usually, on one hand, back-bone
software infrastructure (e.g., the web servers and database)
is developed by the experienced developers who have com-
prehensive knowledge of the security. On the other hand,
the application oriented code is often developed under tight
schedules by programmers who lack security training. Ex-
perience with data-intensive applications (e.g., credit card
billing, online stock trading) has shown that a variety of
attacks can successfully fool traditional protection mech-
anisms. As we will overview shortly in section 3, there
are many possible attacks that could cause the integrity and
availability of database systems to be compromised.

Authentication based access control, integrity con-
straints [7], concurrency control, replication, and recovery
mechanisms are the major approaches deployed in current
database systems to guarantee the correctness, availability,
and integrity of the stored information and data. However,
these security techniques are very limited in dealing with
data corruption intrusions. For example, access control can
be subverted by the inside attacker or the outside attacker
who has assumed an insider’s identity. Integrity constraints
are weak at prohibiting plausible but incorrect data.

Once a database system is attacked, database systems
armed with current security technologies cannot continue
providing satisfactory services because the integrity of
some data objects is compromised. Simply identifying and
repairing these data objects by undoing and redoing still
cannot ensure the database integrity largely because of a no-
ticeable characteristic of transactional processing systems,
namely damage spreading. Suppose T1 is a malicious trans-
action and its writeset contains corrupted data objects. After

transaction T2, T3, T4 (also called spreading transactions)
read a data object oi that has been updated by T1 (in wT1),
data objects that are updated by T2, T3, T4 will also be com-
promised. In this way, the damage will spread out and we
say that the transactions T2, T3, T4 are affected directly or
indirectly by T1.

As we will see in section 2, current database security
technologies are very limited in handling damage spread-
ing. In this paper, we aim on the following question: When
a database system is identified to be under an attack by in-
trusion detection systems (IDS), how can “damage spread-
ing” be prevented while continuously providing data ser-
vices? We deal with transaction level attacks, and assume
that a good intrusion detection system with a bounded de-
tection latency is applied. These attacks leave a unique
fingerprint after them, namely damage spreading pattern.
We propose a novel database firewall prototype in this pa-
per, and an algorithm to mine the frequent damage spread-
ing pattern, and an algorithm to dynamically estimate the
data integrity using frequent spreading patterns. With these
features, the database firewall is able to enforce a policy
of transaction filtering to dynamically filter out the poten-
tial spreading transactions. Extensive experimental stud-
ies have been conducted to evaluate system prototype de-
veloped. It is shown by empirical results that the database
firewall can meet the requirements of continuously provid-
ing services in accordance with differential requirements of
data quality.

The rest of the paper is organized as follows. Related
work is addressed in section 2. Some definitions used in
this paper, the architecture of the database firewall, and an
example of how damage spreads are presented in section 3.
The framework of frequent spreading pattern mining is pre-
sented in section 4. The idea of predicting the integrity of
data objects using Bayesian network are presented in sec-
tion 5. Empirical studies are conducted in section 6. Con-
clusion and future work are included in section 7.

2 Related Work

Our database firewall prototype is built upon several re-
cent and ongoing researches to achieve the goal of dynam-
ically predicting dirtiness of data and preventing damage
from spreading by enforcing filtering policies on the fly.

First critical step towards our goal is intrusion detec-
tion (ID), which has attracted many researchers. Existing
methodologies of ID are in two categories, statistical pro-
file [12] and known patterns of attacks [13]. These ID sys-
tems indeed make the system attack-aware but not attack-
resistant. In addition, they focus on identifying attacks on
OS and computer networks and cannot be directly applied
to detect malicious transactions. Some works on database
ID [8][18][19] are suitable to detect malicious transactions

or abnormal behaviors in database systems. However, they
are unable to detect the damage spread by executing normal
transactions.

In [4], a fault tolerant approach is introduced to survive
and recover a database from attacks. A color scheme for
marking damage and a notion of integrity suitable for par-
tially damaged databases are proposed to develop a mecha-
nism by which databases under attack could still be safely
used. The assumption of this approach is that each data
object has an accurate initial damage mark. To overcome
these limitations, a broader perspective has been introduced,
namely an intrusion tolerance database system (ITDB) [5].
Unlike the color scheme approach, ITDB focuses on dy-
namically assigning the damage mark and dealing with the
negative impact of inaccurate damage marks. Some work
has been done on OS-level database survivability. In [6],
checksums are smartly used to detect data corruption.

Failure handling aims at guaranteeing the atomicity of
database systems. Checkpoint techniques [22] are widely
used to preserve the integrity of data stored in databases by
rolling back the whole database system to a specific time
point. However, all work, done by both malicious and in-
nocent transactions, will be lost. Attack recovery has dif-
ferent goals from failure handling. It focuses on malicious
transactions that have been successfully executed. For tra-
ditional database systems, Data oriented attack recovery
mechanisms [21] recover compromised data by directly lo-
cating the most recent untouched version of each corrupted
data, and transaction oriented attack recovery [3] mecha-
nisms do attack recovery by identifying the transactions that
are affected by the attack through read-write dependencies
and rolls back those affected transactions.

Many database attack recovery methods, such as [21]
and [3], stops the database service during repair. To
overcome this limitation, in [1], an advanced transaction-
oriented attack recovery algorithm is provided that unwinds
not only the effects of each malicious transaction but also
the effects of any innocent transaction. However, the al-
gorithm [1] does not prevent the damage from spreading
during the detection latency or the on-the-fly recovery pro-
cess. To overcome this limitation, in [2], an innovative mul-
tiphase damage containment approach is proposed, which
proactively contains (i.e., blocks accesses to) all the data
records damaged during the detection latency instantly af-
ter the malicious transaction is detected. This approach can
guarantee that no damage caused by malicious transaction
Bi will spread to any new update. However, the limita-
tion of multiphase containment is that it can cost substantial
data availability loss due to the initial containment phase
of this method in which a lot data items can be mistakenly
contained. Moreover, it may take a substantial amount of
time for those mistakenly contained data items to be un-
contained. As a result, current database survivability tech-

niques cause the following dilemma: they either stop (or
greatly restricts) the database service during repair, which
causes unacceptable availability loss or denial-of-service
for mission critical applications, or may cause serious dam-
age spreading during on-the-fly recovery where many clean
data items are accidentally corrupted by legitimate new
transactions..

