Automated Security Debugging Using Program Structural Constraints

Chongkyung Kil} Emre Can Sezer! Peng Ning? and Xiaolan Zhang'

*

Department of Computer Science
North Carolina State University
{ckil, esezer, pning} @ncsu.edu

Abstract

Understanding security bugs in a vulnerable program is
a non-trivial task, even if the target program is known to
be vulnerable. Though there exist debugging tools that fa-
cilitate the vulnerability analysis and debugging process,
human developers still need to manually trace the pro-
gram execution most of the times. This makes security
debugging a difficult and tiresome task even for experi-
enced programmers. In this paper, we present the devel-
opment of a novel security debugging tool called CBones
(SeeBones, where bones is an analogy of program struc-
tures). CBones is intended to fully automate the analysis
of a class of security vulnerabilities in C programs, the ex-
ploits of which would compromise the integrity of program
structures satisfied by all legitimate binaries compiled from
C source code. In other words, CBones automatically dis-
covers how unknown vulnerabilities in C programs are ex-
ploited based on program structural constraints. Unlike the
previous approaches, CBones can automatically identify ex-
ploit points of unknown security bugs without requiring a
training phase, source code access (analysis or instrumen-
tation), or additional hardware supports. To validate the
effectiveness of this approach, we evaluate CBones with 12
real-world applications that contain a wide range of vul-
nerabilities. Our results show that CBones can discover all
security bugs with no false alarms, pinpoint the corrupting
instructions, and provide information to facilitate the un-
derstanding of how an attack exploits a security bug.

1 Introduction

Understanding security bugs in a vulnerable program is
a non-trivial task, even if the target program is known to
be vulnerable. Though there are existing debugging tools
(e.g., gdb, Purify [21]) to facilitate the vulnerability analy-
sis and debugging process, human developers still need to
manually trace the program execution most of times. This
makes security debugging a difficult and tiresome task even
for experienced programmers.

IBM T. J. Watson Research Center!

cxzhang @us.ibm.com

A critical step in the security debugging process is the
analysis that recognizes the vulnerable point in a program
and identifies the cause of the bug. A major challenge in
this analysis process is to identify how unknown vulnera-
bilities can be exploited, since these vulnerabilities are often
short-lived during the exploit process and thus are difficult
to trace. Static analysis techniques (e.g., [24-26]) have been
proposed to discover vulnerabilities in a program via source
code analysis (e.g., model checking). However, such meth-
ods are mainly focused on known vulnerabilities and often
require human interventions to write assertions or specifi-
cations. In addition, some require access to source code,
which is not always available (e.g., commodity software).
Runtime checking methods (e.g., [10, 21-23]) have also
been studied to detect security bugs dynamically by check-
ing legitimate memory accesses, inserting canary values, or
using additional hardware support. These approaches, how-
ever, still mostly focus on existing vulnerabilities and suf-
fer from non-negligible false alarms and performance over-
head.

A few approaches have been investigated recently to dis-
cover security bugs using statistical program invariants [11—
13]. These approaches detect bugs by identifying deviations
from program invariants statistically derived during normal
program executions. DAIKON [12] and DIDUCE [13] au-
tomatically extract likely program invariants among vari-
ables through multiple normal program executions in the
training phase, and use the violations of such invariants to
detect security bugs at analysis time. AccMon [11] intro-
duced Program Counter (PC)-based invariant detection (i.e.,
a memory object is typically accessed only by a small set of
instructions), and detects security bugs when memory ob-
jects are accessed by instructions not observed during nor-
mal program executions in the training phase.

These approaches extended the capability of analyzing
unknown security bugs. However, they still suffer from
several limitations. In particular, all these approaches re-
quire a training phase during normal program executions
to derive the program invariants, which offers no guaran-
tee in generating all program invariants. Moreover, each of

these approaches have additional limitations. For example,
DAIKON [12] requires access to the program source code,
while AccMon [11] requires hardware supports not avail-
able on modern computer systems.

In this paper, we identify another type of program invari-
ants called program structural constraints (or simply struc-
tural constraints), which are complementary to the above
program invariants. Unlike the program invariants used by
the previous approaches (e.g., the variable invariants used
by DAIKON [12] and DIDUCE [13]), such program struc-
tural constraints are satisfied by all binaries produced by
certain software development tools. Moreover, these pro-
gram structural constraints can be statically and entirely ex-
tracted from program binaries. Thus, no training phase is re-
quired, and it is guaranteed that we can extract all instances
of program structural constraints.

Based on program structural constraints, we develop an
automated security debugging tool named CBones (See-
Bones, where bones is an analogy of program struc-
tures). CBones automatically extracts program structural
constraints from a program binary, and verifies these con-
straints during program execution to detect and isolate secu-
rity bugs. Compared with the previous approaches [11-13],
CBones provides several unique benefits:

e Complete automation. CBones extracts program struc-
tural constraints (invariants) via static analysis of the
compiled program executable. This has two impli-
cations. First, CBones does not require any training
phase, which differentiates CBones from most runtime
monitoring tools (e.g., AccMon [11], DIDUCE [13],
DAIKON [12]). Second, CBones does not require
manual specification as an input. This differentiates
CBones from most static analysis and model checking
tools (e.g., [24-26]).

e No access to source code or additional hardware is re-
quired. CBones dynamically instruments the program
binary using Valgrind [20] during the program execu-
tions. Thus, it does not need to access the source code
(in comparison with DAIKON [12]), nor does it need
additional hardware support (in comparison with Acc-
Mon [11]).

e No false alarms. Since the program structural con-
straints should be satisfied by all the binaries produced
by the compiler of concern, violation of any of them
during runtime indicates a bug. Thus, the proposed
approach produces no false alarms. Moreover, as indi-
cated in our experiments, CBones can detect some data
attacks recently discovered in [1], which many other
approaches fail to recognize.

e CBones provides both coarse-grained and fine-grained
debugging modes, which can be combined to isolate
security bugs efficiently. The coarse-grained mode al-
lows a user to quickly zoom into a region that has a se-
curity bug, and the fine-grained mode enables the user

to pinpoint the bug.

