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Abstract 

 
Server virtualization more readily enables the 

collocation of disparate workloads on a shared 
physical platform. When employed on systems across a 
data center, the result can be a dramatic increase in 
server utilization and a decrease in overall power, 
cooling and floor space requirements. However, in an 
environment where workloads share the underlying 
platforms, achieving other desirable workload goals, 
such as availability and security, becomes a challenge. 
In particular, enforcing isolation between workloads in 
a large, dynamic, and virtualized data center requires 
strong yet easily configurable controls on the sharing 
of resources at the virtualization layer. Commercial 
hypervisors usually offer reasonable isolation of 
individual virtual machines (VMs). However, on 
hypervisor-based platforms, one cannot currently 
define a single policy that automatically enforces 
restrictions on the sharing of resources between 
multiple VMs or request an air gap between 
workloads.  

In this paper, we describe the design and 
implementation of a Hypervisor-based Mandatory 
Access Control (MAC) that achieves policy-driven 
distributed workload isolation for the IBM Power 
Hypervisor (PHYP). We discuss our experiences and 
lessons learned and examine the implications and 
trade-offs involved in providing MAC on a production-
level, commercially-available hypervisor. Our goal is 
to simplify the security management of data centers 
through centralized security management and policy-
driven distributed access control and data protection. 

 
1. Introduction 

 
A workload consisting of tasks and services can be 

distributed among a set of virtual machines (VMs) 
executing on a single or across multiple platforms for 
reliability and efficiency reasons. In this environment, 
hypervisors traditionally isolate individual VMs and 
enable the sharing of resources on the platform. The 

sharing properties between VMs in this environment 
rely largely on the discretionary decisions of 
administrators to correctly configure the resource 
sharing among VMs (e.g., network, storage) according 
to the overall workload isolation goals.  

This environment, however, does not have a formal 
basis for expressing the controlled sharing of resources 
or platform to guarantee workload isolation. This lack 
of formality makes it hard to reason about the isolation 
provided to workloads. Data center operators, for 
example, want to ensure that the sharing of resources is 
based on the type of the workload and that selected 
designated workloads are prevented from executing at 
the same time on the same platform. Consequently, in 
multi-tenant computing or data center environments, it 
becomes difficult to keep track of the resources and 
distributed workloads and to establish proofs of 
compliance of workload isolation through audit logs.  

In this paper, we investigate retrofitting the IBM 
POWER Hypervisor (PHYP) [2] with sHype 
mandatory access control architecture [24] to enable 
policy-driven workload protection. PHYP is a 
commercial-grade hypervisor that offers the 
functionality and resources that modern virtualization 
environments demand. It provides isolation guarantees 
[3] to virtual machines called Logical Partitions 
(LPAR). PHYP prevents programs running in an 
LPAR from affecting other programs running in other 
LPARs, isolates LPAR memories, and allows 
exclusive physical device assignments to LPARs by 
administrators via a stand-alone Hardware 
Management Console (HMC). Throughout this paper, 
we use the terms “LPAR” and “VM” interchangeably. 

For PHYP, we provide a workload protection 
mechanism to mediate resource assignment (access) by 
mandatory access control (MAC) on LPARs. This 
MAC enforcement is independent of the LPARs and 
does not require their co-operation. Our workload 
protection mechanism is based on a simple security 
policy that can be applied across heterogeneous 
platforms to enforce consistent isolation properties for 
a virtual data center. Adding MAC to PHYP allows 
administrators to be confined to managing a single 



workload and its resources. This provides a safety net 
by preventing information flow violation due to 
improper resource configuration by administrators.  
Additional benefits of MAC enforcement in PHYP 
include supporting least privilege by confining 
workload types to a platform, establishing the basis for 
safe object re-use, and providing easier proofs of 
isolation and anti-collocation guarantees. Our approach 
allows for security policies to be centrally managed 
(i.e., authored) and enforced locally on the distributed 
platforms. This can simplify the security management 
of large scale computing environments considerably.  

Other hypervisor MAC approaches, such as 
KVM/370 [9]1 or VAX/VMM [15], aimed for high-
assurance and required implementing a new hypervisor 
or large intrusive changes to the existing hypervisor. 
Our approach aims to minimize intrusive changes and 
depends on the core isolation capabilities and their 
assurance in the underlying hypervisor (PHYP). 
Although this work is similar to the sHype MAC 
architecture in the Xen open source hypervisor [26], 
the challenge of this work was to retrofit PHYP 
without considerably affecting the existing 
infrastructure and software. We succeed in applying a 
new approach where we mediate configuration 
commands only instead of runtime commands. This 
approach is non-intrusive to the critical path and yields 
no access control-related runtime performance 
overhead, since access control is enforced during 
configuration time. There will be overhead induced by 
the way we can assign resources, configure networks, 
and also by running multiple Virtual I/O Servers to 
securely share resources among VMs of a workload. 