3 Preliminaries

In this section, we first review a few most critical secu-
rity vulnerabilities, then introduce a set of formal definitions
used in this paper, and finally show an example of the SQL
injection attack that can cause serious damage to a database
system.

3.1 The Threat Model

In this paper, we deal with transaction level attacks in
database systems. Transaction level attacks are not new.
They have been studied in a good number of researches
[4][11][14]. Transaction level attacks can be done through a
variety of ways. First, the attacks can be done through web
applications. Among the OWASP top ten most critical web
application security vulnerabilities [17], three out of the top
6 vulnerabilities can directly enable the attacker to launch a
malicious transaction, which are listed as follows: (1) Un-
validated Input; (2) Cross Site Scripting (XSS) Flaws; (3)
Injection Flaws. Second, the attacks can be done through
identity theft. Finally, the attacks can be done through in-
sider attacks and insider attacks can be a more often used
means in launching malicious transactions.

3.2 Overview And Motivation

A database system is a set of data objects, denoted as
DB={o1, o2, . . . , on}. A transaction Ti is a partial order
with ordering relation <i as defined in [9]. The (usu-
ally concurrent) execution of a set of transactions is mod-
eled by a structure called a history. Formally, let T =
{T1, T2, . . . , Tn} be a set of transactions. A complete his-
tory H over T is a partial order with ordering relation <H ,
where: (1) H = ∪n

i=1Ti; (2) <H⊇ ∪n
i=1 <i.

Given a set of similar attacks A = {A1,A2,...,Ak} that
had happened, the attack history for Ai denoted as HA

i is
the transaction sub-history whose write set contains dam-
aged data object sets. An attack history HA

i , as shown in
table 1, starts when Ai happens and ends when Ai is de-
tected and it over T is also a partial order with ordering re-
lation <H . HA

i = {Ti < ri, wi >, ..., Tk < rk, wk >, ...},
where, Tk is affected by Ti directly if rk ∩wi �= ∅, or Tk is
affected by Ti indirectly if rk ∩wj �= ∅, i < j < k, and Tj

TransID ReadSet WriteSet Timestamp PatientID

0001 <A B D> <B C> 050617 P1

0002 <A C> <D> 050890 P2

. . .
0010 <E> <A> 061098 P1

.

Table 1. An Example of Attack History HA
i

is affected by Ti directly or indirectly, write set w contains
only bad data objects.

We propose a fine-grained mechanism to protect data ob-
jects stored in a database. Each data object oi is uniquely
represented by a triplet <t.id, c.id, r.id>, where t.id, c.id
and r.id denote the table, column, and row, respectively.
An itemset is defined as a non-empty set of data objects.
We denote an access sequence as = <s1s2...sm> by an or-
dered list of itemsets sm=(o1o2...on), where sm⊆wm is an
itemset updated by a transaction Tm at transaction time t,
and on is a data object. In table 2, each row represents an
access sequence. Although the access of objects largely de-
pends on the goal of an attacker, how the damage spreads
is determined by the predefined transaction scripts once the
attack is done. Given the attack histories HA

i , we observe
that attack histories of similar attacks have similar damage
spreading patterns. Hence, our research problem becomes
to discover the damage spreading patterns and use these pat-
terns to estimate the integrity of data objects when a new
attack is detected.

3.3 An Example of Causing Damage
Spreading

In this section, we provide an example of an SQL in-
jection attack that convinces the database application to run
SQL code that is not intended. The example is shown as
follows.

Example. SQL Injection Attack. Although end-users do not
interact with back-end database servers directly, if user input is
not sanitized correctly, it is possible that unauthorized users can
leverage the applications to corrupt the integrity of data objects
stored in back-end databases. As an illustration, consider the
transaction templates used in the real clinic OLTP application:

1. Templates: update Customer set TSales=TSales+ $amts,
. . . , Year Accu Amt= Year Accu Amt + $amty where
Cust Num = ’$pid’;
. . .
update Customer set Point =Point - $points,... where
Cust Num = ’$pid’;

2. Injection: $pid=’ OR Cust Num like ’100%

3. Result: update Customer set TSales=TSales+ $amts,
. . . where Cust Num = ’ ’ OR Cust Num like ’100%’;. . .

Patient Access Sequence

PID Transaction time t
P1 <(B C)a (A) (D E)>
P2 <(D) (B)>
P3 <(A C) (B D) (E)>
P4 <(A D)>
P5 <(B) (D) (A)>

a Each character denotes a data object represented by a
triplet (t.id,r.id,c.id).

Table 2. An Example of An Attack History HA
i

Grouped By Patient ID and Sorted By Trans-
action Time

The transaction script shown above is originally to up-
date the purchase accumulated at that moment of a customer
and calculate the reward points accordingly. However, if the
input parameters are not escaped correctly before inserting
into the query templates, it allows the attackers to change
the query structure by injecting a piece of SQL statement.
Thus, the where-clause is always true and some data objects
that the malicious user is not allowed to access are modified.

