
Retrofitting the IBM POWER Hypervisor to Support Mandatory Access Control

Enriquillo Valdez Reiner Sailer Ronald Perez
IBM T. J. Watson Research Center, Hawthorne, NY 10532

{rvaldez, sailer, ronpz}@us.ibm.com

Abstract

Server virtualization more readily enables the

collocation of disparate workloads on a shared
physical platform. When employed on systems across a
data center, the result can be a dramatic increase in
server utilization and a decrease in overall power,
cooling and floor space requirements. However, in an
environment where workloads share the underlying
platforms, achieving other desirable workload goals,
such as availability and security, becomes a challenge.
In particular, enforcing isolation between workloads in
a large, dynamic, and virtualized data center requires
strong yet easily configurable controls on the sharing
of resources at the virtualization layer. Commercial
hypervisors usually offer reasonable isolation of
individual virtual machines (VMs). However, on
hypervisor-based platforms, one cannot currently
define a single policy that automatically enforces
restrictions on the sharing of resources between
multiple VMs or request an air gap between
workloads.

In this paper, we describe the design and
implementation of a Hypervisor-based Mandatory
Access Control (MAC) that achieves policy-driven
distributed workload isolation for the IBM Power
Hypervisor (PHYP). We discuss our experiences and
lessons learned and examine the implications and
trade-offs involved in providing MAC on a production-
level, commercially-available hypervisor. Our goal is
to simplify the security management of data centers
through centralized security management and policy-
driven distributed access control and data protection.

1. Introduction

A workload consisting of tasks and services can be

distributed among a set of virtual machines (VMs)
executing on a single or across multiple platforms for
reliability and efficiency reasons. In this environment,
hypervisors traditionally isolate individual VMs and
enable the sharing of resources on the platform. The

sharing properties between VMs in this environment
rely largely on the discretionary decisions of
administrators to correctly configure the resource
sharing among VMs (e.g., network, storage) according
to the overall workload isolation goals.

This environment, however, does not have a formal
basis for expressing the controlled sharing of resources
or platform to guarantee workload isolation. This lack
of formality makes it hard to reason about the isolation
provided to workloads. Data center operators, for
example, want to ensure that the sharing of resources is
based on the type of the workload and that selected
designated workloads are prevented from executing at
the same time on the same platform. Consequently, in
multi-tenant computing or data center environments, it
becomes difficult to keep track of the resources and
distributed workloads and to establish proofs of
compliance of workload isolation through audit logs.

In this paper, we investigate retrofitting the IBM
POWER Hypervisor (PHYP) [2] with sHype
mandatory access control architecture [24] to enable
policy-driven workload protection. PHYP is a
commercial-grade hypervisor that offers the
functionality and resources that modern virtualization
environments demand. It provides isolation guarantees
[3] to virtual machines called Logical Partitions
(LPAR). PHYP prevents programs running in an
LPAR from affecting other programs running in other
LPARs, isolates LPAR memories, and allows
exclusive physical device assignments to LPARs by
administrators via a stand-alone Hardware
Management Console (HMC). Throughout this paper,
we use the terms “LPAR” and “VM” interchangeably.

For PHYP, we provide a workload protection
mechanism to mediate resource assignment (access) by
mandatory access control (MAC) on LPARs. This
MAC enforcement is independent of the LPARs and
does not require their co-operation. Our workload
protection mechanism is based on a simple security
policy that can be applied across heterogeneous
platforms to enforce consistent isolation properties for
a virtual data center. Adding MAC to PHYP allows
administrators to be confined to managing a single

workload and its resources. This provides a safety net
by preventing information flow violation due to
improper resource configuration by administrators.
Additional benefits of MAC enforcement in PHYP
include supporting least privilege by confining
workload types to a platform, establishing the basis for
safe object re-use, and providing easier proofs of
isolation and anti-collocation guarantees. Our approach
allows for security policies to be centrally managed
(i.e., authored) and enforced locally on the distributed
platforms. This can simplify the security management
of large scale computing environments considerably.

Other hypervisor MAC approaches, such as
KVM/370 [9]1 or VAX/VMM [15], aimed for high-
assurance and required implementing a new hypervisor
or large intrusive changes to the existing hypervisor.
Our approach aims to minimize intrusive changes and
depends on the core isolation capabilities and their
assurance in the underlying hypervisor (PHYP).
Although this work is similar to the sHype MAC
architecture in the Xen open source hypervisor [26],
the challenge of this work was to retrofit PHYP
without considerably affecting the existing
infrastructure and software. We succeed in applying a
new approach where we mediate configuration
commands only instead of runtime commands. This
approach is non-intrusive to the critical path and yields
no access control-related runtime performance
overhead, since access control is enforced during
configuration time. There will be overhead induced by
the way we can assign resources, configure networks,
and also by running multiple Virtual I/O Servers to
securely share resources among VMs of a workload.

Initially, we explored implementing multi-level
security (MLS) for the IBM research hypervisor [10] in
the sHype access control framework, but found that our
simple policy model, though less expressive, maps
better to the virtual machine monitor (VMM)
abstraction and operations. The VMM’s coarse-grained
operations, such as allocation of resources to VMs and
enablement of communication between VMs, are
intrinsically bi-directional. We find that our simple
sharing policy fits better onto the virtualization
abstraction because its bi-directional policies do not
require distinguishing read from write operations
between subjects and objects. Consequently, our
simple policy yields a less-intrusive implementation
which makes the adoption of mandatory security in a
commercial environment more viable. If finer-grain
controls are necessary, we propose a layering of access
controls within Guard VMs as described in [21].