To validate the practicality and effectiveness of the pro-
posed approach, we evaluate CBones with 12 real-world
applications that have different vulnerabilities. The result
shows that CBones can discover all 12 security bugs with
no false alarms. Moreover, CBones can pinpoint the cor-
rupting instruction points precisely, which is critical in un-
derstanding how an attack exploits a security bug.

The rest of the paper is organized as follows. Section 2
describes the program structural constraints and the debug-
ging techniques based on these constraints. Section 3 dis-
cusses the implementation of CBones. Section 4 presents
the experimental evaluation of CBones. Section 5 discusses
related work, and Section 6 concludes the paper.

2 Security Debugging Using Program Struc-
tural Constraints

A process’s virtual address space is divided and used
according to the operating system and the compiler with
which the program was compiled. Furthermore, each seg-
ment of memory is usually logically divided into smaller
chunks that represent memory objects in the program or
metadata used by the compiler to determine the program
state. In this study, we use the structural properties that
these memory objects or metadata always satisfy to de-
rive program structural constraints for each program. These
constraints can be verified at runtime to ensure that the pro-
gram complies with the assumptions made by the operating
system and/or the compiler. Violations of these constraints
thus indicate the existence of security vulnerability.

CBones uses a combination of static analysis and dy-
namic monitoring to accomplish its goal. Static analysis
is used to automatically determine structural constraints for
a given program. These constraints are then passed to the
dynamic monitoring component which verifies whether the
constraints are satisfied during execution. Any violation of
these constraints signals a misbehavior, which indicates an
attack or a bug. For convenience, we refer to the static anal-
ysis portion as Constraint Extractor, and the dynamic mon-
itoring part as the Monitoring Agent.

In this paper, we focus our attention on Linux operat-
ing systems running applications written in C and compiled
with the GCC compiler [3]. Our set of constraints include
those generated for the operating system and compiler, and
some others generated for the standard C library. It is worth
mentioning that similar structural constraints can be gen-
erated for different platforms, compilers, etc. Indeed, the
proposed method is applicable to a broad range of operat-
ing systems and compilers despite our choice in this study.

Figure 1 shows the security debugging process used by
CBones. The binary executable is first analyzed by the Con-
straint Extractor to determine the structural constraints. The
set of constraints are then passed to the Monitoring Agent
along with the program executable. The Monitoring Agent

3) Use ! 4) Verify g"ﬂ":e'z:

Monitoring Agent

Program
1) Input c i 2) Generate
Binary) Inp Progvam
Extractor Constramts

Figure 1. Security debugging process with CBones

executes the program and checks for any constraint viola-
tions, possibly with previously captured malicious inputs
exploiting one or more security vulnerabilities of the target
program. If a structural constraint is violated, the execu-
tion is halted and an error message is generated. The error
message states the violated constraint, outputs the program
state, and indicates the instruction responsible for the viola-
tion.

In the following subsections, we first present our struc-
tural constraints, and then show how these structural con-
straints can be used in security debugging.

2.1 Program Structural Constraints

The Linux executable file format ELF (Executable and
Linkable Format) [2] has a typical virtual memory layout as
shown in Figure 2. Although some of the addresses can be
user-specified, by default, the program code, data, stack and
other memory segments are located as depicted in the fig-
ure and the ordering of these segments are fixed. For exam-
ple, the stack segment is always at a higher address than the
heap and the code segments, and the heap is always higher
than the code and the data segments. We present our pro-
gram structural constraints with respect to these segments,
namely the stack, the heap and the data segments.

0x08048000 0x40000000 0xC0000000 OxFFFFFFFF
0MB ~ 128 MB 1GB 3GB 4GB

Nul
Pointer|
Deref
Zone.

Code | Data | Heap DSO Stack Kernel

.rodata | .eh_frame| .data |.dynamic| .ctors | .dtors | .jcr .got .bssE

Figure 2. An example of an ELF program runtime pro-
cess memory layout

2.1.1 Stack Constraints

The stack is perhaps the most commonly attacked segment
of the virtual memory. For each procedure called, an activa-
tion record of an appropriate size is pushed onto the stack.
Figure 3 illustrates a simple program and a simplified stack
layout after function main calls cal_Sum, which in turn
calls get Num. The figure also shows the various logical
subdivisions in the activation record. For x86 architectures,
the special register Sebp points to the return address in
the activation record of the last function called. Arguments
hold the values of the arguments that the caller passes to
the callee when making the function call. Return Address is
where the execution will return once the function completes
execution. Previous Frame Pointer is the saved Sebp reg-
ister value. When the function returns, the Sebp value is

restored to point back to the previous activation record of
the caller function. Sometimes additional registers can be
pushed onto the stack to free up more registers for the cur-
rent function. These registers are saved in the Saved Regis-
ters area and are restored upon function return. The rest of
the activation record holds the local variables of the func-
tion.

#include <stdlib.h>
int get_Num()
{

08048328 <get_Num>:

8048328: 55 push Sebp
8048320; 89 e5 mov $esp,Sebp
804832b: b8 04 00 00 00 mov $0x4,$eax
8048330: c9 leave

Return Address 8048331: c3 ret

main()
inti
. - High
print(*Enter your favorite number. *) Arguments
scanf(*%d”, &

return i
) Sebp—b

cal_sum()

Prev Frame Poiner | | 08048332 <cal_Sum>:
8048332 55 push $ebp

Saved Registe

int main() avedRegister® | | s048333: 89 e5 mov $esp Sebp

Local Vars 8048335 83ec08 sub S$OxBSesp

int cal_Sum()

inti, total; intl;
e i = cal_sum();
", Low

804833d: 89 45 fo
8048340: 8b 45 fc
get_Num() 8048343, c9 leave
8048344: c3 ret

printf(’sum: %d
vvvvvvvvv ")
return total; return 0

}

}

8048338: eBeb ffffff call 8048328 <get Num>
mov Seax Oxfiffifc(Sebp)
mov Oxfffffc($ebp) Seax

Figure 3. An example of stack structure and caller-callee
relationship

The return address has been the most frequent target for
attackers; however, a recent attack trend study [15] shows
that other elements in the stack (e.g., frame pointer, saved
registers) have also been exploited [1, 16, 17]. Such stack-
based exploits require illegal modification of the stack struc-
ture. Therefore, security bugs in a program can be detected
by monitoring the structural changes of the stack during
program execution. Next, we present the program structural
constraints for the stack region.