3.4 Two Types of Damage Spreading Pat-
terns

Figure 1 shows an example of the frequent spreading
patterns from a clinic OLTP application after the SQL Injec-
tion Attack as mentioned in above section. We observe that
there are two types of spreading patterns. We name them
one-hop spreading, and multi-hop spreading, respectively.
In most applications, if we cluster the read and update oper-
ations on a database, we would typically find that most up-
dates are “bounded” within the scope of a certain database
entity (e.g., a patient in a health care database). That is,
when the value of an attribute of an entity is changed, all
the inputs used in the update are typically read from the
same entity’s attributes. As a result, the set of reads and
updates clustered around each entity form a cluster of oper-
ations called an island in our model. Nevertheless, it should
be noticed that due to the various relationships between en-
tities, as well studied in the ER model, cross-island updates
are not uncommon, and in many applications cross-island
updates might even be dominant. In such an update, one en-
tity’s attributes are used in changing the value of an attribute
of another entity. As shown in figure 1, damage spreading
within each circle (an island) illustrates a one-hop spreading
pattern, such as <(oa

1 , ..., o
a
x)w>. Damage spreading cross-

ing islands illustrates a multi-hop spreading pattern, such as
island a ⇒ island b.

Based on this observation, we discover that the attack
histories of similar attacks have similar damage spreading
patterns. It can be seen that if such frequent spreading pat-
terns are identified, pattern-based integrity estimation can
be applied and an access policy can be quickly and dynami-

Table A

Table B

Island a Island b

Island c

a1

b1

c1

Multi-hop DS

One-hop DS

Figure 1. An Example of Two Types of Dam-
age Spreading

cally enforced to filter out potential damage spreading trans-
actions while the database system continuously provide ser-
vices in the face of an attack.

3.5 Database Firewall Architecture

As shown in figure 2, the database firewall architecture
is built upon the top of a traditional “off-the-shelf” DBMS.
In general, the database firewall has two major components:
offline and online. In offline manner, after the database sys-
tem is recovered from an attack, damage spreading patterns
are updated by mining the attack histories that are com-
bined the newest attack history with previous attack histo-
ries stored in Attack Histories. In online manner, once a new
attack is detected and is clustered into a particular type of
attack, the Bayesian network corresponding to that cluster
of attacking is built upon the mined patterns, and then the
integrity of data objects is estimated based on the Bayesian
network.

The detailed mechanism of the database firewall is as
follows. When there are no attacks detected, the firewall
is bypassed. The incoming transactions are processed by
the data processing system as usual. As soon as an attack
is identified by Attack Detector and the damaged data by
malicious transaction T B

i is located by Damage Assessor
using stored transaction log and audit files, the Integrity Es-
timator starts to estimate the set of dirty data objects based
on the built Bayesian network. When the Damage Assessor
locates the damage, Damage Repairer repairs the damage
data objects reported by Damage Assessor and Integrity Es-
timator using some specific cleaning transactions. Policy
Enforcement Manager works as a proxy for decision mak-
ing of data objects access. Firewalling Manager functions
when Attack Detector detects malicious transactions. For
example, upon the time when a malicious transaction T B

i is
detected, Attack Detector notifies Firewalling Manager to
set up a new access policy to abort every active transaction

OLTP Database System

Log&AuditsAttack

Histories Damage

Assessment

Integrity Level

Estimation
Firewalling

Policy Enforcement

Managr

Attack Detection

Damage Repairer

Data Processing

System

Database Firewall

Policy 1

Policy 2

…...

Policy n

transactions

Figure 2. Database Firewall Architecture

and deny new coming ones at this time point and to build
up firewalls to prevent damage from spreading.

This procedure may cause some availability loss at the
stage of building up of Bayesian network and at each step of
estimation, while the time consuming part of our db firewall
solution, namely the pattern mining part, typically does not
cause any availability loss. At each step of integrity estima-
tion, the firewalls update themselves in co-response to the
changes of data integrity level. Accordingly, any new trans-
action submitted by a user will comply with the new policy.
Along with scanning the new attack history, Integrity Esti-
mator adaptively predicts the integrity of compromised data
until the final solution is reached.

4 The Damage Spreading Patterns Mining
Approach

In previous section, we identified two types of damage
spreading patterns from the attack histories of a database.
In this section, we present the approach for discovering the
frequent damage spreading patterns.

4.1 Support for Mining Damage Spread-
ing Patterns

In our analysis of the attack histories, each attack
history HA

i is converted to records in the form of
[tAi, tT ime, tItemsetw], where tT ime denotes the trans-
action time and tAi denotes an attribute of an entity. In an
attack history, all the data objects updated by transactions
associated with the same value of attribute tAi of an en-
tity can be viewed as a sequence together. For instance, as
shown in table 2, in the clinic application, an attack history
is converted by tAi=patient-id. To evaluate the importance
of a pattern, the support is used as a metric parameter. The
definition of support for a pattern may very from one appli-
cation to another. In this paper, the definitions of support

One-Hop Spreading Pattern Mapping
<(A)(B)> 1

<(A)(E G)> 2
.

Table 3. One-Hop Spreading Pattern Mapping

Histories After Mapping

HA′
1 {1} {2} {3}

HA′
2 {3} {4} {5}

HA′
3 {1} {2} {4} {5}

HA′
4 {1} {2} {3} {4}

HA′
5 {1} {4} {5}
...

...

Table 4. An Example of Attack Histories HA′
i

After Mapping

are defined as follows:
Definition 1 The support of a frequent damaged data object

ox is denoted by the ratio of the number of data object sets having
ox to the total number of data object sets in an attack history.

Definition 2 The support of a frequent damage spreading pat-
tern X, including both one-hop and multi-hop, is denoted by the
ratio of the number of attack histories containing X to the total
number of attack histories.

In practice, we find that some data objects are damaged
in a random manner. Scanning the entire set of attack his-
tories to find their support ratio is time consuming and does
not benefit our pattern mining process. Thus, Definition 1
of the minimum support is defined to filter out these unin-
teresting corrupted data objects.