In this paper we discuss our practical experience in
applying the sHype access control architecture to the

1 Not to be confused with the new KVM [12].

PHYP environment. Section 2 provides an overview of
the PHYP platform. Section 3 presents our MAC
design and supported security policies. Section 4
discusses the implementation of MAC on PHYP.
Section 5 reviews lessons learned in applying our
approach. Section 6 presents future work. Section 7
reviews related work. Finally, Section 8 summarizes
our results.

 2. PHYP Platform Overview

PHYP is the virtualization engine for IBM’s
PowerPC-based System i/p platforms. System i/p
platforms are targeted for corporate and data center
environments. Figure 1 shows the main components of
a managed Power Hypervisor platform.

Service
Processor

(SP)

Shared IO
Storage + Network

Dedicated IO
Storage + Network

Platform Licensed Internal Code (PLIC)

Dispatchable

Logical
Partition
(LPAR)

LPAR Hosting
LPAR
(VIOS)

Hardware
Management

Console
(HMC)

VLAN

Power
Hypervisor

VDISK
VDISK

Service
Processor

(SP)

Shared IO
Storage + Network

Dedicated IO
Storage + Network

Platform Licensed Internal Code (PLIC)

Dispatchable

Logical
Partition
(LPAR)

LPAR Hosting
LPAR
(VIOS)

Hardware
Management

Console
(HMC)

VLAN

Power
Hypervisor

VDISK
VDISK

Figure 1. Power Hypervisor Architecture

The Hardware Management Console (HMC) [20] is

a dedicated PC that runs the management application.
It provides the interface for configuring and managing
the platform. The HMC communicates configuration
information via the service processor to PHYP over a
dedicated management network using the Secure
Sockets Layer (SSL) protocol and password protection.
The service processor is an independent subsystem that
performs system diagnostics and maintains platform
configuration information.

PHYP consists of two parts: a non-blocking
interrupt driven layer, called Platform Licensed
Internal Code (PLIC), and a multitasking kernel, called
Dispatchable PHYP. PLIC performs time critical
operations required for virtualization. It enforces, for
example, the partitioned environment. PLIC maintains
the hardware page tables for translating an LPAR
memory address into a physical address. It validates an
LPAR’s access to its hardware page table entry. This
prevents an LPAR from accessing the memory of
another LPAR. Similarly, it maintains a Translation
Control Entry (TCE) table, an IO memory map unit,
which is used to translate addresses generated by IO
devices to physical memory assigned to LPARs. An

administrator at the HMC must first assign ownership
of a physical IO device to an LPAR before the LPAR
is permitted to map a portion of its memory to the TCE
entry associated with the device.

 Dispatchable PHYP executes as a hidden LPAR
and provides non-critical platform services. One of its
main duties is to process messages from the HMC and
services processor. The HMC provides Dispatchable
PHYP with LPAR configuration data. Dispatchable
PHYP is responsible for processing and maintaining
configuration data on the platform. It participates in
every configuration update even in the processing of
Dynamic LPAR operations where resources are added
or removed on running LPARs. Dispatchable PHYP is
also involved in directing the startup and terminations
of LPARs. Additionally, it provides virtual service
processors to the LPAR. These mirror real services
processors and are used to maintain LPAR state
information.

PHYP employs the para-virtualization approach
where operating systems have embedded hypervisor
calls for requesting PLIC virtualization services.
Accordingly, PHYP can run any operating system
developed using the PowerPC Architecture Platform
Reference Specification [16] for interfacing with the
PowerPC platform. Figure 1 also shows two client
LPARs and a hosting LPAR, Virtual IO Server
(VIOS). Dedicated IO can be assigned to any LPAR on
the platform. Only the VIOS can be assigned shared
IO. Hence, the VIOS can be configured to provide
virtual storage or Ethernet to LPARs that lack the
physical resources. Our workload protection focuses on
mediating the sharing of the platform and resources
(physical or virtual) and relies on PHYP to ensure
isolation of platform resources such as CPU, memory,
and physical IO devices [2].

Because PHYP is closed-source software, there are
limits on the information that can be publicly disclosed
about PHYP. Internally at IBM, there has been
extensive review of the PHYP source code. With
respect to design, PHYP architects follow the
overriding design principle of only performing tasks in
Dispatchable PHYP or in PLIC that can not be
performed elsewhere in the software stack (i.e.,
application space, OS kernel, or VIOS). Currently,
PHYP for POWER6 processors is under Common
Criteria Evaluation EAL4 [7].

3. PHYP MAC Design

Three goals drive the design of sHype MAC
enforcement in PHYP. The first goal is to implement
MAC that confines workloads in case of an LPAR
compromise and prevents administrators from

configuration mistakes that would create sharing
between workloads that are intended to be confined
from each other. For this reason, our design does not
assume cooperation of user LPARs for providing
isolation. The second goal is to provide a non-intrusive
design. Such a design minimizes impact on the PHYP
code base, which in turn increases the likelihood of the
PHYP Design and Development Team accepting those
MAC extensions. The third goal is to have negligible
performance overhead so that performance will not
become a hurdle for its acceptance by customers in
high-utilization environments.