Caller-callee relationship constraint: When a function
A (caller) calls another function B (callee), we say that A
and B have a caller-callee relationship. A given function
generally calls a small number of other functions. We can
find out all possible caller-callee relationship between func-
tions, and represent such relationships in a call-graph, in
which all functions are represented as nodes, and a possible
caller-callee relationship is represented as a directed edge
from the caller to the callee. The constraint here is that, at
runtime, every function call should represent an edge in this
call-graph.

Return address constraint: Return address is a critical
element in an activation record, since it changes a program’s
control flow. A valid return address should always point to
an executable region such as the code section or the exe-
cutable section of the dynamically loaded libraries.

Frame pointer constraint: The frame pointer (Sebp
register) is a reference point for the stack frame and is used
as a base address to access memory objects in the stack that
are defined as offsets from this pointer. The invariant is that
the value of the frame pointer should not be changed during
a function’s execution once it has been set in the function’s
prologue. The frame pointer is changed at a function’s epi-
logue (1eave instruction) according to the IA-32 instruc-
tion set manual [18].

Saved registers constraint: Saved registers generally

hold function pointers or values that refer to memory ob-
jects in a program’s runtime process. Although saved reg-
isters are not critical to the program’s control flow, they can
be used as a bridge to a successful exploit. For example, one
of the data attacks in [1] uses an address register(Sesi) to
execute an attacker-provided command. The saved registers
constraint is that their values should not be changed during
a function execution once they are set at the function’s pro-
logue.

Saved frame pointer constraint: Upon a function call,
the caller’s frame pointer is saved in the callee’s activation
record. Since the frame pointer is held in the $Sebp register,
the constraint for saved registers applies directly. However,
due to its special use, we found more constraints for the
saved frame pointer. First, the saved frame pointer should
point to a higher memory address than where it is stored.
Second, since a frame pointer actually points to the saved
frame pointer in the activation record, one should be able
to walk the stack (following the saved registers as a linked
list), and traverse every activation record. Finally, at the top
of the stack, the saved frame pointer for function main (or
the alternate entry function) should be NULL.

Frame size constraint: The content of the activation
record is determined during compile time. Therefore, at
runtime, the activation record size for a function should re-
main constant until the function returns.

Stack limit constraint: The maximum size of a stack
can be increased or decreased depending on a program’s
needs. The two register values, the stack pointer (Sesp)
and the frame pointer (Sebp) should be in-bounds during
execution (i.e. point to the valid stack region). The default
stack size limit in GCC is 8 MB, but it is a soft limit that
can be changed during link time with the -stack_size
linker flag or during runtime via the setrlimit system
call. Therefore, the size of the stack and any changes made
to it during runtime need to be determined.

Alignment constraint: The GCC aligns the stack as
much as possible to improve a program’s performance. The
default alignment is word aligned, but a user can choose
other alignment options to adapt different computing envi-
ronments such as 64 bit or 128 bit. Therefore, each stack
frame should be aligned according to the alignment option.

2.1.2 Heap Constraints

A powerful feature of the C language is its dynamic mem-
ory management. Generally, dynamic memory is manipu-
lated via the malloc family of library functions. There are
various dynamic memory management schemes, Lea [5],
Hoard [6], and OpenBsd [7] to name a few. In this pa-
per, we follow Lea’s scheme, which is used in Linux sys-
tems, to derive our heap based program structural con-
straints. Lea’s scheme uses boundary tags to manage al-
located and freed memory chunks. Each memory block is
preceded by a small bookkeeping region that stores the in-
formation about the block in use, or in the case of available

T > mN-
>-4>»0
T mN-o
>->»0
S[mN-0_<mas
]
)
omoczc
T 0 mN-—a
> -4»0

5]

‘ Allocated chunks ‘ Free chunk Allocated chunk

Figure 4. An example of heap structure

blocks, the next available block. Figure 4 shows an exam-
ple heap structure. A boundary tag of allocated chunk (e.g.,
DATA (A)) includes information about its size and indicates
whether the chunk is in-use with the last bit of the size field
(PINUSE_BIT). If a chunk is free, the tag includes point-
ers to the previous and the next free chunks. We are able to
identify six structural constraints for the heap segment.

Memory allocation/deallocation requests constraint:
Since the structure of heap is changed dynamically by
malloc related function calls, the first thing we need to
check is whether such memory allocation/deallocation re-
quests are made from valid locations. The idea is similar
to the caller-callee relationship constraint in the stack, since
we verify valid structural changes in a heap using caller-
callee relationships for malloc family of function calls.

The heap constraints are checked for programs that use
the C library to manage their heap. Some applications use
their own memory management utilities, either by allocat-
ing a large chunk through malloc and managing the block
themselves or using the brk system call to eliminate the
library entirely. In this case, CBones does not check heap
constraints. It is worth noting that such systems are not vul-
nerable to metadata manipulation like the C library is.

Boundary tag (metadata) constraint: Boundary tags,
or hereafter referred to as metadata, are used and manip-
ulated by the library that implements the memory man-
agement scheme. In our case, the metadata should only
be modified through legitimate calls to malloc family of
functions.

Allocated memory chunks link constraint: The meta-
data allows the memory manager to traverse the list of al-
located or available memory blocks as a linked list. There-
fore, a verification program should be able to traverse the
same list using the metadata. A broken link between allo-
cated memory chunks indicates the corruption of the heap
structure.

Heap boundary constraint: Dynamic memory alloca-
tion must be performed within the given boundary of the
heap memory range in a program’s runtime process. It is
possible for an attacker to expand the heap size up to the
kernel’s memory space to shutdown the target system or to
escalate the privilege by making invalid heap allocation re-
quests. For example, a real threat has been found in the
previous Linux kernels [8] that exploits no boundary check-
ing in the kernel’s do_brk () function so that an adversary
can expand the heap area to the kernel space to take control

of the affected system.

