
Gaining Predictability and Noise Immunity in Global Interconnects
Yinghua Li

UC Berkeley
yinghua@eecs.berkeley.edu

Alex Kondratyev
Cadence Berkeley Lab
kalex@cadence.com

Robert K. Brayton
UC Berkeley

brayton@eecs.berkeley.edu

ABSTRACT
We present a bundled data communication scheme that is
robust to crosstalk effects, and to manufacturing and
environmental variations. Unlike a data bus, where each
receiver always connects to all data lines from the
sender, we consider the case where each receiver can
have a subset of all data lines routed to it. Such
generalization can be used for a bundled data
communication method applicable to both local and
global communication. It can be used to make a clock
unnecessary in a design. It also leads to a new routing
problem for which we present an algorithm based on
MRSA tree construction to solve it.

1. Introduction
One of the major problems associated with future system-
on-a-chip (SoC) designs arises from non-scalable global
wire delays. Global wires carry signals across a chip, but
do not scale in length with technology scaling [1]. A
problem with global wires is that they are typically
implemented in the top-level metal layers, with the
routing performed automatically in later stages of the
design cycle. Consequently, these wires have parasitic
capacitance and resistance that are difficult to predict a
priori. Process variation and dynamic effects such as
cross-talk contribute further to the wire delay uncertainty.

Several approaches have been proposed to improve the
predictability of communication delays using predefined
architectures (buses) and “self-shielding” encoding [2, 3].
However, bus architectures often introduce area and
performance penalties and are not flexible enough for
fine-grain data communication. Sharing buses between
different modules causes high wire loads and resistance
levels, slowing down signal propagation.

Developing a relatively cheap, reliable, and predictable
scheme for point-to-point communication is important
for SOC architectures. Such schemes are necessary also
for data synchronization (in clocked or clockless) SOC
designs. Difficulties with synchronization, stem from two
sources: a) with technology scaling, global interconnects
may have delays of several clock cycles, and b) SOC
designs typically combine dozens of intellectual property
blocks (IP-blocks) designed with different clocks.

Implementing a global reference clock for the whole chip
becomes increasingly problematic (if not impossible) in
SOC technology. The most likely synchronization
paradigm for future chips is GALS (globally
asynchronous locally synchronous), with many clocks [4,

5, 6]. The basic idea is to partition a system into
independently clocked modules that are communicating
in a self-timed fashion. In this, the functionality of each
subsystem is still described and synthesized along with
well-established synchronous design flows, while the
communication between locally-synchronous modules
requires specialized asynchronous components.

In an asynchronous link, timing information must be
transferred together with data. Two general strategies
exist for such an implementation. In delay-insensitive
(DI) communication [7], the completion of the data
propagation can be logically inferred by the data content,
using redundant encoding. One drawback is a significant
increase in the number of wires (usually two-fold) with a
subsequent increase in the power consumption for data
transfers. Wire and power penalties incurred in
implementing asynchronous links can be reduced by
using some timing assumptions. This leads to another
strategy, the bundled data approach [20], which infers
the completion of communication by observing
transitions on special dedicated outputs (called request or
done). The timing requirement is that done/request must
change last, relative to other signals. In general, the
bundled timing assumption may be difficult to guarantee
because of the low predictability of delays in global
interconnects.

This paper proposes a bundled routing scheme that easily
satisfies the bundled data timing assumption, even under
dynamic variations such as cross-talk.

In the experimental section, we present some preliminary
comparisons (in terms of area, timing, congestion, and
wire lengths) between our bundled routing approach and
the use of DI-encoded communications., using
conventional single-rail routing as a reference (even
though it is not reliable).

We see two main applications for the suggested
communication scheme:

1. Point-to-point data transfer between different
synchronous domains in SOC designs (e.g. for
GALS architectures).

2. Block-based design methods, where designers
manipulate blocks consisting of hundreds or
thousands of cells at a time rather than working with
individual cells [8]. A major problem with such a
flow is the loss of optimality due to the inherent loss
of timing accuracy across block boundaries. This
may be alleviated by using bundled data

implementations where every block carries the
information about its completion. An example of this
use-case scenario is given by implementations based
on dynamic PLAs [9].

This paper is organized with Section 2 describing two
self-timed schemes for communication. Section 3 covers
our bundled data communication in more detail, arguing
its immunity to noise and global variations. Also, a
bundled routing algorithm is introduced in Section 3.
Section 4 compares power consumption of the bundled
routing scheme with 2- and 4-rail DI encoding. Section 5
shows some preliminary results comparing bundled data,
DI, and conventional single-rail. Section 6 concludes
with some final remarks and directions for future work.