We address the first goal by enforcing Mandatory
Access Control (MAC) on configuration commands
that change the assignment of resources to LPARs. We
define a MAC security policy to specify the access to
resources by LPARs based on security labels, which
are attached as protected meta-information to LPARs
and resources. The MAC security policy can be
installed administratively on the platform, preferably
by a security officer. Only the security officer will be
able to effect changes on the installed policy. We
address the second goal by minimizing changes and
additions to the PHYP code base. We support the third
goal of minimizing the performance overhead by
performing access checks at configuration time and not
during every run-time access of an LPAR to one of its
configured resources.

 3.1. Reference Monitor Approach

The design of our PHYP MAC enforcement is
based on the principles of the reference monitor
approach as introduced by Anderson [1]. In this
approach, a subject’s access to an object is mediated by
a reference monitor. The security of this approach rests
on three fundamental requirements. First, the reference
monitor cannot be bypassed. It is always invoked when
a subject accesses an object. Second, it is tamperproof.
Subjects cannot alter its functionality. Third, the
reference monitor is small enough to allow its
correctness to be easily verified.

 In our case, a subject is an LPAR and an object can
be an LPAR or a resource. The reference monitor
approach requires security labels to be assigned to
subjects and objects. When an LPAR accesses an
object, the reference monitor is invoked. The reference
monitor allows or denies access based on the security
labels and the security policy being enforced.

For PHYP, the MAC design consists of three
components: an access control policy, access control
module (ACM), and security hooks. The access control
policy defines the policy to be enforced on the
platform, including the security labels which can be

assigned to LPARs and resources. The policy is loaded
into the ACM, which is responsible for providing the
access control decisions based on security labels.
Security hooks are guarded method invocations that
request security access decisions from the ACM. The
ACM and the security hooks constitute the reference
monitor validation mechanism. The separation between
ACM and security hooks follows a well established
principle of separating policy from enforcement.
Enforcing MAC on PHYP requires determining the
mediation points in the platform.

Service
Processor

(SP)

Shared IO
Storage + Network

Dedicated IO
Storage + Network

Platform Licensed Internal Code (PLIC)

Dispatchable

Logical
Partition
(LPAR)

LPAR Hosting
LPAR
(VIOS)

Hardware
Management

Console
(HMC)

VLAN

Power
Hypervisor

VDISK
VDISK

ACM (Access Control Module): Policy Decision Point
Security Hook: Policy Enforcement Point

ACM

Configuration-time
Security Hooks

Figure 2. Mediating configuration commands

We implement mandatory access control in

Dispatchable PHYP to avoid changes to performance-
critical paths in PLIC and to minimize the
intrusiveness of our implementation, see Figure 2. We
leverage PHYP’s centralized configuration setup to
apply MAC before the LPARs are even powered on, at
the time when resources are assigned (configured). As
a result, MAC enforcement is performed during
configuration updates. A configuration update is only
accepted by PHYP, specifically Dispatchable PHYP, if
it passes the access control checks. In our design, when
the HMC submits configuration requests to
Dispatchable PHYP, PHYP accepts or denies the
requests based on the security labels of the subjects and
objects that are involved in the configuration update.

This design successfully meets the first and second
requirements of the reference monitor: The ACM
resides in PHYP and thus cannot be tampered with by
user LPARs. PHYP is the highest privileged code and
is protected against the LPARs running on the
platform. Since all configuration requests must go
through Dispatchable PHYP, a bypassing of the MAC
enforcement is not possible. This provides strong
security guarantees since enforcement takes place
when resources are configured to LPARs.

Since we favor a non-intrusive design over a small
trusted computing base (TCB) [8] in our commercial
environment, we do not optimize the third reference
monitor requirement and accept as a trusted computing
base the PHYP hypervisor and management
environment on top of the system hardware. Although
the ACM is a small module and there are only a few
security hook instrumentations, we must consider other
parts of the PHYP code base and hardware that
contribute to the security administration and protection
as part of the reference monitor. The TCB of the
retrofitted PHYP consists of the HMC, SP, and
Dispatchable, PLIC as well as the hardware that
enables the privileged hypervisor state and physical
isolation capabilities. Addressing the third principle
fully would require partitioning PHYP’s TCB into
security and non-security parts (this would be similar
to the KVM/370 [9] retrofitting effort). However, this
in turn would violate our overriding design
requirement to minimize intrusiveness of the protection
mechanism on PHYP.

3.2. Simple Policies

We support two simple orthogonal security policies
to govern authorization and resources allocations on
PHYP: Simple Type Enforcement (STE) and Chinese
Wall Enforcement (CHW).