4.2 Finding One-Hop Spreading Patterns

Given a cluster of attack histories HA
i that are caused by

the same (type of) attack, the problem of mining one-hop
access patterns is finding large access sequences among all
sequences that satisfy a user-specified minimum support. A
large access sequence is denoted as al

s = <s1, s2, . . . , si>,
where each itemset si satisfies the specified minimum sup-
port threshold. The support of itemset si is similar to the
definition 2 of support and is defined as the fraction of attack

Access Sequence (sorted by t)

Histories t1 t2 ...tk SM > 40%

HA
1 <(A)(B)> <(A)(B)>

HA
2 . . . <(C D)(A)(E F G)> . . .

HA
3 <(A H G)>

HA
4 . . . <(A)(E G)(B)> . . . <(A)(E G)>

HA
5 <(B)>
...

...
. . .

...

Table 5. An Example of Using Attack Histo-
ries to Mine One-Hop Spreading Patterns

histories that contain it. Each such large access sequence
al

s is denoted as a one-hop frequent spreading pattern. To
dig out the large access sequences from attack histories, the
histories are transformed in the form as shown in table 2
in which data objects are grouped by an attribute tAi and
sorted by transaction time tT ime. Note, in transformation,
we assume that access sequence as = <(A A)> = <(A)>,
and similarly as =<(A)(A B)> = <(A)(B)>, and the large
access sequence al

s = <(A)(B C)> = <(A B)(C)>. Since
we only consider the damaged data objects, in this way, we
can reduce the redundancy.

Example. Table 2 demonstrates an attack history that is
grouped by patient-id and sorted by transaction time. Table 5
shows the attack histories expressed as a set of access sequences.
Consider the example of histories shown in table 5, in accordance
with the Definition 2, with the minimum support set to 40% (i.e.,
two histories of total five histories.), two access sequences are
found: <(A)(B)>, <(A)(E G)>. A real damage spreading pat-
tern from clinic application is shown as follows: <(Treat Status,
Used Count) (Cust Name, Year Accu, Accu Base) (Point.x) (To-
tal Sales, Quan OnHand) >

The data objects (A) and (B) in damage spreading pat-
tern <(A)(B)> are accessed both in histories 1 and 4, and
the data objects (A) and (E G) in damage spreading pat-
tern <(A)(E G)> are supported by histories 2 and 4. In
history 2, itemset (C D) will be first filtered out due to sup-
port definition 1. In history 4, since we try to dig out ac-
cess sequences that are not necessarily contiguous, although
another access sequence is in between items (A) and (B),
<(A)(B)> still counts as a large access sequence. Obvi-
ously, access sequence <(A H G)> is not a large access
sequence because only history H3 supports it. Although ac-
cess sequences <(A)>, <(B)>, <(A)(E)> and <(A)(G)>
have satisfied the minimum support, they are not counted as
a pattern because they are not the large access sequences.

4.3 Finding Multi-Hop Spreading Pat-
terns

In this section, we will present the idea of identifying
multi-hop spreading patterns. Without loss of any gener-
ality, we assume that the one-hop spreading patterns are
mapped to a set of contiguous integers as shown in table 3.
Table 4 illustrates an example of attack histories after map-
ping. HA′

i denotes an attack history i after mapping and
is sorted by the transaction time of the first data object set
sm of each large access sequence (one-hop) al

s. By doing
this, the detailed information of one-hop spreading patterns
is hidden and the focus is moved to finding out how the
damage migrates among the islands.

Example. Consider the attack histories shown in table 4.
The large one-hop spreading patterns found have been replaced
by the set of integers. The minimum support is specified to be

40%. Applying the same steps used in mining one-hop pat-
terns, the large multi-hop spreading patterns would be follow-
ing: < {1}{2}{3} >, < {1}{2}{4} >, < {1}{4}{5} > and
< {3}{4} >.

To find the one-hop and multi-hop spreading patterns,
the Apriori algorithm [15] is adopted. Given the minimum
support, the algorithm of mining the one-hop is shown as
below, where (as.oi)s is the support ratio of a data object
oi in the access sequence as against the minimum support
(definition 1), and (as)s is the support ratio of an access
sequence against the minimum support (definition 2). The
set of candidate patterns is denoted as C, and Ik denotes
the final list of large access sequences (one-hop spreading
pattern). Similarly, the multi-hop can be mined by repeating
steps 9 through 16 using the after-mapping histories.

Algorithm 1: Mining Frequent Damage Spreading
Patterns

Input: Histories HA
i

Result: Frequent one-hop damage spreading patterns
/* for each attack history, grouped by tAi and
sorted by time t */
begin1

forall as ∈HA
i do2

if (as .oi)s < min sup1 then3
remove oi from as, HA

i ;4

else if (as)s ≥min sup2 then5
as→ I1;6

else7

remove as from H
′
i ;8

for k → 2 to Ik−1 �= ∅ do9
C = Ik−1 �� Ik−1;10
foreach as ∈ C do11

if (as)s < min sup2 then12
remove as from C;13

else14
do nothing;15

Ik = C;16
end17

5 Integrity Level Estimation

In previous section, we show how to mine frequent dam-
age spreading patterns. In this section, we propose a novel
database firewall approach to use these patterns to “throttle”
damage spreading or propagation (during on-the-fly attack
recovery).

Old methods (such as finding damaged data objects us-
ing dependency relation [1]) can achieve high accuracy of
damaged data objects. However, these methods consume
too much time and do not prevent the potential spreading
transactions from accessing damaged data objects. Thus, it
downgrades the availability of data objects and the system
integrity and would further exacerbate the situation of de-

nial of service. In this section, we propose an approach
using probabilistically reasoning based on Bayesian net-
works [10].

5.1 Bayesian Network Based Analysis on
Data Integrity

In many cases, it is not possible to give out precise data
integrity information (either good (clean) or bad (dirty)) in
response to customer’s queries without any delay after a
database system is detected to be under an attack. Among
various techniques used for analyzing the integrity level of
data objects, the Bayesian network-based predictive reason-
ing is adopted in our database firewall framework. Through
the analysis, we probabilistically determine the integrity of
data objects from previous experience on the fly of an at-
tack.