2. Communication schemes with self-timing

2.1 Delay-insensitive communication

Due to the absence of timing assumptions about signal
propagation, communication between modules in self-
timed links usually relies on a two-phase operation; data
changes from the spacer phase (reset) to a proper data
codeword during the set phase, and then back to the
spacer in the reset phase. The most common approach to
DI encoding uses multi-valued one-hot encoding of the
communicating signals.

Examples of DI encoding based on one-hot codes are:
1) dual-rail encoding, in which each signal a is

represented by two wires a.0 and a.1 (i.e. a = 1 is
encoded as a.0=0, a.1=1, and a = 0 encoded as
a.0=1, a.1=0), or

2) n-rail encoding, in which a n-value signal a is
encoded by n wires a.0,…a.n.

An attractive property of DI encoding is the capability for
a receiver to determine that a proper result has arrived by
the codeword itself, without appealing to timing
assumptions. For example, if a dual-rail encoded signal
a is transmitted as soon as one of the wires (a.0 or a.1)
goes high, a valid dual-rail codeword has been received
at the inputs of a receiver module. A completion detector
in this case is implemented simply by an OR gate.

Once a receiver deduces the completion of data transfer,
it needs to acknowledge it to the sender. This can be done
explicitly by triggering a transition on a dedicated ack
line or implicitly by a protocol implying that the sender
should stall (not issue new communication) until some
indication comes from a receiver or through the expiring
of some timing delay.

The main advantages of DI communication are:

a) the simplicity of detecting the completion of data
transfer, and

b) its very high tolerance to variability of physical
properties of interconnects and environment
conditions.

The main shortcoming of this scheme is an excessive
penalty in wiring: the most popular dual-rail and 1-out-
of-4 DI encodings both require a 2x wire increase in
interconnects. Increasing the number and/or the length of
interconnects induces power penalties, which may be
significant since power consumption related to
interconnects can be as high as 70% in modern chips
[10]. Although power penalty might be reduced in more
elaborated DI encodings through the reduction of the
number of switching wires (see [21] e.g.) the latter
results in even higher increase in the wiring and presents
significant challenges for automatic routing.

2.2 Bundled communication
Bundled data communication relies on observing the
behavior of special dedicated signals, done, to deduce
when data is ready. For that, two conditions must be
ensured

a) done must be generated by a sender strictly after all
data lines have settled to their correct values.

b) done must propagate though interconnects not faster
than the data signals.

Formally, bundled data communication must satisfy the
following timing constraint at the receiver:

Arrival_time(data)
�
 Arrival_time(done) (2.1)

If the proper ordering of done and data signals is ensured
at the sender then the above constraint can be simplified
to

Propagation_time(data)
�
 Propagation_time(done)

(2.2)

The latter is usually ensured by including an additional
delay in the done interconnect to provide a safe margin
for (2.2).

The main advantages of bundled data communication are
its simplicity and low cost. Indeed, in this scheme, the
encoding of the data is used as is, with the only penalty
coming from adding a single line for the done signal.

However, satisfying (2.2) is tricky and is becoming even
more challenging with technology scaling. Guarding
done by an additional delay implies a performance
penalty, which increases with the growth of the delay
uncertainty in global interconnects.

3. A reliable scheme for bundled communication

In the subsequent discussion, we assume that the proper
temporal ordering of done and data lines at the sender
end is ensured. Then the main task to support bundled

data communication is in satisfying the timing constraint
(2.2). Bearing in mind that crosstalk is the main
contributor to the possible delay variations of wires in a
bundle we need a signaling protocol where the validity
signal (done) is always put in the worst noise conditions
compared to data signals. We propose a communication
scheme with the following characteristics:

1. Use single-rail signals in communication, i.e. one
wire for each data signal.

2. Use two-phase communication: one phase is reset
when all data lines are 0 and done is 1; the other is
the data phase when data lines may remain 0 or rise
to 1, while done always changes from 1 to 0 (when
data is ready). We note (for a comment about power
in Section 4) that the reset phase for the data lines is
not necessary for correct operation; reset is used on
the data lines to make the communication
invulnerable to crosstalk effects. Note, that for some
technologies (dynamic logic e.g.) two-phase
operation is a natural choice.