Initially, we explored implementing multi-level 
security (MLS) for the IBM research hypervisor [10] in 
the sHype access control framework, but found that our 
simple policy model, though less expressive, maps 
better to the virtual machine monitor (VMM) 
abstraction and operations. The VMM’s coarse-grained 
operations, such as allocation of resources to VMs and 
enablement of communication between VMs, are 
intrinsically bi-directional. We find that our simple 
sharing policy fits better onto the virtualization 
abstraction because its bi-directional policies do not 
require distinguishing read from write operations 
between subjects and objects. Consequently, our 
simple policy yields a less-intrusive implementation 
which makes the adoption of mandatory security in a 
commercial environment more viable. If finer-grain 
controls are necessary, we propose a layering of access 
controls within Guard VMs as described in [21]. 

In this paper we discuss our practical experience in 
applying the sHype access control architecture to the 
                                                        
1 Not to be confused with the new KVM [12]. 

PHYP environment. Section 2 provides an overview of 
the PHYP platform. Section 3 presents our MAC 
design and supported security policies. Section 4 
discusses the implementation of MAC on PHYP. 
Section 5 reviews lessons learned in applying our 
approach. Section 6 presents future work. Section 7 
reviews related work. Finally, Section 8 summarizes 
our results. 
 
 2. PHYP Platform Overview 
 

PHYP is the virtualization engine for IBM’s 
PowerPC-based System i/p platforms. System i/p 
platforms are targeted for corporate and data center 
environments. Figure 1 shows the main components of 
a managed Power Hypervisor platform.  
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Figure 1. Power Hypervisor Architecture 
 
The Hardware Management Console (HMC) [20] is 

a dedicated PC that runs the management application. 
It provides the interface for configuring and managing 
the platform. The HMC communicates configuration 
information via the service processor to PHYP over a 
dedicated management network using the Secure 
Sockets Layer (SSL) protocol and password protection. 
The service processor is an independent subsystem that 
performs system diagnostics and maintains platform 
configuration information.  

PHYP consists of two parts: a non-blocking 
interrupt driven layer, called Platform Licensed 
Internal Code (PLIC), and a multitasking kernel, called 
Dispatchable PHYP. PLIC performs time critical 
operations required for virtualization. It enforces, for 
example, the partitioned environment. PLIC maintains 
the hardware page tables for translating an LPAR 
memory address into a physical address. It validates an 
LPAR’s access to its hardware page table entry. This 
prevents an LPAR from accessing the memory of 
another LPAR. Similarly, it maintains a Translation 
Control Entry (TCE) table, an IO memory map unit, 
which is used to translate addresses generated by IO 
devices to physical memory assigned to LPARs. An 



administrator at the HMC must first assign ownership 
of a physical IO device to an LPAR before the LPAR 
is permitted to map a portion of its memory to the TCE 
entry associated with the device. 

 Dispatchable PHYP executes as a hidden LPAR 
and provides non-critical platform services. One of its 
main duties is to process messages from the HMC and 
services processor. The HMC provides Dispatchable 
PHYP with LPAR configuration data. Dispatchable 
PHYP is responsible for processing and maintaining 
configuration data on the platform. It participates in 
every configuration update even in the processing of 
Dynamic LPAR operations where resources are added 
or removed on running LPARs. Dispatchable PHYP is 
also involved in directing the startup and terminations 
of LPARs. Additionally, it provides virtual service 
processors to the LPAR. These mirror real services 
processors and are used to maintain LPAR state 
information. 

PHYP employs the para-virtualization approach 
where operating systems have embedded hypervisor 
calls for requesting PLIC virtualization services. 
Accordingly, PHYP can run any operating system 
developed using the PowerPC Architecture Platform 
Reference Specification [16] for interfacing with the 
PowerPC platform. Figure 1 also shows two client 
LPARs and a hosting LPAR, Virtual IO Server 
(VIOS). Dedicated IO can be assigned to any LPAR on 
the platform. Only the VIOS can be assigned shared 
IO. Hence, the VIOS can be configured to provide 
virtual storage or Ethernet to LPARs that lack the 
physical resources. Our workload protection focuses on 
mediating the sharing of the platform and resources 
(physical or virtual) and relies on PHYP to ensure 
isolation of platform resources such as CPU, memory, 
and physical IO devices [2]. 