To build the Bayesian network, directed acyclic graphs
(DAGs) have been used by researchers to facilitate the de-
composition of a large distribution function into several
small subsets and to represent causal or temporal relation-
ships. Suppose there is a distribution P defined on n ran-
dom variables. By using the chain rule of probability, we
can have the following equation:

P (x1, ..., xn) =
Y

j

P (xj|x1, ..., xj−1) (1)

P (x1, ..., xn) = P (xj|parents(j)) (2)

P (x1, ..., xn) =
Y

i

P (xi|parents(i)) (3)

Since each variable is conditionally dependent of only
some of its predecessors, the equation above can be rewrit-
ten to equation (2), where xj is the variable that is
only dependent on a select group of predecessors named
parents(j). In general, we can construct the Bayesian net-
work as a carrier of conditional independence relationships
along the order of construction as equation (3).

5.2 Integrity Estimation Using Bayesian
Network

A Bayesian network consists of two components. The
first component is a directed acyclic graph G whose node
corresponds to a one-hop damage spreading pattern discov-
ered at the pattern mining phase. The second component is
an edge in the graph that denotes a direct dependence of the
one-hop damage spreading pattern on its parents(i). The
DAG encodes a set of conditional independence assump-
tions that each node is conditionally independent of its pre-
decessors given its parents.

Example. Consider the example shown in table 4 in sec-
tion 4.3, with the minimum support specified to be 40%, the large
multi-hop damage spreading sequences are: <{1}{2}{3}>,

1

4

32

5

G B

0.4 0.6

{1}

G B

0.8 0.2

{3}

0.1 0.9

{2}

B

G

G B

0.6 0.4

{2}

0.25 0.75

{1}

B

G

G B

0.85 0.15

{4}

0.65 0.35

{3}

B

G

{2}

G

G

{1}

G

G

0.8 0.2GBG

0.1 0.9BBG
G B

0.5 0.5

{5}

0.2 0.8

{4}

B

G
0.3 0.7

0.2 0.8B

G

G

G

B

B

0.25 0.75GBB

0.1 0.9BBB

Figure 3. An Example of Bayesian Network
with the Damage Spreading Probability Table

<{1}{2}{4}>, <{1}{4}{5}> and <{3}{4}>. To construct
the DAG from these multi-hop patterns, we determine the select
group of predecessors of each node if they satisfy the following
condition: there is a rule as {parentsi} ⇒ {node} and the con-
fidence of the rule is larger than or equal to a user specified pa-
rameter c, then an arc between parentsi and node is drawn ac-
cordingly. We identify the following rules from above patterns:
{1} ⇒ {2}(conf = 75%), {1} ⇒ {3}(conf = 50%), {1} ⇒
{4}(conf = 75%), {1} ⇒ {5}(conf = 50%), {2} ⇒
{3}(conf = 66%), {2} ⇒ {4}(conf = 66%), {3} ⇒
{4}(conf = 66%), {4} ⇒ {5}(conf = 75%).

The rules with confidence less than c=50% are dis-
carded from all rules generated. Figure 3 shows an example
Bayesian network constructed from above rules. In addi-
tion, the conditional probability tables computed based on
previous attack histories is drawn as well in figure 3.

Bayesian network is adopted in our framework to predict
the integrity of data objects when some data object has been
observed as damaged. The idea of is, given evidence about
the state G or B of a one-hop pattern, where G and B denote
Good, and Bad for short, the state of data objects in other
one-hop pattern can be inferred by equation 4:

P (X) =
X

Y

P (X,Y) (4)

where Y stands for all unknown variables excluding vari-
able X , and P (X, Y) may be expanded using the prod-
uct rule shown as 3. Because Bayesian network defines
a joint probability it is clear that P (X, Y) can be com-
puted from the DAG. For example, to find the probabil-
ity that the 5 is damaged given that 1 is damaged, that is
P ({5} = B|{1} = B), it is necessary to marginalize over
the unknown parameters. This amounts to summing the
probabilities of all routes through the graph.

Example. Given the Bayesian network as shown in figure 3,
if we observe at time t that the data object oi = (A) ∈ {1}
is damaged when scanning the new attack history hnew , we can

compute the damage probability of the data object sets belonging
to pattern {5} by equation 4 as follows:

P (5 = B|1 = B) =
X

x,y,z

{P (5 = B|4 = x, 3 = z, 2 = y)

= 0.465

Suppose that data objects (C), (D) and (E) are in {5}, and
<(A)(B)> ⇒ <(C)(D)(E)> with probability 0.465. Then
we denote the integrity level of data objects (C), (D) and
(E) as 0.465, which means that there is a 0.465 certainty
that these data objects are damaged. If along the scanning
process of the new attack history, new evidences of dam-
aged data are found, the integrity level is adjusted accord-
ingly. Meanwhile, filtering rules are enforced and certain
clean transactions are triggered to repair the dirty data ac-
cording to the estimated integrity of the data objects. Fi-
nally, the integrity of data objects contained in Y as in algo-
rithm 2 is known, and the corresponding Integrity Filtering
List Îi (see Definition 3 in section 5.3) is updated for gener-
ating new filtering rules. This algorithm is incremental. As
new evidence obtained, some interim results from previous
calculations can be reused to estimate the integrity of data
objects instead of re-computing.