3. Route each data signal only to the modules where it
is needed (its fanouts); route done to all its
associated data fanouts.

4. Route the data and done signals that are output from
the same module, as a bundle of varying width as
shown in Figure 1.

Figure 1. Bundled data communication among modules

An example of a signaling protocol for communication is
shown by the Signal Transition Graph (STG) in Figure 2.

Events for data_sendi and done_send denote the
transitions at the sender outputs for data and done lines,
while data_reci and done_rec denote the corresponding
transitions at the inputs of the receiver. Solid arcs in the
STG stand for causal relations while dotted arcs show
timing constraints that must be satisfied for the protocol
correctness. Data signals are produced at the sender end
before the sender releases the done signal (see timings
arcs between data_sendi+ and done_send-). Similar

relationship must be maintained at the receiver end. The
latter is ensured by two arguments: 1) there is no
vulnerability to delay variations due to crosstalk (see the
discussion below) and 2) since the same metal layers and
routing lengths are shared in the bundle as well as
having all vias similar and close, the delay constraint will
be invulnerable to global and/or systematic variations.

Figure 2. Signaling protocol for communication

The communication proceeds in two phases. In the set
phase the sender sets data lines to a proper codeword and
releases the done signal. The receiver acknowledges a
transition at signal done by setting the ack signal e.g.
which tells the sender to proceed with the reset phase.
Note, that the use of the dedicated ack signal is not
always needed because the acknowledgement might also
come implicitly through changing the data lines at the
sender inputs (with corresponding signal done) caused by
the receiver actions.

Different variations of the protocol from Figure 2 are
possible using timing assumptions (reset phase e.g. might
be triggered simultaneously for several blocks and be
acknowledged by timeout simply, as in the case of
dynamic PLAs e.g.).

The varying width of a bundle is decided as follows. If
the number of data lines in a segment is 1 or 2, the width
will be 3, (1 for done, 1 for data, and 1 for an added
shield wire or 1 for done, and 2 for data). The bundle
width increases by 1 with each additional data signal
beyond 2. In addition, the bundle is constructed with
done being internal, so its neighbors are either its
associated data wires or the shield wire.

Now consider what could happen during the data (set)
phase. Two cases are possible.

Set

phase

Reset

phase

data_send +
i

data_send +
j

done_send-

data_rec +
i

data_rec +
j

done_rec-

ack+

data_send -
i

data_send -
j

done_send+

data_rec -
i

data_rec -
j

done_rec+

ack-

Case 1. Data wires adjacent to done are quiescent. In this
case done is not impacted by crosstalk. Although the line
lengths, metal dimensions, and via resistances, may vary
as functions of the distance along the bundle, we assume
that this variation is close to the same for all wires in the
bundle (i.e. local variations across these wires are
small.). This is because the same metal layers and
routing lengths are shared in the bundle as well as
having all vias similar and close.1 Thus, we have

Delay00(done) � maxi[Delay00(datai)],

where Delay00 is the delay of a line with both neighbors
quiescent. Of course datai can be sped up by a (rising)
neighboring dataj, which only reinforces the inequality.

Case 2. Data line(s) adjacent to done propagate rising
transitions. If the slews and the strengths of the drivers
for done and data signals are similar then by symmetry,
done is slowed down by approximately the same amount
as the maximally-slowed data signal (its neighbor). The
following inequality is valid:

00 00Delay () max [Delay ()]i idone dataδ δ+ ≥ + ,

where δ is the slowdown caused by crosstalk when
adjacent lines propagate opposite transitions.

From the above analysis, it follows that bundled routing
guarantees that inequality (2.2) is not vulnerable to
crosstalk as well as to global manufacturing or
environmental variations. However, local variations
within the wires, such as variations in via resistance, if
substantial would have to be checked.

3.2 An MRSA-based routing algorithm
The bundled data communication scheme proposed in
Section 3.1 poses a new kind of routing problem. Since
the data signals in the bundle are routed only to modules
where they are needed, a bundle can have different
widths along its different segments. One naive idea is to
use a constant-width thick wire routing with the width set
to accommodate all data lines and done. Clearly, this
overestimates space needed for most segments and can
cause unnecessary rip up and reroute later. Experiments
show a large wire length and interconnect delay penalty
for this.