Because PHYP is closed-source software, there are 
limits on the information that can be publicly disclosed 
about PHYP. Internally at IBM, there has been 
extensive review of the PHYP source code. With 
respect to design, PHYP architects follow the 
overriding design principle of only performing tasks in 
Dispatchable PHYP or in PLIC that can not be 
performed elsewhere in the software stack (i.e., 
application space, OS kernel, or VIOS). Currently, 
PHYP for POWER6 processors is under Common 
Criteria Evaluation EAL4 [7].  

 
3. PHYP MAC Design 
 

Three goals drive the design of sHype MAC 
enforcement in PHYP. The first goal is to implement 
MAC that confines workloads in case of an LPAR 
compromise and prevents administrators from 

configuration mistakes that would create sharing 
between workloads that are intended to be confined 
from each other. For this reason, our design does not 
assume cooperation of user LPARs for providing 
isolation. The second goal is to provide a non-intrusive 
design. Such a design minimizes impact on the PHYP 
code base, which in turn increases the likelihood of the 
PHYP Design and Development Team accepting those 
MAC extensions. The third goal is to have negligible 
performance overhead so that performance will not 
become a hurdle for its acceptance by customers in 
high-utilization environments. 

We address the first goal by enforcing Mandatory 
Access Control (MAC) on configuration commands 
that change the assignment of resources to LPARs. We 
define a MAC security policy to specify the access to 
resources by LPARs based on security labels, which 
are attached as protected meta-information to LPARs 
and resources. The MAC security policy can be 
installed administratively on the platform, preferably 
by a security officer. Only the security officer will be 
able to effect changes on the installed policy. We 
address the second goal by minimizing changes and 
additions to the PHYP code base. We support the third 
goal of minimizing the performance overhead by 
performing access checks at configuration time and not 
during every run-time access of an LPAR to one of its 
configured resources. 
 
 3.1. Reference Monitor Approach 
 

The design of our PHYP MAC enforcement is 
based on the principles of the reference monitor 
approach as introduced by Anderson [1]. In this 
approach, a subject’s access to an object is mediated by 
a reference monitor. The security of this approach rests 
on three fundamental requirements. First, the reference 
monitor cannot be bypassed. It is always invoked when 
a subject accesses an object. Second, it is tamperproof. 
Subjects cannot alter its functionality. Third, the 
reference monitor is small enough to allow its 
correctness to be easily verified. 

 In our case, a subject is an LPAR and an object can 
be an LPAR or a resource. The reference monitor 
approach requires security labels to be assigned to 
subjects and objects. When an LPAR accesses an 
object, the reference monitor is invoked. The reference 
monitor allows or denies access based on the security 
labels and the security policy being enforced. 

For PHYP, the MAC design consists of three 
components: an access control policy, access control 
module (ACM), and security hooks. The access control 
policy defines the policy to be enforced on the 
platform, including the security labels which can be 



assigned to LPARs and resources. The policy is loaded 
into the ACM, which is responsible for providing the 
access control decisions based on security labels. 
Security hooks are guarded method invocations that 
request security access decisions from the ACM. The 
ACM and the security hooks constitute the reference 
monitor validation mechanism. The separation between 
ACM and security hooks follows a well established 
principle of separating policy from enforcement. 
Enforcing MAC on PHYP requires determining the 
mediation points in the platform. 
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Figure 2. Mediating configuration commands 
 
We implement mandatory access control in 

Dispatchable PHYP to avoid changes to performance-
critical paths in PLIC and to minimize the 
intrusiveness of our implementation, see Figure 2. We 
leverage PHYP’s centralized configuration setup to 
apply MAC before the LPARs are even powered on, at 
the time when resources are assigned (configured). As 
a result, MAC enforcement is performed during 
configuration updates. A configuration update is only 
accepted by PHYP, specifically Dispatchable PHYP, if 
it passes the access control checks. In our design, when 
the HMC submits configuration requests to 
Dispatchable PHYP, PHYP accepts or denies the 
requests based on the security labels of the subjects and 
objects that are involved in the configuration update. 

This design successfully meets the first and second 
requirements of the reference monitor: The ACM 
resides in PHYP and thus cannot be tampered with by 
user LPARs. PHYP is the highest privileged code and 
is protected against the LPARs running on the 
platform. Since all configuration requests must go 
through Dispatchable PHYP, a bypassing of the MAC 
enforcement is not possible. This provides strong 
security guarantees since enforcement takes place 
when resources are configured to LPARs.  