Algorithm 2: Integrity Estimation
Input: G, X, Y
Result: Integrity Level List Îi

/* X → evidence; Y → to be estimated */
begin1

cnode = Y;2
while cnode.pa �= ∅ do3

p[i] =
P

v p(cnode = v|pa1 = v, pa2 = v, . . .);4
/* v∈G,B */

cnode = cnode.pa;5
i++;6

Pr(Y|X=x) =
Q

i p[i];7

Îi = ∀ oi ∈ Y ← Pr;8

end9

5.3 Database Firewall Security Policy

A specific and strongly worded security policy is vital
to the pursuit of internal data integrity. This policy should
govern everything from acceptance of accessing data ob-
jects to response scenarios in the event that a security in-
cident occurs, such as policy updating upon new attacking.
Ideally, a database firewall policy dictates how transaction
traffic is handled and how filtering ruleset is managed and
updated. To limit the potential damage spreading, firewall
policy needs to create a ruleset to restrict the entrance of
transactions that could compromise other data objects, but
let other transactions enter to achieve maximum throughput.

Definition 3 Integrity Filtering List, Î=
{(o1, ox, . . . , oy)i1 , (o2, oz, . . . , ov)i2 , . . .}, where i is an

integrity level. Objects ox with the same integrity level i are
grouped together.

For example, suppose a transaction T1(t) =
r1[ox]r1[oy]w1[oy] needs to enter the database at time
t. We know that the integrity of data object ox has been
estimated and considered as corrupted at this moment, our
policy checker will screen and be aware if the request can
be granted using the rulesets defined as follows:
Rule 1 : ∀ transaction T, if ∃ data object ox ∈ RT , and RT

T

Î
�= ∅, and if WT �= ∅, DENY;
Rule 2 : ∀ transaction T, if ∃ data object ox ∈ RT , and RT

T

Î
�= ∅, and if WT = ∅, and if i(ox) < Q then DENY, otherwise
GRANT;
Rule 3 : ∀ transaction T, if ∃ data object ox ∈ RT , and RT

T

Î
�= ∅, and if WT �= ∅, and if i(ox) < Q then DENY, otherwise
GRANT;
Rule 4 : ∀ transaction T, if � data object ox ∈ RT , and RT

T

Î
= ∅, GRANT;
Where, i(ox) is the integrity level of the object ox and
Q is Quality of Information Assurance associated with
applications. RT and WT are the readset, writeset of the
transaction T, respectively. For example, give Q = 0.5
of an application, it means if the integrity of data objects
is 0.5 or higher, it is acceptable to the application. Note,
what we have presented here is a sample ruleset. We
should be aware that firewall rulesets tend to become more
complicated with age.

6 Experimental Results

In this section, we present the experimental results.
To assess the performance of our database firewalling ap-
proach, we conduct two empirical studies based on both
synthetic and real datasets. The simulation model of our
experimental studies is described in section 6.1.

6.1 Experiment Settings

In our experiments, we use two synthetic history sets
generated based on the modified TPC-C benchmark. We
take the parameters shown in table 6 to populate the syn-
thetic attack histories. The specified settings for each pa-
rameters used to generate the history sets are included in ta-
ble 7. In addition, a real dataset of transaction histories from
a clinic OLTP application is employed to verify the mining
algorithm. The dataset (400MB) contains 119 tables with
1142 attributes belonging to 9 different applications. For
more detailed description of the dataset we refer the reader
to [16]. Moreover, to verify the database firewall proto-
type, we re-construct the clinic application based on the ap-
plication and query templates and generate real syn attack
histories. We also assume that there is only one attack at
a time. Additionally, similar attack is practically defined

Parameters Notes

N Number of data objects
T Average numbers of

data objects per transaction
C(P) Number of customers(patients)

D Number of transactions
H Number of attack histories

Table 6. Parameters of the synthetic datasets

Name N T C D H

Syn1 1000 3 500 100,000 10
Syn2 1000 5 1000 100,000 20
Real 1000 8 1000 100,000 10

Real Syn 1000 8 1000 100,000 20

Table 7. Parameter values of the datasets

in our experiments as the attacks with the same transaction
type, such as Order, Payment transaction type in the TPC-C
benchmark.

6.2 Mining Algorithms Testing

To verify the mining algorithms, we conducted exper-
iments to measure the quality of mined one-hop frequent
damage spreading patterns using two metrics, recall and
precision. They are defined as follows. Given a set of true
damage spreading patterns A and a set of obtained frequent
damage spreading patterns B, the recall is |A∩B|

|A| and the

precision is |A∩B|
|B| .

In table 8, the first column shows we use two different
kinds of dataset, one from the synthetic application and one
from the real application. The last column is the minimum
support s to mine the patterns. It can be seen that when the
minimum support is set to 15%, using the synthetic dataset,
0.93 of recall rate can be achieved. When we lower s to
10%, higher recall rate (98%) can be obtained. Although
the high recall rate is achieved, the false-negative patterns
have the potential to cause the damage leakage. However,
after further investigation of the missed patterns, we find
that the chance these missed patterns cause damage leak-
age is small. First, although these missed patterns are true
damage spreading patterns, they do not often occur in the
damage histories and then are screened out because of the
minimum support. The reason they do not frequently in-

Data Type A B Recall Precision s (%)

Syn 300 279 0.93 1 15
Syn 600 587 0.98 1 10

Real 200 190 0.95 1 10
RealSyn 300 291 0.97 1 10

Table 8. Measurement of the Mining Algo-
rithm of One-hop Patterns

Real System Integrity SIr Time (s) %

BN DR Accuracy
80% 50 260 94%
70% 70 270 92%
65% 90 300 87%

Table 9. Speed of System Integrity Estimation

volve in damage spreading is that transaction scripts always
have conditional statements, such as if-else statement. Only
when certain condition is satisfied, the branch will be gone
through, and then the patterns occur. Second, these missed
patterns are often on the downstream of a multi-hop spread-
ing pattern (similar to the leaf node of a tree). Thus, even
if they are damaged and not included in final answer, they
do not cause damage leakage. The experiments to measure
the multi-hop patterns achieve similar results that are not
presented due to limited space. As a conclusion, we believe
that the mining algorithm is satisfactory. However, since we
deploy a relative simple SQL-injection attack, pattern min-
ing algorithm achieve high recall rate. How the algorithm
performs when the attack is sophisticated needs a further
investigation. Furthermore, the algorithm is designed par-
ticularly for the TPC-C and clinic applications. A generic
condition under which the mining algorithm can be useful
remains unknown.