Chunk boundary constraint: Heap memory chunks al-
ways begin on even word boundaries. When the program re-
quests n bytes, Lea’s memory allocator provides more than
8+n bytes to keep the heap memory area aligned. Con-
sequently, the returned pointer (beginning of the memory
chunk) of malloc function call should be aligned with
even word boundary.

Consecutive free chunks constraint: Upon dealloca-
tion of a memory block, before the memory block is added
to the linked list of available memory, the memory manager
looks for adjacent available memory blocks. If found, the
two are merged together to form a larger available memory
block. Therefore, after the memory manager returns from
a free function call, the adjacent memory blocks should
be in use. Having adjacent free chunks indicates a corrup-
tion of the heap structure and a heap corrupting attack. For
example, double free attack puts fake free chunks with mali-
cious forward (*FD) and backward (*BK) pointers to over-
write function pointers in the global offset table when the
malicious chunk is freed.

2.1.3 Data Constraints

Although there are not many structural changes in the data
section, we have found that some of the structural charac-
teristics can help detect security bugs.

Shared library function pointers constraint: The
global offset table (GOT) is a table of library function point-
ers. These function pointers initially point to the dynamic
library loader and are updated via the loader when a library
is loaded at runtime. Various attacks have tried to exploit
these function pointers (e.g., [14]). The structural constraint
is very simple: the library function pointers should point to
library functions.

Constructor function pointers constraint: Construc-
tor section (. ctors) consists of pointers to functions that
are called before the program begins execution. These con-
structor functions mainly check or initialize the runtime en-
vironment. It has been shown that a format string attack
can change these pointers to hijack the control flow [4].
Being function pointers, these entries should point to the
program’s code section, not to stack or heap regions. An-
other observation is that these pointers are determined dur-
ing compile time. Thus, once the program is loaded, they
should remain constant.

Destructor function pointers constraint: Just like the
constructors, the destructor function pointers point to the
functions that are called once the program terminates. The
structural constraints are the same as those of the construc-
tor function pointers.

2.2 Security Debugging through Con-
straints Verification

As discussed earlier, CBones performs security debug-
ging by verifying whether program structural constraints are

violated at run time. To do so successfully, we have to an-
swer two important questions related to the verification of
these constraints: “what to verify”, and “when to verify”.
We have described the program structural constraints in the
previous subsection, which answered the first question. In
this subsection, we clarify the second question, i.e., when to
verify.

We first introduce some terms to facilitate our explana-
tion. Most structural constraints state that a memory region
should be constant. Obviously, we need to clarify the time
frame during which such a constraint is valid. We define the
lifetime of a memory region to be the duration from the time
when the memory region is set for the current context to the
time when the memory region is discarded or released. Take
for example an activation record in the stack. We described
that the return address and the saved registers are structural
invariants and should be constant throughout the execution
of the function. The lifetime of the memory region hold-
ing a saved register does not start at function call time, but
rather after the function prologue has pushed the register
value onto the stack and ends when the function call returns.
A metadata’s lifetime starts with the dynamic memory allo-
cation and ends with the deallocation of the same memory
region. For a data constraint, the lifetime of the .ctors
and .dtors segments start with program execution and
end at program termination.

Our second term describes the program state. A program
is said to be in a transient state w.r.t. a structural constraint
if the memory region related to the structural constraint is
being modified. For example, consider a heap memory re-
gion allocated in a program. The program is in a tran-
sient state w.r.t. the memory region from the time when a
malloc family of function is called to its return. In gen-
eral, for a heap related structural constraint, this transient
time frame is the period from the call to a malloc family
of function to the function return. For a stack related struc-
tural constraint, this time frame includes the period from the
time a function call occurs to the time the function prologue
sets up the activation record.

Most of the constraints are based on memory segments
that are dynamic. The stack changes with every function
call/return, and the heap is modified with every memory
allocation/deallocation. In theory, we can verify all the
structural constraints continuously at every instruction. In-
deed, any structural constraint that relies on a specific mem-
ory region can be checked at any given time, provided that
the program is not in a transient state w.r.t. that constraint.
However, such an approach will introduce substantial over-
head, which is prohibitive in practice. On the other hand,
the structural constraints related to a memory region must
be checked at least before the memory region becomes inac-
cessible, so that potential violation of structural constraints
will not be missed.

A simple solution is to perform coarse-grained con-

straint verification. That is, to verify the structural con-
straints before function returns and memory deallocations,
since both the activation record for the returning function
and the metadata of the dynamic memory region will be-
come inaccessible after these actions. This allows us to cap-
ture violations of program structural constraints (as long as
the exploit does not “fix”” such violations). However, we
will not be able to pinpoint the instruction that causes the
constraint violation. This is certainly highly undesirable in
security debugging.

We propose to use a two-stage approach in CBones to ad-
dress the dilemma between unacceptable performance over-
head and inaccuracy in identifying the constraint violations.
In the first stage, CBones narrows the location of a con-
straint violation point down to a single function call, and
then in the second stage, it determines the constraint viola-
tion point precisely.

Specifically, in the first stage, CBones is executed in the
coarse-grained debugging mode, where the CBones moni-
toring agent verifies the structural constraints before func-
tion returns and memory deallocations. CBones then iden-
tifies the function call after which a constraint violation is
detected. CBones is then re-executed with the same tar-
get program and input for the second time to start the sec-
ond stage. In order to obtain more information and pro-
vide the instruction responsible for the corruption, in the
second stage, CBones switches to a fine-grained debugging
mode when it reaches the function call identified in the first
stage. CBones then monitors all the memory writes during
the function call. If a memory write instruction causes the
constraints to be violated, CBones raises a flag and outputs
the instruction attempting to corrupt the memory. As dis-
cussed earlier, the fine-grained debugging mode incurs high
performance overheads; CBones works around this prob-
lem by only performing fine-grained monitoring during the
function call identified in the first stage.

3 Implementation

As mentioned previously, utilizing a combination of
static analysis and dynamic monitoring techniques, CBones
consists of two components, the static analysis component
called Constraint Extractor, and the dynamic monitoring
component called Monitoring Agent. In the following, we
describe the two components in detail.