Since we favor a non-intrusive design over a small 
trusted computing base (TCB) [8] in our commercial 
environment, we do not optimize the third reference 
monitor requirement and accept as a trusted computing 
base the PHYP hypervisor and management 
environment on top of the system hardware. Although 
the ACM is a small module and there are only a few 
security hook instrumentations, we must consider other 
parts of the PHYP code base and hardware that 
contribute to the security administration and protection 
as part of the reference monitor. The TCB of the 
retrofitted PHYP consists of the HMC, SP, and 
Dispatchable, PLIC as well as the hardware that 
enables the privileged hypervisor state and physical 
isolation capabilities. Addressing the third principle 
fully would require partitioning PHYP’s TCB into 
security and non-security parts (this would be similar 
to the KVM/370 [9] retrofitting effort). However, this 
in turn would violate our overriding design 
requirement to minimize intrusiveness of the protection 
mechanism on PHYP. 
 
3.2. Simple Policies 
 

We support two simple orthogonal security policies 
to govern authorization and resources allocations on 
PHYP: Simple Type Enforcement (STE) and Chinese 
Wall Enforcement (CHW). 

The simple type enforcement policy enforces 
restrictions on the communication and resource sharing 
between LPARs or between an LPAR and a resource 
based on the STE type (e.g., color) associated with the 
LPARs or resources. The STE policy specifies that 
LPARs can only communicate with each other if they 
have a common STE type, i.e., both LPARs must have 
assigned at least one type in common in their security 
labels. Similarly, an LPAR is permitted access to a 
resource, if the LPAR and the resource have a common 
STE type. Typically, resources and LPARs have a 
single STE type.  
Due to limited physical resources on a platform, some 
platform configurations employ a VIOS partition to 
enable the sharing of hardware resources, such as a 
storage and network devices, among multiple client 
LPARs. Such configurations have implications to the 
STE type assignments and the reference monitor’s 
TCB. If a VIOS provides resources to LPARs with 
different STE types, then the VIOS must be assigned 
multiple STE types corresponding with the STE types 
of the client LPARs. Additionally, the VIOS must be 
MAC aware since it must map its PHYP configurable 
resources to internal resource mapping based on the 
STE types. Since a multi-STE typed VIOS must 
mediate LPAR accesses to its internal resources based 
on the STE type, it becomes part of the reference 



monitor’s TCB for those types it is assigned (c.f., 
MAC-Domains in [24]). To avoid adding a full-sized 
VIOS to the TCB, we can employ multiple single STE 
typed VIOSs to service only single STE typed client 
LPARs. For scarce hardware, we can deploy a 
minimized VIOS to share such hardware more safely 
among differently labeled LPARs. 

In contrast to STE, the Chinese Wall policy controls 
which workloads can run on the same platform at the 
same time and which cannot. If workload types A and 
B are designated as conflicting then, as long as an “A” 
typed LPAR executes, no “B” typed LPAR is allowed 
to execute on the platform and vice versa. Chinese 
Wall types that shall not be collocated define a so 
called conflict set and LPARs with workload types that 
are in a common conflict set will run mutually 
exclusive on the platform. This approximates an air 
gap between conflicting workloads assuming that the 
platform does not keep state of LPARs once they stop 
executing. In [13], the authors discuss an approach that 
leverages the Chinese Wall collocation restrictions to 
reduce covert channels risks between specific 
workloads.  
 
3.3. Operations and Resources under MAC 
 

To enforce collocation restrictions with the Chinese 
Wall security policy component, we control the 
assignment of the bootable state of an LPAR based on 
its security label. An LPAR set to the bootable state is 
allowed to be powered on the platform without 
additional policy checks. Therefore, once an LPAR 
with conflicting CHW types is set to bootable, other 
LPARs with conflicting types are not allowed to be set 
to bootable. In order to determine when the other 
LPARs from the conflict set can be eventually set to 
bootable, we must track the bootable LPARs according 
to the  CHW policy’s conflict sets. 

To enforce the STE policy component, we control 
the configuration of the following virtual and physical 
peripheral resources to LPARs based on security labels 
assigned to LPARs and resources: 
•  vSCSI, vTTY - are virtual resources that allow 

interaction between a client LPAR and a server 
LPAR (e.g., VIOS). The server LPAR provides 
services such as network connectivity or virtual 
storage to client LPARs. 

• vEthernet – is a virtual resource that enables inter-
LPAR communication. LPARs can communicate 
with each other if their Logical vEthernet adapters 
are assigned to the same VLAN ID. 

• An IO pool – is a group of IO devices that can be 
shared by a group LPARs without requiring active 
HMC involvement.  