The simple type enforcement policy enforces
restrictions on the communication and resource sharing
between LPARs or between an LPAR and a resource
based on the STE type (e.g., color) associated with the
LPARs or resources. The STE policy specifies that
LPARs can only communicate with each other if they
have a common STE type, i.e., both LPARs must have
assigned at least one type in common in their security
labels. Similarly, an LPAR is permitted access to a
resource, if the LPAR and the resource have a common
STE type. Typically, resources and LPARs have a
single STE type.
Due to limited physical resources on a platform, some
platform configurations employ a VIOS partition to
enable the sharing of hardware resources, such as a
storage and network devices, among multiple client
LPARs. Such configurations have implications to the
STE type assignments and the reference monitor’s
TCB. If a VIOS provides resources to LPARs with
different STE types, then the VIOS must be assigned
multiple STE types corresponding with the STE types
of the client LPARs. Additionally, the VIOS must be
MAC aware since it must map its PHYP configurable
resources to internal resource mapping based on the
STE types. Since a multi-STE typed VIOS must
mediate LPAR accesses to its internal resources based
on the STE type, it becomes part of the reference

monitor’s TCB for those types it is assigned (c.f.,
MAC-Domains in [24]). To avoid adding a full-sized
VIOS to the TCB, we can employ multiple single STE
typed VIOSs to service only single STE typed client
LPARs. For scarce hardware, we can deploy a
minimized VIOS to share such hardware more safely
among differently labeled LPARs.

In contrast to STE, the Chinese Wall policy controls
which workloads can run on the same platform at the
same time and which cannot. If workload types A and
B are designated as conflicting then, as long as an “A”
typed LPAR executes, no “B” typed LPAR is allowed
to execute on the platform and vice versa. Chinese
Wall types that shall not be collocated define a so
called conflict set and LPARs with workload types that
are in a common conflict set will run mutually
exclusive on the platform. This approximates an air
gap between conflicting workloads assuming that the
platform does not keep state of LPARs once they stop
executing. In [13], the authors discuss an approach that
leverages the Chinese Wall collocation restrictions to
reduce covert channels risks between specific
workloads.

3.3. Operations and Resources under MAC

To enforce collocation restrictions with the Chinese
Wall security policy component, we control the
assignment of the bootable state of an LPAR based on
its security label. An LPAR set to the bootable state is
allowed to be powered on the platform without
additional policy checks. Therefore, once an LPAR
with conflicting CHW types is set to bootable, other
LPARs with conflicting types are not allowed to be set
to bootable. In order to determine when the other
LPARs from the conflict set can be eventually set to
bootable, we must track the bootable LPARs according
to the CHW policy’s conflict sets.

To enforce the STE policy component, we control
the configuration of the following virtual and physical
peripheral resources to LPARs based on security labels
assigned to LPARs and resources:
• vSCSI, vTTY - are virtual resources that allow

interaction between a client LPAR and a server
LPAR (e.g., VIOS). The server LPAR provides
services such as network connectivity or virtual
storage to client LPARs.

• vEthernet – is a virtual resource that enables inter-
LPAR communication. LPARs can communicate
with each other if their Logical vEthernet adapters
are assigned to the same VLAN ID.

• An IO pool – is a group of IO devices that can be
shared by a group LPARs without requiring active
HMC involvement.

• VLAN Switch – is an internal switch that enables
LPARs to communicate based on their VLAN
membership.

• Host Ethernet Adapter (HEA) – provides LPARs
direct high speed access to the network via logical
ports without going through a VIOS.

• Physical IO devices – allows direct access of
physical IO devices by LPARs. An IO device is
exclusively owned and used by a single LPAR.
Next, we discuss the assignment of security labels

and how they are used to enforce STE and CHW
policies. In our environment, we view a security label
as a container for CHW and STE types.

Label assignment. We assign security labels—defined
as part of the platform security policy—to all LPARs
and resources before they can become active:
• A security label for an LPAR contains CHW and

STE security type attributes. A device on an
LPAR’s virtual bus is assigned only a single STE
type. This allows a multi-STE typed LPAR to
distinguish the security type of the connection.

• User LPARs are usually assigned only a single STE
type since we do not trust them to keep different
types confined. LPARs that are assigned multiple
STE types can implement sharing of hardware or
create controlled information flow between user
LPARs of different STE types. However, multi-STE
typed LPARs must be trusted to confine the types
and only permit selective information flow if
desired. If a multi-STE typed LPAR is compromised
or untrusted, no confinement guarantees hold for
those STE types that are assigned to such an LPAR.
Consequently the least privilege principle should be
applied when assigning STE types to trusted
LPARs.

• A security label for a VLAN, IO pool, HEA, or
physical IO device has exactly one STE type. We
label the physical slot location of an IO device since
the device is not MAC aware.

• Shared resources can only be assigned a single STE
type, since those resources otherwise could be
accessed by different STE typed LPARs and
information flow through those shared resources
would violate the type confinement requirements.
Chinese Wall types do not apply to resources.
A complex hardware device can be assigned more

than one STE type if it is composed of multiple
isolated hardware components, access to which can be
individually controlled by PHYP. In this case,
however, an isolated sub-component is still assigned a
single STE Type. Although not a physical hardware

device, PHYP’s internal Virtual Ethernet Switch
supports the IEEE 802.1Q VLAN standard which
provides VLAN isolation. In the PHYP Ethernet
Switch case, we assign each VLAN ID a single STE
type and check this type when the VLAN ID is
assigned to the LPAR’s vEthernet adapter.