3.1 Constraint Extractor

Written as a Ruby script [19], Constraint Extractor uti-
lizes a number of programs and scripts to extract a pro-
gram’s structural information and constraints from the tar-
get program binary. Since a C program is generally struc-
tured by multiple user-defined functions including main,
Constraint Extractor first extracts each function’s informa-
tion such as its name, address, activation record size and
number of saved registers from the debugging information
included in the program binary. In order to obtain the in-

formation from the binary code itself, Constraint Extrac-
tor takes as input the program executable compiled with
the debugging flag (-g) and without any optimization. It
uses dwarfdump, a publicly available C program that out-
puts the debugging information in DWARF format and we
wrote a parser called dwarf_parser in Ruby to parse
dwarfdump output.

To derive the caller-callee constraints from the target
program, Constraint Extractor uses objdump to disassem-
ble the program executable and extract all the call instruc-
tions, then parses the instruction number and the procedure
name, and adds the next instruction number to the valid re-
turn address list of the procedure. Finally, the Constraint
Extractor outputs the procedure information in a text file.

Note that Constraint Extractor takes as input an ELF bi-
nary that is compiled without any optimizations. The reason
for a non-optimized binary requirement is that Monitoring
Agent works based on a number of assumptions such as the
Sebp being used as a frame pointer and the specific proto-
cols during function calls and returns. When optimized, bi-
naries may invalidate these assumptions, causing false pos-
itives and/or negatives to occur. We leave the optimized
binaries and seamless integration with commodity software
as future work.

3.2 Monitoring Agent

The CBones Monitoring Agent is responsible for veri-
fying the program structural constraints and reporting any
violations. We implement the CBones Monitoring Agent as
a Valgrind skin. Valgrind is an open-source CPU emula-
tor which has been used for debugging and profiling Linux
programs [20]. When a program is run under Valgrind, Val-
grind executes the program one basic block at a time. It ini-
tially translates the instructions in a basic block to an inter-
mediate assembly-like language called UCode. The UCode
basic block is then passed on to the SK_(instrument)
function defined in the skin, which allows programmers to
instrument the binary code by calling their own functions or
altering the basic block. The instrumented UCode block is
translated back into machine language for execution.

The Monitoring Agent uses some internal data structures
to store the procedure information provided by the Con-
straint Extractor and to keep program state during debug-
ging. A Procedure data structure is created for every
entry in the input file and a CallStack stores activation
records during the runtime. The Monitoring Agent also
keeps another data structure ChunkList to keep track of
the dynamically allocated memory regions.

The Monitoring Agent uses a procedure called
cb_check_all_constraints to verify all program
structural constraints that are available. As discussed ear-
lier, we cannot verify whether a structural constraint is vio-
lated when the program is in transient state w.r.t. this con-
straint. Since the only times when such cases may hap-
pen is when the target program makes a function call or

a call to a malloc family of functions, in coarse-grained
debugging mode, the Monitoring Agent captures function
calls to validate the structural constraints. Once the pro-
gram leaves its fransient state, the Monitoring Agent calls
cb_check_all_constraints to verify all the remain-
ing structural constraints. Moreover, the Monitoring Agent
also marks a “safe point” if no constraint violation is de-
tected. The last “safe point” before the constraint violation
will be used in stage 2 as the indication to switch to the
fine-grained debugging mode.

In the following we list the events of interest and the ac-
tions taken by the Monitoring Agent.

Function calls: The Monitoring Agent handles function
calls in several stages. Initially, when a jump due to a
call instruction is captured, the Monitoring Agent deter-
mines the caller and the callee and verifies the caller-callee
relationship constraint. This constraint is only checked for
client program functions and not the library functions. The
second stage occurs when the callee sets its frame pointer.
The Monitoring Agent creates a new activation record for
the callee and adds it to the current thread’s CallStack.
The alignment of the frame pointer is also checked. The
third stage only applies to procedures that save registers in
their activation record. Once all the registers are pushed
onto the stack, a snapshot of the invariant region in the ac-
tivation record is taken and stored in the activation record.
Since no further changes to the invariant region is expected,
the program is no longer in its transient state. The Monitor-
ing Agent calls cb_check_all_constraints to verify
the other structural constraints, and marks a “safe point” if
there is no constraint violation.

Function returns: When a procedure is returning, the
Monitoring Agent captures the jump due to a ret instruc-
tion and verifies that the return address is a valid return
address for the returning procedure. A function epilogue
contains at the very least a 1leave and a ret instruction.
The leave instruction, which precedes the ret, restores
all the saved registers. Therefore, when the Monitoring
Agent captures a function return, the registers, including
the frame pointer, are already restored to the caller’s val-
ues. Nevertheless, the activation record of the callee is still
intact and can be examined. The Monitoring Agent verifies
that the invariant region of the activation record is intact
and removes the activation record of the returning func-
tion from the current thread’s CallStack. It then calls
cb_check_all_constraints, and marks the return ad-
dress as a “safe point” if there is no constraint violation.

malloc/free calls: The Monitoring Agent intercepts
malloc family of function calls via wrapper functions.
These function allow the Monitoring Agent to perform
bookkeeping on dynamically allocated memory regions.
For each newly allocated memory, the Monitoring Agent
first calls malloc to allocate the memory, and then creates
a new chunk and add it to ChunkList. Two additional

checks verify that the heap boundary constraint and the
alignment constraint are satisfied. When a free call is in-
tercepted, the Monitoring Agent first verifies that the meta-
data is intact. It then calls free and finally removes the
chunk corresponding to the memory from ChunkList.
During deallocation, the Monitoring Agent simply calls
cb_check_all_constraints to verify that the meta-
data is intact. This is possible since the Monitoring Agent
determines when to actually deallocate the memory, and
hence the program is not in a transient state until it does.

Memory writes: When running in the fine-grained de-
bugging mode in the second stage, the Monitoring Agent
captures all memory writes by instrumenting the binary
code. If the destination address belongs to any of the in-
variant regions in stack or heap, a flag is raised to mark the
instruction attempting to violate the corresponding struc-
tural constraint. Capturing memory writes is not always
trivial, since memory can be updated through system calls
and kernel functions. The Monitoring Agent’s current im-
plementation captures system calls and performs the neces-
sary checks before the memory is updated. In one of the
test cases, a large memory copy operation is performed by
manipulating the page table through the use of kernel func-
tions. Since Valgrind cannot trace into kernel space, such a
memory modification would go unnoticed. This means that
the current implementation of CBones would not be able to
determine the instruction responsible for the corruption. It
should be noted that this does not mean that the attack is
unnoticed.