• VLAN Switch – is an internal switch that enables 
LPARs to communicate based on their VLAN 
membership. 

• Host Ethernet Adapter (HEA) – provides LPARs 
direct high speed access to the network via logical 
ports without going through a VIOS.  

• Physical IO devices – allows direct access of 
physical IO devices by LPARs. An IO device is 
exclusively owned and used by a single LPAR. 
Next, we discuss the assignment of security labels 

and how they are used to enforce STE and CHW 
policies. In our environment, we view a security label 
as a container for CHW and STE types. 
 
Label assignment. We assign security labels—defined 
as part of the platform security policy—to all LPARs 
and resources before they can become active: 
• A security label for an LPAR contains CHW and 

STE security type attributes. A device on an 
LPAR’s virtual bus is assigned only a single STE 
type. This allows a multi-STE typed LPAR to 
distinguish the security type of the connection.  

• User LPARs are usually assigned only a single STE 
type since we do not trust them to keep different 
types confined. LPARs that are assigned multiple 
STE types can implement sharing of hardware or 
create controlled information flow between user 
LPARs of different STE types. However, multi-STE 
typed LPARs must be trusted to confine the types 
and only permit selective information flow if 
desired. If a multi-STE typed LPAR is compromised 
or untrusted, no confinement guarantees hold for 
those STE types that are assigned to such an LPAR. 
Consequently the least privilege principle should be 
applied when assigning STE types to trusted 
LPARs. 

• A security label for a VLAN, IO pool, HEA, or 
physical IO device has exactly one STE type. We 
label the physical slot location of an IO device since 
the device is not MAC aware. 

• Shared resources can only be assigned a single STE 
type, since those resources otherwise could be 
accessed by different STE typed LPARs and 
information flow through those shared resources 
would violate the type confinement requirements. 
Chinese Wall types do not apply to resources. 
A complex hardware device can be assigned more 

than one STE type if it is composed of multiple 
isolated hardware components, access to which can be 
individually controlled by PHYP. In this case, 
however, an isolated sub-component is still assigned a 
single STE Type. Although not a physical hardware 



device, PHYP’s internal Virtual Ethernet Switch 
supports the IEEE 802.1Q VLAN standard which 
provides VLAN isolation. In the PHYP Ethernet 
Switch case, we assign each VLAN ID a single STE 
type and check this type when the VLAN ID is 
assigned to the LPAR’s vEthernet adapter. 
 
MAC enforcement. On the PHYP platform, MAC 
enforcement restricts the collocation of LPARs and the 
assignment of resources to LPARs according to the 
platform security policy. An assignment of the 
bootable state to an LPAR is permitted, if the LPAR’s 
CHW type does not conflict with any LPARs that are 
already in the bootable state. This prevents the 
activation of conflicting LPARs.  

The configuration of a client LPAR adapter to a 
server LPAR adapter is permitted, if the client LPAR 
and server LPAR share an STE type in their security 
labels. This covers vSCSI and vTTY adapter 
configurations. A multi-STE typed server (or client) is 
able to determine the STE type assignment of its 
adapter and enforce the confinement against adapters 
of other STE types. An assignment of an LPAR to a 
resource is permitted, if the LPAR includes the 
resource’s STE type in its label. A resource in our 
environment could be an IO POOL, VLAN, physical 
slot, or a Logical Port from a HEA.  
 
3.4. An example of MAC enforcement 
 

We review MAC operations on the platform 
illustrated in Figure 3 to show how MAC enforcement 
works on PHYP platforms. This figure shows a 
managed platform with a hosting LPAR (VIOS) and 
two client LPARs. The VIOS owns the physical 
hardware disk and serves virtual disks to the client 
LPARs. 

A platform security officer defines STE types 
{green, red, service} and CHW types {green, red, 
service}. For simplicity reasons, the figure does not 
differentiate between CHW and STE types. For the 
CHW types, a conflict set {green, red} is defined. The 
security officer created Red, Green, Res, and Service 
security labels to group the types as shown on the left 
in Figure 3. 
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Figure 3. Labeled LPARs and resources 

 
STE security check. At configuration time, an 
administrator assigns the Service Label to the VIOS 
LPAR and the Res Label to the physical disk. Since the 
VIOS and physical disk share the service STE type, the 
administrator can then assign the physical disk to the 
VIOS. To provide virtual disks from the physical disk, 
the VIOS is configured with two server vSCSI 
adapters. The VIOS has tagged one vSCSI adapter with 
STE {green} and the other with STE {red}. The 
administrator also assigns the Green Label to client 
LPAR, LPAR_A, and the Red Label to the other client 
LPAR, LPAR_B. Since each client LPAR has one STE 
type in its security label, its client virtual SCSI adapter 
automatically inherits its STE type accordingly.  