MAC enforcement. On the PHYP platform, MAC
enforcement restricts the collocation of LPARs and the
assignment of resources to LPARs according to the
platform security policy. An assignment of the
bootable state to an LPAR is permitted, if the LPAR’s
CHW type does not conflict with any LPARs that are
already in the bootable state. This prevents the
activation of conflicting LPARs.

The configuration of a client LPAR adapter to a
server LPAR adapter is permitted, if the client LPAR
and server LPAR share an STE type in their security
labels. This covers vSCSI and vTTY adapter
configurations. A multi-STE typed server (or client) is
able to determine the STE type assignment of its
adapter and enforce the confinement against adapters
of other STE types. An assignment of an LPAR to a
resource is permitted, if the LPAR includes the
resource’s STE type in its label. A resource in our
environment could be an IO POOL, VLAN, physical
slot, or a Logical Port from a HEA.

3.4. An example of MAC enforcement

We review MAC operations on the platform
illustrated in Figure 3 to show how MAC enforcement
works on PHYP platforms. This figure shows a
managed platform with a hosting LPAR (VIOS) and
two client LPARs. The VIOS owns the physical
hardware disk and serves virtual disks to the client
LPARs.

A platform security officer defines STE types
{green, red, service} and CHW types {green, red,
service}. For simplicity reasons, the figure does not
differentiate between CHW and STE types. For the
CHW types, a conflict set {green, red} is defined. The
security officer created Red, Green, Res, and Service
security labels to group the types as shown on the left
in Figure 3.

LPAR

B
non-bootable

Red_LabelTypes:
{ green,

red,
service}

Security Policy

Conflict Set:
{ green, red }

{red} {green}

LPAR

bootable
A

Green_Label

VIOS

bootable

Service_Label

{red}{green}

{red}{green}

Physical
Disk

Green_Label:
{ green }

Service_Label:
{ green, red,

service }

Red_Label:
{ red }

{service}

Res_Label:
{ service }

Res_Label

Figure 3. Labeled LPARs and resources

STE security check. At configuration time, an
administrator assigns the Service Label to the VIOS
LPAR and the Res Label to the physical disk. Since the
VIOS and physical disk share the service STE type, the
administrator can then assign the physical disk to the
VIOS. To provide virtual disks from the physical disk,
the VIOS is configured with two server vSCSI
adapters. The VIOS has tagged one vSCSI adapter with
STE {green} and the other with STE {red}. The
administrator also assigns the Green Label to client
LPAR, LPAR_A, and the Red Label to the other client
LPAR, LPAR_B. Since each client LPAR has one STE
type in its security label, its client virtual SCSI adapter
automatically inherits its STE type accordingly.

Later during configuration, if an administrator tries
to configure LPAR_A’s client adapter to the VIOS’s
red vSCSI adapter, PHYP denies the assignment since
the adapters do not share an STE type. In contrast,
PHYP accepts the assignment of LPAR_A’s client
adapter to the VIOS’s green vSCSI adapter. The VIOS
is required to keep the virtual disks safely separate and
connected to the correctly labeled server VSCI
adapters.

CHW security check. While LPAR_A is the first
client activated, i.e., set to bootable state, any later
setting bootable of LPAR_B is rejected by PHYP. This
is due to the client LPARs having conflicting CHW
types in their security labels. Since the activation of an
LPAR is not a configuration action (uncontrolled), we
control the bootable flag in the LPAR configuration to
ensure that the anti-collocation rules are enforced. The
implementation was driven by simplicity in enforcing
the policy at configuration time and a small loss in
granularity through this ‘pessimistic’ interpretation of
the bootable flag instead of the running state is
accepted.

4. Implementation

For our proof of concept, we integrated sHype
MAC support into Dispatchable PHYP. We employed
debugging tools to load a policy, assign security labels,
and test policy enforcement. Our prototype
implementation focused on policy representation and
on extensions to PHYP to support MAC. Note that the
MAC implementation is currently not part of any
production level release of PHYP.

4.1. Policy Representation

To facilitate policy processing and
understandability, we employ three different
representations of a security policy: XML, mapping
and binary representation. The latter two
representations are used for enforcing MAC on PHYP
based systems.

Expressing a policy as an XML document provides
for a standardized representation of labels and conflict
sets. This representation allows users and automated
tools to easily author and update a policy that is
independent of platform specifics. From the XML
policy representation, we derive the mapping and
binary policy representations.

The binary policy is a low-level representation
designed to optimize policy processing in PHYP. This
representation is used directly within the ACM to
perform the access control decision. The mapping
policy is an intermediate representation that links the
XML and binary representations. It contains the
mapping of symbolic label and type names to the low
level representation contained in the binary policy. The
mapping representation is most useful for policy
enforcement within VIOS partitions.

4.2. PHYP Extensions

To implement the sHype access control architecture,

we extended Dispatchable PHYP with our ACM
implementation and instrumented the configuration
processing module with security hooks that
automatically invoke the ACM’s decision API.

The ACM is the access mediation component that
encapsulates the STE and CHW policy engines. It
provides two major functions. First it instantiates the
policy engines based on the loaded policy. Second it
delegates access decisions to the respective policy
engine. Every ACM decision method returns a security
access decision and a status return code. The status
return code indicates if a processing error occurred
during the security access check.