We briefly mentioned in section 2.2 that not all pro-
gram structural constraints need be checked to verify our
list of constraints. We deferred this discussion previously
to present the events and actions related to the Monitor-
ing Agent first. cb_check_all_constraints verifies
that for each activation record in CallStack, the invari-
ant region of the activation record is intact. This ensures that
the return address and saved registers, including the saved
frame pointer, have remained constant, satisfying a number
of structural constraints. We assume that if every activation
record is intact, and each activation record is created by a le-
gitimate instruction conforming to the call-graph, then other
structural constraints such as the linked list of saved frame
pointers and frame sizes are also satisfied. A similar ap-
proach is taken with heap related structural constraints. Our
assumption is that, as long as the metadata have not been
modified by any means other than the library function calls
that are designated for the task, the constraints are satisfied.

4 Experimental Evaluation

We performed a series of experiments to evaluate
CBones, using a group of 12 real-world applications with
known vulnerabilities and exploits. The objective of the
experiments is to understand both the security debugging
capability and the performance overhead in CBones.

In the following, we first illustrate how CBones is used

for security debugging through a running example, then
present our security evaluation aimed at understanding the
security debugging capabilities provided by CBones, and fi-
nally describe the performance evaluation.

4.1 Security Debugging Using CBones: A
Running Example

We use one of our test cases, Sumus, to demonstrate
how to use CBones for security debugging. Sumus [9] is a
game server with a stack overflow vulnerability. Figure 5(a)
shows the snippet of the source code responsible for this
vulnerability. The boldface line copies the contents of pl
into the local array tmdCad. p1l points to the string after
GET in the HTTP request. The programmer assume that
this input string have a small size. An attacker may exploit
this assumption by sending a message longer than the size
of tmpCad. At a first glance, this looks like a trivial stack
overflow; the overflow should first corrupt the local vari-
ables and then the return address. However, as the buffer
is overflowed, the instruction first overwrites faltan and
then kk, which is actually used to index tmpCad. With
a carefully designed input, the overwrite skips to the for-
mal arguments’ memory region, not overwriting the return
address. This behavior of the attack makes it much more
difficult and time-consuming to debug manually. Another
important note is that this attack cannot be captured by sys-
tems looking for control-hijacking attacks alone, since the
return address remains intact.

void RespondeHTTPPendiente(int Pos) (1) --4169-- Checking constraints at 8051808
(1) 4169 Call: Last safe point is 8050136

intj kkfaltan (1) ~4169- Checking memory write to AFEFESBS of size 4
char tmpCad[100], *p1, *p2 (1) --4169- $ebp setting for RespondeHTTPPendiente - ebp: AFEFE8B8

Buffer{400] = 0
1 = strstr(Buffer, "GET") (1) --4169- Error: Witing to stack frame of main from instruction 805020A

p ' S (1)==4169== at 0x805020A: RespondeHTTPPendiente (sumus.c:1308)

ift p1==NULL) p1 = strstr(Buffer, "Get") ; (1) ==4169==" by 0x805180F: main (sumus.c:1666)

if(p1 == NULL) p1 = strstr(Buffer, "get") ;

(1) ~4169-- Checking call from 8051808 to function RespondeHTTPPendiente(8050136)

if(p1 1= NULL) { 805010: 7502 jne 8050114 <RespondeHTTPPendiente+Oxbe>
j=5; 80501f2: eb24
kk=0; tmpCad(kk++] = p1[j++] ;
if(j < strlen(p1)) 80501f4: 8b4510
while (p1[j] 1="" && p10i]) 8050208: 8a 00 mov ($eax) $al
tmpCad[kk++] = p1[j++]; - security bug| | 805020a: 8802 mov (‘;al,}:edx)
tmpCad[kk] =0 ; 805020c: 8d 454 lea Oxffffff4($ebp), Seax

}

mov OXffO(Sebp) Seax

8050216: ebbe

tmpCad[kk] = 0 ;
8050218: 8485 78f(((ff lea OXIffifi78(Sebp) $eax

imp 8050218 <RespondeHTTPPendiente+0xe2>

jmp 805016 <RespondeHTTPPendiente+0xa0>

(a) Source code (b) Security bug report
Figure 5. An example of automated bug diagnosis using
CBones

For comparison purposes, we first ran Sumus under gdb.
However, gdb was only able to capture the program’s crash
after RespondeHTTPPendiente calls the send func-
tion (not shown in figure). Therefore, it is non-trivial to
locate the corrupting instruction using gdb, if not entirely
impossible.

We then ran Sumus under CBones. CBones, how-
ever, was able to detect the exploit and determine
the corrupting instruction fully automatically. Although
this attack does not corrupt the invariant region of
RespondeHTTPPendiente, it does corrupt the invari-
ant region of the caller function main. Therefore, CBones

was able to detect a violation of the caller-callee relation-
ship constraint in the first stage. In the second stage,
CBones started the fine-grained debugging mode from the
last “safe point” (0x8050136), detected the (illegal) mem-
ory write into the return address in the stack frame of the
main function, and raised a flag accordingly. Figure 5(b)
shows the output of CBones. The error message clearly
states that a memory write to an invariant region has oc-
curred and displays the instruction number responsible for
the memory write.

4.2 Security Evaluation

Our debugging example with CBones clearly reflects the
effectiveness of using program structural constraints to dis-
cover security bugs in a vulnerable program. To further
evaluate the effectiveness of our method, we used 12 real-
world applications with various vulnerabilities. Seven ap-
plications have stack overflow vulnerabilities, three have
heap overflow vulnerabilities, and two have format string
vulnerabilities. The effectiveness is measured by how pre-
cisely CBones can locate a security bug in a program.