Later during configuration, if an administrator tries 
to configure LPAR_A’s client adapter to the VIOS’s 
red  vSCSI adapter, PHYP denies the assignment since 
the adapters do not share an STE type. In contrast, 
PHYP accepts the assignment of LPAR_A’s client 
adapter to the VIOS’s green vSCSI adapter. The VIOS 
is required to keep the virtual disks safely separate and 
connected to the correctly labeled server VSCI 
adapters.  
 
CHW security check. While LPAR_A is the first 
client activated, i.e., set to bootable state, any later 
setting bootable of LPAR_B is rejected by PHYP. This 
is due to the client LPARs having conflicting CHW 
types in their security labels. Since the activation of an 
LPAR is not a configuration action (uncontrolled), we 
control the bootable flag in the LPAR configuration to 
ensure that the anti-collocation rules are enforced. The 
implementation was driven by simplicity in enforcing 
the policy at configuration time and a small loss in 
granularity through this ‘pessimistic’ interpretation of 
the bootable flag instead of the running state is 
accepted. 



 
4. Implementation 
 

For our proof of concept, we integrated sHype 
MAC support into Dispatchable PHYP. We employed 
debugging tools to load a policy, assign security labels, 
and test policy enforcement. Our prototype 
implementation focused on policy representation and 
on extensions to PHYP to support MAC. Note that the 
MAC implementation is currently not part of any 
production level release of PHYP. 
 
4.1. Policy Representation 
 

To facilitate policy processing and 
understandability, we employ three different 
representations of a security policy: XML, mapping 
and binary representation. The latter two 
representations are used for enforcing MAC on PHYP 
based systems. 

Expressing a policy as an XML document provides 
for a standardized representation of labels and conflict 
sets. This representation allows users and automated 
tools to easily author and update a policy that is 
independent of platform specifics. From the XML 
policy representation, we derive the mapping and 
binary policy representations.  

The binary policy is a low-level representation 
designed to optimize policy processing in PHYP. This 
representation is used directly within the ACM to 
perform the access control decision. The mapping 
policy is an intermediate representation that links the 
XML and binary representations. It contains the 
mapping of symbolic label and type names to the low 
level representation contained in the binary policy. The 
mapping representation is most useful for policy 
enforcement within VIOS partitions. 
 
4.2. PHYP Extensions 

 
To implement the sHype access control architecture, 

we extended Dispatchable PHYP with our ACM 
implementation and instrumented the configuration 
processing module with security hooks that 
automatically invoke the ACM’s decision API. 

The ACM is the access mediation component that 
encapsulates the STE and CHW policy engines. It 
provides two major functions. First it instantiates the 
policy engines based on the loaded policy. Second it 
delegates access decisions to the respective policy 
engine. Every ACM decision method returns a security 
access decision and a status return code. The status 
return code indicates if a processing error occurred 
during the security access check.  

Our ACM implementation is written in C++ and is 
about 2500 lines of code, including the code for the 
STE and CHW policy engines. Since the current PHYP 
LPAR configuration profiles do not support security 
label entries, our current ACM implementation also 
includes support code for maintaining the associations 
of security labels with LPARs and resources. The 
ACM decision API is invoked with the subject and 
object identifiers, such as LPAR ID, IO pool ID, 
VLAN Switch and VLAN ID, or physical slot location 
ID. These identifiers are used to retrieve label 
information from the ACM label association cache. 
Adding ACM decision support for the Host-Ethernet-
Adapter (HEA) is ongoing work because this hardware 
became recently available. 

The security hooks are responsible for triggering 
and enforcing access control decisions. We 
implemented six security hooks to control all 
configuration functions in Dispatchable PHYP.  These 
are guarded calls to ACM decision methods and are 
located in the PHYP module where Dispatchable 
PHYP processes configuration requests from the 
HMC. Depending on the resource being configured, a 
security hook invokes the appropriate ACM decision 
method. If the method’s return status is OK and the 
decision is PERMIT, Dispatchable PHYP continues its 
normal processing of the configuration request. 
Otherwise, it returns an error for the configuration 
request. 
 
4.3. Testing 
 

We utilized proprietary debugging tools from the 
PHYP Design and Development Team  for testing 
ACM functionality on the platform. As previously 
described, the access control decisions are triggered 
during the processing of configuration requests in 
Dispatchable PHYP. For testing the decision functions, 
we depended on the capability to set a policy and 
assign labels to LPARs and resources on a PHYP 
platform. 