Our ACM implementation is written in C++ and is
about 2500 lines of code, including the code for the
STE and CHW policy engines. Since the current PHYP
LPAR configuration profiles do not support security
label entries, our current ACM implementation also
includes support code for maintaining the associations
of security labels with LPARs and resources. The
ACM decision API is invoked with the subject and
object identifiers, such as LPAR ID, IO pool ID,
VLAN Switch and VLAN ID, or physical slot location
ID. These identifiers are used to retrieve label
information from the ACM label association cache.
Adding ACM decision support for the Host-Ethernet-
Adapter (HEA) is ongoing work because this hardware
became recently available.

The security hooks are responsible for triggering
and enforcing access control decisions. We
implemented six security hooks to control all
configuration functions in Dispatchable PHYP. These
are guarded calls to ACM decision methods and are
located in the PHYP module where Dispatchable
PHYP processes configuration requests from the
HMC. Depending on the resource being configured, a
security hook invokes the appropriate ACM decision
method. If the method’s return status is OK and the
decision is PERMIT, Dispatchable PHYP continues its
normal processing of the configuration request.
Otherwise, it returns an error for the configuration
request.

4.3. Testing

We utilized proprietary debugging tools from the
PHYP Design and Development Team for testing
ACM functionality on the platform. As previously
described, the access control decisions are triggered
during the processing of configuration requests in
Dispatchable PHYP. For testing the decision functions,
we depended on the capability to set a policy and
assign labels to LPARs and resources on a PHYP
platform.

To install a policy on a platform, we used a PHYP
debugging utility to load our binary and mapping
policy representation files directly into Dispatchable
PHYP memory. We also leveraged PHYP
Development Team’s native macro feature, which
allows Dispatchable PHYP to be extended with a code
module written in C++. A native macro can be
invoked via the PHYP debugging interface. Leveraging
this macro feature, we implemented a cfacm macro to
drive MAC operations on the platform. The cfacm
macro provides operations such as activating a policy,
assigning security labels to LPARs and resources, and
invoking the ACM decision API. Working on a

development release of PHYP, we established a data
connection via telnet to Dispatchable PHYP using the
Virtual Server debugging interface. This provided a
command line interface for invoking the cfacm macro.
This feature is available only in development releases.

We tested our MAC enforcement on a System p
model 520 hardware using the latest PHYP
development release. We loaded the binary policy from
our example in Figure 3 which consisted of 192 bytes
into Dispatchable PHYP. Note that the binary policy
grows linear with the number of labels and types.
Using the cfacm macro we manually tested ACM’s
API for access control decisions. We also tested
activation of LPARs with conflicting CHW types using
the HMC. Our experiments generated the expected
results. Access to resources was allowed or denied
depending on the security label assignments.

5. Lessons Learned

In providing MAC for PHYP, we learned two major
lessons. First, we can implement MAC non-intrusively
on the commercial-grade POWER Hypervisor as a
result of the way resources are configured exclusively
through Dispatchable PHYP and allocated in PLIC
during runtime. Second, simplifying the notion of a
security label helped non-security people with their
understanding and application of a security policy.

Non-intrusive design and implementation: Initially,
it was proposed to provide MAC enforcement on the
HMC. This is an attractive solution because it requires
no changes to the PHYP platform. Since the HMC
already provides LPAR configuration to PHYP, it can
easily ensure that an LPAR configuration does not
violate the access control policy. However, this
approach does not scale for managed platforms. In a
PHYP platform, multiple HMCs are allowed to
manage a single PHYP platform. Enforcing MAC on
the HMC would require coordination and coherence
among the HMCs. This coordination to synchronize
their MAC operations overly complicates the
manageability of MAC. Thus, having MAC
enforcement in PHYP simplifies MAC processing,
eliminates the dependency on the HMC, and ensures
consistent enforcement of a central security policy
independently of the HMC.

Ideally the HMC can contribute to MAC
enforcement on the platform by determining the
validity of the MAC operations before sending
configuration requests to PHYP. The HMC can ensure
that HMC users (administrators) do not try to assign
incompatible resources to LPARs by listing only
resources for assignment to LPARs based on their
security labels. The HMC proves useful for authoring
security policies and managing label associations as

well as providing configuration guidance to users. It is
less useful for single-handedly enforcing the policy.

Service
Processor

(SP)

Shared IO
Storage + Network

Dedicated IO
Storage + Network

Dispatchable

Logical
Partition
(LPAR)

LPAR Hosting
LPAR
(VIOS)

Hardware
Management

Console
(HMC)

Power
Hypervisor

Run-time
Security
Hooks

Virtual I/O
ACM

PLIC

ACM (Access Control Module): Policy Decision Point
Security Hook: Policy Enforcement Point

Figure 4. Initial PHYP MAC Design

Once we decided that MAC enforcement should

reside on the PHYP platform, we thought that the
straightforward approach would be to enforce the
policy at run-time when LPARs bind to resources or
access resources. Consequently, our initial
implementation placed the ACM and security hooks
directly into PLIC, see Figure 4. Performing access
control decisions at resource binding or access time
minimizes the code path between the time of access
check and the time of resource access. Thus, this
implementation depends on less code for correctness. It
also allows for revocation and re-labeling through
callbacks. However, this implementation is
characterized by having security hooks distributed
throughout many PLIC modules and leads to a more
intrusive implementation. The sensitivity of PLIC on
platform performance and the intrusiveness of this
solution led to rejection of this approach.