Table 1 summarizes the evaluation result. In all tested
applications, CBones captured constraint violations at the
time of structural corruption and pinpointed the corrupt-
ing point (instruction) in the program, and raised no false
alarms. The last column of Table 1 shows the constraint that
was violated in each test case. Most stack overflow exploits
violated either the return address constraint or the saved reg-
isters constraint. All heap overflow cases violated bound-
ary tag constraint, in which the exploits overwrote metadata
next to an allocated chunk in the heap. Two format string
cases violated the return address constraint. Although we
do not have malicious attacks to evaluate CBones with other
types of attacks, it is worth noting that such attacks depend
on the three types of memory corruption techniques men-
tioned here. For example, return-to-libc attack is a variation
of stack overflow and malloc-free attack relies on a heap
buffer overflow.

4.2.1 Discussion: False Positives and False Negatives

Our proposed approach guarantees no false positives, since
all program structural constraints should be satisfied by all
program binaries. The current version of CBones, however,
does not reach the full potential of the proposal approach
yet, due to a limitation in the implementation of Constraint
Extractor. The current CBones Constraint Extractor cannot
handle function pointers properly yet. A jump due to a func-
tion pointer usually dereferences a register or an address in
assembly code. Even though the Constraint Extractor de-
tects these instructions, it does not include analysis proce-
dures to derive all possible caller-callee relationships. As
a result, the Monitoring Agent may raise a false alarm due
to some missing caller-callee relationship. These false pos-
itives can be suppressed by marking call instructions that
dereference values instead of using function addresses and

Table 1. Security evaluation result. S:Stack overflow, H:Heap overflow, F:Format string

Name Description Vul.Type | Bug Detected? Constraint Violation
streamripper | a Winamp plugin for recording radio stream S Yes Return address constraint
ghttpd an open source web server N Yes Return address constraint
sumus a game server for ‘mus’ N Yes Return address constraint
prozilla a web download accelerator S Yes Return address constraint
monit a multi-purpose server monitoring utility S Yes Saved registers constraint
newspost a Usenet binary auto poster S Yes Saved registers constraint
icecast a audio broadcast server S Yes Saved registers constraint
‘WsMp3d an web server with audio broadcasting H Yes Boundary tag constraint
Xtelnet an open source telnet daemon H Yes Boundary tag constraint
NULLhttp an open source web server H Yes Boundary tag constraint
Power an UPS monitoring daemon F Yes Return address constraint
OpenVMPS an open source VLAN management server F Yes Return address constraint

suppressing the errors when they are generated at these in-
structions. We will extend the implementation of Constraint
Extractor to handle such cases in our future work.

CBones is intended to automatically identify exploits of
vulnerabilities that violate program structural constraints.
Thus, it cannot detect exploits that are outside of this scope,
for example, illegal modifications of the memory regions
belonging to program variables. Such cases can be resolved
using techniques and tools complementary to CBones, such
as DAIKON [12] and DIDUCE [13].

4.3 Performance Overhead

We also performed experiments to understand how much
CBones slows down the test applications, though such per-
formance penalty is non-critical for debugging. For simplic-
ity, we chose to use throughput as a performance metric.
This performance metric certainly reflects the extra over-
head due to CBones. However, it is not applicable to all the
test applications. For example, the Power daemon checks
the status of the UPS periodically and idles/sleeps for the
rest of the time. As another example, Xtelnet is a telnet
daemon, and its runtime or throughput depends on the client
activity. Thus, in our experiments for performance evalua-
tion, we focus on the subset of server/client applications in
our test suite. All programs were compiled using GCC ver-
sion 3.2.2 with debugging option (-g). Our testbed ran Red
Hat Linux 9.0 with a 2.66 GHz Intel Pentium 4 CPU, 512
MB of RAM, and a 7200 RPM ATA IDE hard disk drive.

For comparison, we first ran the test programs without
Valgrind, under Valgrind’s Nullgrind skin, and finally un-
der CBones. Nullgrind is Valgrind skin without instrumen-
tation. Thus, this reflects the performance slowdown intro-
duced by Valgrind. To better understand the performance
impact of CBones, we run CBones in two modes. The
first mode is the default, coarse-grained mode, in which
the relevant program structural constraints are checked af-
ter function calls/returns and after malloc family function
calls. The second mode is the fine-grained mode, in which
CBones starts the memory monitoring from the last “safe
point”. Such a “safe point” is usually very close to the cor-
rupting instruction. For each test program except for sumus,
we measured the time it took to download two files with
sizes 700KB and 12MB, respectively, and take the average

of the slowdown factor over 15 iterations. As an exception,
sumus uses multi-threads and only allows a small size file
(up to 200KB) for data transmission. In this case, we used
200KB files.

Figure 6 shows the evaluation result. The Y-axis in the
figure shows the slowdown factor of using Nullgrind and
CBones compared to normal execution of each test pro-
gram. For example, in ghttpd, Nullgrind incurs 1.88 times
slowdown and CBones in the coarse-grained mode incurs
2.46 times slowdown compared to the normal execution.
The overall average slowdown factors for CBones in the
coarse-grained and the fine-grained modes are about 5.23
and 12.57, respectively, compared to normal program exe-
cution. It is worth noting that a good portion of the overhead
came from our implementation choice (Valgrind), which in-
curs 2.44 times slowdown on average by itself (Nullgrind).
CBones only incurs 68% additional overhead on average
compared to Nullgrind. NULLhttp shows a exceptional
slowdown compared to other programs. It shows about 5
times slowdown under Nullgrind, 15.21 times slowdown
with CBones in the coarse-grained mode, and 53.97 times
slowdown with CBones in the fine-grained mode. This sig-
nificantly increases the performance overhead. Our fur-
ther investigation indicates that this significant performance
overhead is due to the large number of function calls and
returns during the test process (e.g., 708,355 function calls
in NULLAhttp v.s. 1,224 function calls in ghttp when down-
loading a 700KB file). In contrast, the sumus test case
shows very little overhead (1%), since sumus uses multi-
threads and only allows a small size file (200K) for data
transmission.

When the monitoring agent observed a constraint viola-
tion, we changed the constraint checking granularity to fine-
mode using the last safe point reported from the monitoring
agent. In such case, the average performance overhead can
be increased up to 14.76 times compared to normal execu-
tion and 2.99 times compared to Nullgrind.