6.3 System Integrity Analysis

Estimated system integrity SIe is defined as the ratio
of the summation of the damage probabilities of the data
objects nd to the number of total data objects N in the
database: SIe = 1 −

Pn
i=1 P

N . For example, if the database
contains N = 100 in which total nd = 20 are bad data, the

real system integrity should be SIr = 1 −
P20

i=1 ∗1
100 =80%

when the system is detected to be under an attack. To ver-
ify the estimation accuracy of our approach, we define the
accuracy as the ratio of the number of data objects that are
estimated (and are tested as they are later) to the number of
damaged data objects in the new attack history.

Figure 4 shows the process of discovering system in-
tegrity. Our probability based approach is compared with
the algorithm adopted from [1] that use the dependency re-
lation of transactions. Along with the process of scanning
the new attack history, at each time ti a data object oi or a
set of data objects (oi, .., oj) are found to be bad, the de-
pendency relation based approach will only know what it
has learned up to time ti. However, with the Bayesian net-
work constructed from previous attack histories, we are able
to compute the damage probability of all data objects previ-
ously occurred in attack histories. Therefore, our approach
should be faster than the dependency based approach in
finding the system integrity. Results in table 9 demonstrate
that our Bayesian network based approach is much faster
than the dependency relation based approach in terms of as-

0 50 100 150 200 250 300
Time (s)

0.8

0.85

0.9

0.95

1

Sy
st

em
 I

nt
eg

ri
ty

BN
DR

Figure 4. System Integrity Estimation Pro-
cess. Real System Integrity SIr=0.8

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

A
va

ila
bi

lit
y

R
at

e

BN
DR

(a) Synthetic Dataset

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

A
va

ila
bi

lit
y

R
at

e
BN
DR

(b) Real Syn Dataset

Figure 5. System Availability without Repair-
ing Procedure

sessing the system integrity. We can also observe that the
estimation accuracy of our approach is relative high when
the new attack is similar to previous attacks. When the re-
call of the pattern mining is high, the estimation accuracy is
also high because more knowledge of patterns can be used.
However, when a different attack is launched, the accuracy
will be low because the previous knowledge is no longer
useful to estimate the integrity level of damaged objects.
More efforts are needed to study this issue.

6.4 System Availability Analysis

System availability is an important metric to evaluate the
performance of the database firewall framework. For con-
ventional methods, e.g. rolling back, even if there are only
a few damaged data objects, since the system is not acces-
sible while re-executing, the system availability is zero. It
is crucial to the database firewall to reduce this time period
and maintain the system availability on a certain level. In
our framework, we define two kinds of availabilities. The
maximum system availability is defined as the rate of the
number of good data objects to the number of the total data
objects in the database Amax = ng

N . The real-time system
availability is defined as the rate of the number of good data
objects discovered at time t to the number of the total data
objects in the database Ar = nt

N .
Figure 6.4 illustrates the results of the system availabil-

ity with respect to time from both the synthetic and the real
histories. The repairing procedure is not included in this
testing. The approach based on the dependency relation [1]
(denoted as DR, Bayesian network denoted as BN) is also

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

A
va

ila
bi

lit
y

R
at

e

BN-Repair
DR-Repair

(a) Synthetic Dataset

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

A
va

ila
bi

lit
y

R
at

e

BN-Repair
DR-Repair

(b) Real Syn Dataset

Figure 6. System Availability with Repairing
Procedure

implemented to compare with our approach. Let ε be a user
specified parameter. If the estimated integrity of data ob-
jects is equal to ε or higher, the repairing procedure is fired
up instead of waiting until it is 100 percent sure that the
data objects are damaged. Let Q be the differential quality
of information assurance required by different applications.
It may vary from an application to another. If the estimated
integrity of data objects is equal to Q or lower, these data
objects are available to be accessed. Given Amax = 0.8,
Q = 0.15 and ε = 0.6, it can be seen in figure 6.4 that the
database firewall approach can maintain a relative higher
system availability Ar and also reach the maximum system
availability Amax = 0.8 faster than the dependency rela-
tion based approach. Figure 6 demonstrates the results of
the system availability when the repairing procedure [1] is
introduced. Given Q = 0.15 and ε = 0.6, it can be seen that
the maximum system availability Amax = 1 can be reach
earlier than the dependency relation based approach. Note,
we assume the repairing rate is constant.

6.5 System Throughput Analysis

System throughput in terms of continuously providing
data access while filtering out potential damage spread-
ing transactions when the data system is under an attack
is an important metric to measure the performance of the
database firewall framework.

In practice, the system throughput is defined as a ratio of
the number of served transactions to the number of trans-
actions requiring service: Tr = ns

N . We assume that the
arrival rate of the transactions is constant. Figure 7 demon-
strates the performance of the system throughput from both
the synthetic and the real dataset without taking into consid-
eration the damage leakage. To filter out potential damage
spreading transactions, we assume the transaction depen-
dence is tight. For instance, if transaction T2 does not access
compromised data but rely on the result of transaction T1,
transaction T2 will still be discarded if transaction T1 is fil-
tered out due to accessing compromised data. This assume
is reasonable because the result directly from transaction T1

is dirty.
Given Amax = 0.8, Q = 0.15 and ε = 0.6 ,it can

be seen that, in figure 7(a), the system throughput reaches

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

T
hr

ou
gh

pu
t R

at
e

T_Throughput

(a) Synthetic Dataset without Re-
pairing Procedure

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

T
hr

ou
gh

pu
t R

at
e

T_Throughput

(b) Real Syn Dataset with Re-
pairing Procedure

Figure 7. System Throughput
nearly zero at time t = 75s. The reason is that the data
objects required by the transactions are all contained, and
filtering policy does not allow those data objects being ac-
cessed by the transactions. In addition, in both figure 7(a)
and (b), although the system throughput vibrates up and
down along the time axis, the average ratio of the system
throughput is above 50%. Moreover, if the repairing pro-
cess is introduced in figure 7(b), the system throughput can
be even higher.