Our current implementation, discussed in Section
3.1, instruments Dispatchable PHYP with the ACM
and security hooks. It centralizes policy processing and
decisions into one module, incurs no runtime cost, and
does not impact PLIC. This approach is driven by our
observation that the runtime setup is confined through
the configuration settings in PHYP. However, this
approach does not support automatic revocation of
resource access based on re-labeling.

Our final lesson was that non-security people have
difficulties in understanding a security policy when
security labels are defined in terms of types and set
operations. Using the color metaphor for a security
label provided a good way to visualize the concept to
non-security people. Additionally, using the same
types in both STE and CHW policies further simplified
the understanding the MAC policy.

6. Future Work

Future work includes extending MAC support to

PHYP management applications and making the
VIOSs (hosting LPARs) MAC aware.

 Supporting MAC on the PHYP platform requires
adding MAC enablement features into the PHYP
management applications, including the HMC and the
Integrated Virtualization manager (IVM) [11]. IVM
runs on the VIOS and provides a subset of HMC
management features. The HMC and IVM must be
extended to create a MAC policy, assign labels to
LPARs and resources, and load and update MAC
policy into Dispatchable PHYP.

Additionally, the management applications can
support safe object reuse by requiring the backup and
cleaning of (virtual) storage resources before they can
be re-labeled and re-used for a different workload.
Similarly, removing a label from a resource can trigger
a process that ensures that the resource is backed-up
and cleaned.

To be able to scale the authorization required to
manage the MAC PHYP platform, we intend to
separate administrative duties in the management
applications. Platform management can be divided
between a security officer and non-security
administrators. The security officer would be
responsible for setting the security policy and labeling
LPARs and resources. The non-security administrator
would be responsible for performing non-security
management tasks on the platform.

Finally, VIOSs that are multi-STE typed must be
MAC aware, since they need to enforce the MAC
policy on virtual resources exported to client LPARs.
We plan to include hooks into the VIOS to implement
the access controls required to enforce the policy.

7. Related Work

Hypervisors can be divided into two categories:
isolation and sharing hypervisors [14]. Isolation
hypervisors do not allow the sharing of resources
between LPARs. Rushby [23] formalizes the necessary
conditions for ensuing isolation among users on a
single machine. Kelem and Feiertag [17] extend
Rushby’s separation model to VMs executing on the
same platform. An example of a separation model
implementation is NetTop [19], which isolates VMs
based on their sensitivity levels on a platform, but
allows VMs to connect to networks. Another example
of a pure isolation hypervisor is the IBM PR/SM
system [6].

Our work falls in the sharing hypervisor2 category.
The Xen hypervisor’s sHype MAC implementation
[24] for para-virtualized VMs is closely related to our
work. Although Xen’s and PHYP’s MAC realization
provide the same type of policy enforcement, their
implementations differ considerably. Xen’s and
PHYP’s configuration and deployment schemes
employ different approaches for implementing MAC.
MAC enforcement for Xen must be performed partly
in the interrupt driven hypervisor layer during runtime.
In contrast, PHYP’s MAC enforcement is performed
during configuration time only. Ultimately, we want to
support MAC enforcement across multiple PHYP
platforms; the solution presented in [18] for sHype on
Xen applies to sHype on PHYP as well.

Other sharing hypervisors with security kernels
include VAX VMM [15] and KVM/370 [9]. Both
VAX VMM and KVM/370 were developed for high-
assurance and required implementing a new hypervisor
or large and intrusive changes to the existing
hypervisor to achieve their security goals. They
provide multi-level security models. Our sHype MAC
retrofit for PHYP is non-intrusive and aims at the
assurance that the base hypervisor is designed for
(usually enterprise-level assurance) and provides a
simple security policy model that is easy to understand
for administrators in virtualized environments.
Additionally, the sHype security checks in PHYP do
not incur any runtime overhead since they are
performed at configuration time.

Further, security enhancements to Multics [25] are
related to our work. The authors describe how users’
access to classified information at the OS layer is
controlled by using a restricted multi-level security
mode. In contrast, we restrict VM access to resources
at the hypervisor layer using a simple and platform-
independent policy model. We note that the Multics
enhancement work also describes administrative and
physical safeguards (e.g., separation of administrative
duties, secure terminal) which are applicable to PHYP
management applications.

8. Conclusion

In this paper, we show how the sHype mandatory
access control architecture can be implemented for the
commercial-grade PHYP hypervisor with minimal
impact on the code base and performance. We consider
the limitations and tradeoffs of our approach with
respect to meeting the three fundamental principles of
the reference monitor. One key observation is that the
reference monitor introduced in the early seventies still
remains relevant today for mediating access to

2 Of course, the original sharing hypervisor is the CP-67/CMS [22].

resources. Another result of our work is that we can
provide simple and robust protection statements to
customers about their workloads using simple security
polices. This has the potential to simplify the
management and harden the security of the platforms.

9. Acknowledgements

The authors would like to thank the IBM POWER
Design and Development Team for providing access to
PHYP information and platforms. In particular, we
want to thank Bill Armstrong, Pete Heyrman, Bryan
Logan, Kyle Lucke, Amartey Pearson, David Larson,
and David Engebretsen for their generous assistance.
We would also like to thank Paul Karger for his
comments on previous MAC work on hypervisors.