To install a policy on a platform, we used a PHYP 
debugging utility to load our binary and mapping 
policy representation files directly into Dispatchable 
PHYP memory. We also leveraged PHYP 
Development Team’s native macro feature, which 
allows Dispatchable PHYP to be extended with a code 
module written in C++.  A native macro can be 
invoked via the PHYP debugging interface. Leveraging 
this macro feature, we implemented a cfacm macro to 
drive MAC operations on the platform. The cfacm 
macro provides operations such as activating a policy, 
assigning security labels to LPARs and resources, and 
invoking the ACM decision API. Working on a 



development release of PHYP, we established a data 
connection via telnet to Dispatchable PHYP using the 
Virtual Server debugging interface.  This provided a  
command line interface for invoking the cfacm macro. 
This feature is available only in development releases.  

We tested our MAC enforcement on a System p 
model 520 hardware using the latest PHYP 
development release. We loaded the binary policy from 
our example in Figure 3 which consisted of 192 bytes 
into Dispatchable PHYP.  Note that the binary policy 
grows linear with the number of labels and types. 
Using the cfacm macro we manually tested ACM’s 
API for access control decisions. We also tested 
activation of LPARs with conflicting CHW types using 
the HMC. Our experiments generated the expected 
results. Access to resources was allowed or denied 
depending on the security label assignments. 
 
5. Lessons Learned 
 

In providing MAC for PHYP, we learned two major 
lessons. First, we can implement MAC non-intrusively 
on the commercial-grade POWER Hypervisor as a 
result of the way resources are configured exclusively 
through Dispatchable PHYP and allocated in PLIC 
during runtime. Second, simplifying the notion of a 
security label helped non-security people with their 
understanding and application of a security policy. 

Non-intrusive design and implementation: Initially, 
it was proposed to provide MAC enforcement on the 
HMC. This is an attractive solution because it requires 
no changes to the PHYP platform. Since the HMC 
already provides LPAR configuration to PHYP, it can 
easily ensure that an LPAR configuration does not 
violate the access control policy. However, this 
approach does not scale for managed platforms. In a 
PHYP platform, multiple HMCs are allowed to 
manage a single PHYP platform. Enforcing MAC on 
the HMC would require coordination and coherence 
among the HMCs. This coordination to synchronize 
their MAC operations overly complicates the 
manageability of MAC. Thus, having MAC 
enforcement in PHYP simplifies MAC processing, 
eliminates the dependency on the HMC, and ensures 
consistent enforcement of a central security policy 
independently of the HMC.  

Ideally the HMC can contribute to MAC 
enforcement on the platform by determining the 
validity of the MAC operations before sending 
configuration requests to PHYP. The HMC can ensure 
that HMC users (administrators) do not try to assign 
incompatible resources to LPARs by listing only 
resources for assignment to LPARs based on their 
security labels. The HMC proves useful for authoring 
security policies and managing label associations as 

well as providing configuration guidance to users. It is 
less useful for single-handedly enforcing the policy. 
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Figure 4. Initial PHYP MAC Design 

 
Once we decided that MAC enforcement should 

reside on the PHYP platform, we thought that the 
straightforward approach would be to enforce the 
policy at run-time when LPARs bind to resources or 
access resources. Consequently, our initial 
implementation placed the ACM and security hooks 
directly into PLIC, see Figure 4. Performing access 
control decisions at resource binding or access time 
minimizes the code path between the time of access 
check and the time of resource access. Thus, this 
implementation depends on less code for correctness. It 
also allows for revocation and re-labeling through 
callbacks. However, this implementation is 
characterized by having security hooks distributed 
throughout many PLIC modules and leads to a more 
intrusive implementation. The sensitivity of PLIC on 
platform performance and the intrusiveness of this 
solution led to rejection of this approach. 

Our current implementation, discussed in Section 
3.1, instruments Dispatchable PHYP with the ACM 
and security hooks. It centralizes policy processing and 
decisions into one module, incurs no runtime cost, and 
does not impact PLIC. This approach is driven by our 
observation that the runtime setup is confined through 
the configuration settings in PHYP. However, this 
approach does not support automatic revocation of 
resource access based on re-labeling.  

Our final lesson was that non-security people have 
difficulties in understanding a security policy when 
security labels are defined in terms of types and set 
operations. Using the color metaphor for a security 
label provided a good way to visualize the concept to 
non-security people. Additionally, using the same 
types in both STE and CHW policies further simplified 
the understanding the MAC policy. 