7 Conclusion and Future Work

In this paper, we study the problem of mining frequent
damage spreading patterns from the previous attack histo-
ries, of using Bayesian network constructed upon the mined
damage spreading patterns to predict the damage probabili-
ties and the system integrity on the fly. With this feature, a
database firewall framework is devised to dynamically en-
force a policy of transaction filtering to filter out the poten-
tial spreading transactions. In the meanwhile, the database
firewall continuously provides data services in the face of
attack. The experimental results demonstrate that it is satis-
factory that the database firewall can continuously provide
quality data in accordance with the differential service re-
quirement when the system is detected under an attack.

At this early stage of the work, we do not study the
impact of the detection latency. Constructing Bayesian
network over small amount of patterns in general does not
have significant impact on the performance of the database
firewall system. However, the computation overhead could
increase when discovered spreading patterns accumulate.
In our immediate future work, we will further evaluate
our model to address above issues and extend the idea of
database firewall to a distributed environment. Several
other problems are interesting as well, such as how the
performance is impacted by heavy attack, how can the
estimation accuracy be improved, and what is the condition
under which mining spreading pattern can be superior.

Acknowledgement This work was supported in
part by NSF CCR-TC-0233324. And we wish to thank
Elisa Bertino, Ashish Kamra and Xiangji Huang very much
for kindly sharing the clinic OLTP data with us.

References

[1] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious trans-
actions,” in IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 5, pp. 1167–1185, 2002.

[2] P. Liu and S. Jajodia, “Multi-phase damage confinement in database
systems for intrusion tolerance,” in Proc. 14th IEEE Computer Secu-
rity Foundations Workshop, Nova Scotia, Canada, June 2001.

[3] P. Liu, P. Ammann, and S. Jajodia, “Rewriting histories: Recovery
from malicious transactions”. Distributed and Parallel Database 8, 1,
7-40.

[4] P. Ammann, S. Jajodia, C. McCollum, and B. Blaustein, “Surviv-
ing information warfare attacks on databases,” in Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 1997,
pp. 164–174.

[5] P. Liu, “Architectures for intrusion tolerant database systems,” in
Twenty-first Annual Computer Security Applications Conference
(ACSAC’02), 2002, pp. 311–320.

[6] D. Barbara, R. Goel, and S. Jajodia, “Using checksums to detect data
corruption,” in Proceedings of the 2000 International Conference on
Extending Data Base Technology, Mar 2000.

[7] P. W. P. J. Grefen and P. M. G. Apers, “Integrity control in relational
database systems: an overview,” Data Knowl. Eng., vol. 10, no. 2,
pp. 187–223, 1993.

[8] E. Bertino and A. Kamra and E. Terzi and A. Vakali, “Intrusion De-
tection in RBAC-administered Databases,” 21st Annual Computer
Security Applications Conference (ACSAC 2005), 5-9 December
2005, Tucson, AZ, USA

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, Reading,
MA, 1987.

[10] J. Pearl, Causality: Models, Reasoning and Inference. Cambridge
University Press.

[11] T. Chiueh and D. Pilania, “Design, implementation, and evaluation
of an intrusion resilient database system,” in Proc. International Con-
ference on Data Engineering, 1024-1035, 2005.

[12] S. Sekar, M. Bendre, and P. Bollineni, “A fast automaton-based
method for detecting anomalous program behaviors,” in 2001 IEEE
Symposium on Security and Privacy. Oakland, CA.

[13] S.-P. Shieh, and V. Glogor, “On a pattern-oriented model for intrusion
detection,” IEEE Trans. On Knowledge and Data Engineering 9, 4,
661-667

[14] R. Sobhan and B. Panda, “Reorganization of the database log for
information warfare data recovery,” in Proc. of the fifteenth annual
working conference on Database and application security, Niagara,
Ontario, Canada, 121-134, 2001.

[15] R. Agrawal and R. Srikant, “Fast algorithms for ming association
rules,” in Proc. of the VLDB Conference, Santiago, Chile, 1994.

[16] Q. Yao, A. An, and X. Huang, “Finding and analyzing database user
sessions,” in Proc. of the 10th International Conference on Database
System for Advanced Applications, 2005.

[17] Owasp top ten most critical web application security vulnerabilities.
http://www.owasp.org/documentation/topten.html, 2004

[18] S. Y. Lee, W. L. Low, and P. Y. Wong, “Learning fingerprints for a
database intrusion detection system,” in 7th European Symposium
on Research in Computer Security (ESORICS), 2002.

[19] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to
the detection of SQL attacks,” in Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), July 2005.

[20] C. Kruegel, and G. Vigna, “Anomaly detection of web-based at-
tacks,” in CCS’03. Washingtion, DC, USA, 251-261.

[21] B. Panda, and J. Giordano, “ Reconstructing the database after
electronic attacks,” in the 12th IFIP 11.3 Working Conference on
Database Security, 1998.

[22] J.-L. Lin, and M. H. Dunham, “A survey of distributed database
checkpointing,” in Distributed and Parallel Databases 5, 3, 289-319.

[23] Y. Lin, and E. D. Lazowska, “A study of time warp rollback macha-
nisms,” ACM Transactions on Modeling and Computer Simulations
1, 1, 51-72.

[24] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems 7, 3, 404-425.