5 Related Work

A number of approaches have been proposed to provide
automated debugging capability. iWatcher [10] uses ex-
pected access (e.g., read-only, read/write) to user-specified

1000

5397

15.21)

5.24]

4.17
246 2.52 2.
1.88, D
122 1.18 -
] ; 1.03 ; . 1.01 101 1.01
ghttpd WsMp3d NULLhttp sumus prozilla
‘ @ Nullgrind B CBones coarse 0O CBones fine ‘

Figure 6. Slowdown factors of Nullgrind and CBones

memory regions to check whether there is any access viola-
tion and triggers further investigation if there is any. Users
can turn monitoring on or off at run time to reduce the over-
head. However, iWatcher requires additional hardware sup-
port, such as modified L1/L2 cache, victim watchflag ta-
ble, and range watch table, and thus cannot be used directly
on common computer systems. AccMon [11] uses the pro-
gram counter based invariants (i.e., each memory object is
generally referenced only by a few instructions) to monitor
program execution. AccMon incurs low overhead (0.24-
2.88 times) using additional hardware support, including
iWatcher [10] and Check Look-aside Buffer. AccMon mon-
itors global objects, heap objects, and return addresses in
the stack. To reduce false alarms, AccMon provides a con-
fidence level to help users decide whether an alarm is likely
to be a bug. Similar to iWatcher, AccMon cannot be used
on modern computer systems due to the additional hardware
requirement. DIDUCE [13] instruments Java byte code and
monitors variables in a program to generate dynamic in-
variants. DIDUCE reports detected anomalies by checking
the history of variable usage (comparing a variable’s pre-
vious and current values). To reduce false alarms, it pro-
vides options for users to tighten or relax the properties.
DAIKON [12] introduced variable-based invariants debug-
ging. It instruments a program’s source code and traces the
program executions to find the likely invariants. It then gen-
erates pre/post conditions at certain program points such as
functions or variables to check violations.

6 Conclusion

In this paper, we identified a new class of program invari-
ants called program structural constraints, and developed a
novel security debugging tool called CBones to automati-
cally extract program structural constraints from program
binaries and analyze security bugs in vulnerable programs.
Compared with the previous approaches, CBones provides
several benefits: 1) full automation (neither training nor
manual specification is required, 2) no need for source code
analysis or instrumentation, 3) no requirement of additional
hardware support, and 4) no false alarms. Our experimen-
tal evaluation with 12 real-world applications demonstrates

that CBones can identify all security bugs automatically,
without generating any false alarm or false negatives.

We understand that the program structural constraints
also offer a basis for detecting (unknown) exploits, in ad-
dition to security debugging. In our future work, we will
investigate how to use program structural constraints to ef-
ficiently detect attacks that cause the violation of these con-
straints.

References

[1] S. Chen, J. Xu, E.C. Sezer, P. Gauriar and R.K. Iyer. Non-Control-Data Attacks
Are Realistic Threats. In USENIX Security Symposium, Baltimore, MD, August
2005.

[2] Tool Interface Standard (TIS) Committee. Executable and Linking Format
(ELF) Specification, 1995.

[3] Programming Languages Supported by GCC. GNU Project, http://gcc.gnu.org.

[4] Format string exploit, http://www.acm.uiuc.edu/sigmil/talks/general _exploitation/format._strings/.

[5] D.Lea, A Memory Allocator, http://gee.cs.oswego.edu/dl/html/malloc.html.

[6] E.D. Berger, K.S. McKinley, R.D. Blumofe, and P.R. Wilson. Hoard: A Scal-
able Memory Allocator for Multithreaded Applications. In the Ninth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX). Cambridge, MA, November 2000.

[7]1 The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.

[8] iSec Security Research. Linux Kernel do_brk() Vulnerability. 2003.

[9] Common Vulnerabilities and Exposures (CVE) 2005-1110, assigned on April
16 2005. available from http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2005-1110.

[10] P. Zhou, F. Qin, W. Liu, Y. Zhou and J. Torrellas. iWatcher: Efficient Archi-
tecture Support for Software Debugging. In Proceedings of the 31st annual
International Symposium on Computer Architecture (ISCA’04), June, 2004.

[11] P.Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, J. Torrellas. AccMon:
Automatically Detecting Memory-related Bugs via Program Counter-based In-
variants. In 37th International Symposium on Microarchitecture (MICRO), Nov
2004.

[12] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 2007.

[13] S. Hangal and M. S. Lam. DIDUCE: Tracking down software errors using dy-
namic anomaly detection. In Proceedings of the 24th International Conference
on Software Engineering, May 2002.

[14] S. Cesare. Shared library call redirection using ELF PLT infection. Apr 2007.
available from http://vx.netlux.org/lib/vsc06.html.

[15] NIST national vulerability database, http:/nvd.nist.gov/.

[16] The Frame Pointer Overwrite. klog. avaliable from
http://doc.bughunter.net/buffer-overflow/frame-pointer.html.

[17] E. Chien and P. Szor. Blended Attacks Exploits, Vulnerabilities and Buffer-
Overflow Techniques in Computer Viruses, Virus Bulletin Conference, 2002.

[18] IA-32 Intel Architecture Software Developer’s Manual,
ftp://download.intel.com/design/Pentium4/manuals/.

[19] Ruby programming language. http://www.ruby-lang.org/en/.

[20] N. Nethercote. Dynamic binary analysis and instrumentation, 2004.

[21] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter Technical Conference, 1992.

[22] W. Robertson, C. Kruegel, D. Mutz, F. Valeur. Run-time Detection of Heap-
based Overflows. In Proceedings of the 17th USENIX Large Installation Sys-
tems Administration Conference (LISA), October 2003, San Diego, CA USA.

[23] C. Cowan, C. Pu, and D. Maier. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX
Security Symposium, 1998.

[24] J.-D. Choi et al. Efficient and precise datarace detection for multithreaded ob-
jectoriented programs. In PLDI, June 2002.

[25] S.Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific, static analyses. In PLDI, June 2002.

[26] M.Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A prag-
matic approach to model checking real code. In OSDI, December 2002.