10. References

[1] J. P. Anderson. Computer Security Technology

Planning Study. ESD-TR-73-51, Vols. I and II, Air
Force Electronic Division Systems, Hanscom AFB,
Bedford, MA, Oct. 1972.

[2] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G.
Kovacs, D. Larson, K. A. Lucke, N. Nayar, and R. C.
Swanberg. Advanced Virtualization Capabilities of
POWER5 Systems. IBM Journal of Research and
Development, Vol. 49, No. 4/5, July/Sept. 2005.

[3] B. Armstrong, S. Bade, D. Boutcher, C. DeRobertis, T.
Mathews, and A. McLaughlin. LPAR Security on
POWER5 Processor-based Systems, Sept. 2007. URL:
http://www.ibm.com/systems/p/hardware/whitepapers/l
par_security.pdf.

[4] W. E. Boebert and R. Y. Kain. A Practical Alternative
to Hierarchical Integrity Policies. 8th National Computer
Security Conference, 1985.

[5] D. F. C. Brewer and M. J. Nash. The Chinese Wall
Security Policy. In Proc. IEEE Symposium on Security
and Privacy, pp. 206-214, May 1989.

[6] Certification Report for Processor Resource/System
Manger (PR/SM) for the IBM eServer zSeries 900, BSI-
DSZ-CC-0179-2003, Bundesamt fur Sicherheit in der
Informationstechnik, Bonn, Germany, 7 Feb. 2003.
URL:http://www.commoncriteriaportal.org/public/files/
epfiles/0179a.pdf.

[7] Common Criteria Evaluation and Validation Scheme.
URL:http://niap.bahialab.com/cc-
scheme/in_evaluation.cfm.

[8] Department of Defense. Trusted Computer System
Evaluation Criteria (Orange Book), DoD 5200.28-STD,
1985.

[9] B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in
Retrospect. In Proc. IEEE Symposium on Security and
Privacy, 1984.

[10] IBM Research. The Research Hypervisor – A Multi-
Platform, Multi-Purpose Research Hypervisor.
URL:http://www.research.ibm.com/hypervisor.

[11] Integrated Virtualization Manager on IBM System p5,
Dec. 2006. URL:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4061
.pdf.

[12] Kernel Based Virtual Machine.
URL:http://kvm.qumranet.com/kvmwiki.

[13] T. Jaeger, R. Sailer, and Y. Sreenivasan. Managing the
Risk of Covert Information Flows in Virtual Machine
Systems. In ACM Symposium on Access Control Models
and Technologies (SACMAT), France, June 2007.

[14] P. A. Karger. Multi-Level Security Requirements for
Hypervisors. 21st Annual Computer Security
Applications Conference (ACSAC), Dec. 2005.

[15] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason,
and C. E. Kahn. A Retrospective on the VAX VMM
Security Kernel. In IEEE Transaction on Software
Engineering, November 1991.

[16] Power.org Standard for Power Architecture Platform
Requirements (Workstation, Server), Version 2.0, 28
August. 2006, Power.org. URL:
http://www.power.org/members/developers/specs/PAPR
_Version_2.0_28August06.pdf.

[17] N. L. Kelem and R. J. Feiertag. A Separation Model for
Virtual Machine Monitors. In Proc. IEEE Symposium
on Security and Privacy, 1991.

[18] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R.
Sailer. Shamon: A System for Distributed Mandatory
Access Control. 22nd Annual Computer Security
Applications Conference (ACSAC), Dec. 2006.

[19] R. Meushaw and D. Simard. NetTop-Commercial
Technology in High Assurance Applications. National
Security Agency Tech Trend Notes, Fall 2000.

[20] M. Nguyen and R. Barker. IBM pSeries Hardware
Management Console Security White Paper.
URL:http://www.ibm.com/servers/eserver/pseries/hard
ware/whitepapers/hmc_security.pdf.

[21] B. D. Payne, R. Sailer, R. Caceres, Ron Perez, and W.
Lee. A Layered Approach to Simplified Access Control
in Virtualized Systems. Operating Systems Review, Vol.
41, No. 3, July 2007.

[22] R. A. Meyer and L. H. Seawright. A Virtual Machine
Time-Sharing System. IBM Systems Journal, Vol. 9,
No. 3, Sept. 1970.

[23] J. Rushby. Proof of Separability-A verification
technique for a class of security kernels. In Proc. 5th
International Symposium on Programming, vol. 137 of
Lecture Notes in Computer Science, pp 352-367,
Springer-Verlag, 1982.

[24] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S.
Berger, J. Griffin, and L. Van Doorn. Building a MAC-
Based Security Architecture for the Xen Opensource
Hypervisor. 21st Annual Computer Security Applications
Conference (ACSAC), Dec. 2005.

[25] J. Whitmore, A Bensoussan, P. Green, D. Hunt, A.
Kobziar, and J. Stern. Design for MULTICS Security
Enhancements, ESD-TR-74-176, Electronic Systems
Division, Hanscom AFB, MA, Dec. 1973.

[26] XenSource. URL:http://xenbits.xensource.com/xen-
unstable.hg.