 



6. Future Work 
 
Future work includes extending MAC support to 

PHYP management applications and making the 
VIOSs (hosting LPARs) MAC aware. 

 Supporting MAC on the PHYP platform requires 
adding MAC enablement features into the PHYP 
management applications, including the HMC and the 
Integrated Virtualization manager (IVM) [11]. IVM 
runs on the VIOS and provides a subset of HMC 
management features. The HMC and IVM must be 
extended to create a MAC policy, assign labels to 
LPARs and resources, and load and update MAC 
policy into Dispatchable PHYP.  

Additionally, the management applications can 
support safe object reuse by requiring the backup and 
cleaning of (virtual) storage resources before they can 
be re-labeled and re-used for a different workload. 
Similarly, removing a label from a resource can trigger 
a process that ensures that the resource is backed-up 
and cleaned. 

To be able to scale the authorization required to 
manage the MAC PHYP platform, we intend to 
separate administrative duties in the management 
applications. Platform management can be divided 
between a security officer and non-security 
administrators. The security officer would be 
responsible for setting the security policy and labeling 
LPARs and resources. The non-security administrator 
would be responsible for performing non-security 
management tasks on the platform. 

Finally, VIOSs that are multi-STE typed must be 
MAC aware, since they need to enforce the MAC 
policy on virtual resources exported to client LPARs. 
We plan to include hooks into the VIOS to implement 
the access controls required to enforce the policy. 
 
7. Related Work 
 

Hypervisors can be divided into two categories: 
isolation and sharing hypervisors [14]. Isolation 
hypervisors do not allow the sharing of resources 
between LPARs. Rushby [23] formalizes the necessary 
conditions for ensuing isolation among users on a 
single machine. Kelem and Feiertag [17] extend 
Rushby’s separation model to VMs executing on the 
same platform.  An example of a separation model 
implementation is NetTop [19], which isolates VMs 
based on their sensitivity levels on a platform, but 
allows VMs to connect to networks. Another example 
of a pure isolation hypervisor is the IBM PR/SM 
system [6]. 

Our work falls in the sharing hypervisor2 category. 
The Xen hypervisor’s sHype MAC implementation 
[24] for para-virtualized VMs is closely related to our 
work. Although Xen’s and PHYP’s MAC realization 
provide the same type of policy enforcement, their 
implementations differ considerably. Xen’s and 
PHYP’s configuration and deployment schemes 
employ different approaches for implementing MAC. 
MAC enforcement for Xen must be performed partly 
in the interrupt driven hypervisor layer during runtime. 
In contrast, PHYP’s MAC enforcement is performed 
during configuration time only. Ultimately, we want to 
support MAC enforcement across multiple PHYP 
platforms; the solution presented in [18] for sHype on 
Xen applies to sHype on PHYP as well. 

Other sharing hypervisors with security kernels 
include VAX VMM [15] and KVM/370 [9]. Both 
VAX VMM and KVM/370 were developed for high-
assurance and required implementing a new hypervisor 
or large and intrusive changes to the existing 
hypervisor to achieve their security goals. They 
provide multi-level security models. Our sHype MAC 
retrofit for PHYP is non-intrusive and aims at the 
assurance that the base hypervisor is designed for 
(usually enterprise-level assurance) and provides a 
simple security policy model that is easy to understand 
for administrators in virtualized environments. 
Additionally, the sHype security checks in PHYP do 
not incur any runtime overhead since they are 
performed at configuration time. 

Further, security enhancements to Multics [25] are 
related to our work. The authors describe how users’ 
access to classified information at the OS layer is 
controlled by using a restricted multi-level security 
mode. In contrast, we restrict VM access to resources 
at the hypervisor layer using a simple and platform-
independent policy model. We note that the Multics 
enhancement work also describes administrative and 
physical safeguards (e.g., separation of administrative 
duties, secure terminal) which are applicable to PHYP 
management applications.  
 
8. Conclusion 
 

In this paper, we show how the sHype mandatory 
access control architecture can be implemented for the 
commercial-grade PHYP hypervisor with minimal 
impact on the code base and performance. We consider 
the limitations and tradeoffs of our approach with 
respect to meeting the three fundamental principles of 
the reference monitor. One key observation is that the 
reference monitor introduced in the early seventies still 
remains relevant today for mediating access to 
                                                        
2 Of course, the original sharing hypervisor is the CP-67/CMS [22]. 



resources. Another result of our work is that we can 
provide simple and robust protection statements to 
customers about their workloads using simple security 
polices. This has the potential to simplify the 
management and harden the security of the platforms. 
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