We generalize the MRSA (Minimum Rectangular Steiner
Arborescence) tree routing algorithm [11] to solve such a
variable-width wire routing problem and develop a new
router to implement bundled communication. The MRSA
algorithm was chosen mainly because it constructs the
routing structure from sinks to the source. Thus, at each
merging point of the tree, the sinks connected to it are

1 An interested reader may look into [22] to see the evidence that

random variations have negligible (less than 5%) impact on timing.

known, so the actual width of the segment starting from
this merging point is known and overestimation can be
avoided. The algorithm is shown in Figure 2.

The MRSA algorithm [11] is based on branch-and-
bound. The nodes in the routing graph are ranked by
their distances from the source terminal. Nodes are
scanned in a rank decreasing order until the source
terminal is reached. At each scan level i, terminal nodes
above this level have all been connected into subtrees and
the roots of all subtrees form a peer set P. Branching in
the algorithm happens when a Steiner node is met. At
this point, two cases are considered, whether the Steiner
node is chosen as a merging point or not. It has been
shown that P together with C, the total wire length in all
subtrees, and S, the set of selected Steiner points, can
completely characterize the constructed partial
arborescence tree. All formal definitions can be found in
[11].

Our algorithm is a modification of this and we only
discuss differences from the original algorithm. The
main differences lie in the characterization of merging
points and the bounding conditions. To characterize a
merging point, we need not only the location information
but also its data signal set. We add a set SigSet for each
point in the peer set, which contains all data signals
appearing in the subtree rooted at this point. Another
difference is the bounding condition when a terminal
merging point is met. In the original algorithm, since
each wire has the same width, all points that are
dominated by this terminal point should be merged with
it. This dominance does not hold for all cases when the
data signal set is considered. As shown in Figure 2, there
are two cases:

1. The data signal set of the terminal point contains the
signal set of the dominated point: SigSet vj � SigSet
vi. Then only connecting vj to vi can lead to the
optimal result.

2. Otherwise, both merging at vi and not merging needs
to be considered.

The difference in this bounding condition also leads to a
difference in the program to generate arborescence from
S: when a terminal merging point is met, we need to
check if it is contained in S to determine if the points
dominated by it but whose signal set is not covered
should be connected to it.

In Figure 2 the function General_RSA/G(P, N, deleted) is
called to finally generate the MRSA tree. This function is
the same as function RSA/G(P, N, deleted) shown in
Table 1 in [11] except that we compute the width for
each segment. Note that when no nodes are deleted, this
function becomes a heuristic algorithm for constructing
an RSA tree. It is much faster than the optimal algorithm

and can be used for fast evaluation which we do in our
experiments.

4. Power consumption

Since the data signals and the done signal in the same
bundle are always routed together, the coupling
capacitance of internal wires in the bundle is maximized
by having their neighbors always occupied. Thus, in
bundled routing communication propagating a transition
through a wire might consume more power versus wires
that are routed freely. However, we argue (informally)
that a bundled routing scheme would consume less power
than a DI scheme. The arguments are derived from the
analysis of the switching activity of communication wires
and of the additional circuitry (if needed) for the data
encoding/decoding and completion. The impact of
coupling capacitance on power consumption for these
two schemes can be qualitatively derived from
experimental data about total wire lengths (see Section
5).

The comparison is provided for an n-bit data bus. We
assume that three probabilities are given for each data
signal: 1) p0 (p1) is the probability that the signal takes
value 0 (1) in the current data pattern and 2) ptr is the
probability of the signal to have a data value different
from the one taken in the previous communication cycle.

1. Bundled data communication.
Bundled routing requires only single-rail signals. In
the reset phase, all data signals that have values “1”
are discharged to “0” , while in the set phase, those
that should take value “1” are charged from “0” to
“1” . A done signal changes once per phase. Then for
a single communication cycle consisting of set and
reset phases we have the following power
consumption:
Pbundled= n*(p1*Pwire� + p1* Pwire�) + Pdone� + Pdone�

� 2*(n*p1 +1) * Pwire,
where Pwire� , Pwire� is the power consumption for
propagating the falling and the rising transitions
respectively through a data line.

2. Bundled data communication (no data reset)
As mentioned in Section 3 (point 2), using two
phases is only necessary for the done signal. If
enough of a timing margin is provided by the
module to tolerate crosstalk effects in its bundle, the
charging up events for those data lines can be
reduced (by not resetting them to 0). In this case the
power consumption for a single cycle for the bundled
communication is reduced to:
Pbundled_noreset= n*ptr*Pwire + Pdone� + Pdone�

�
 (n*ptr +2) * Pwire

3. Dual-rail DI communication.

A dual-rail DI bus for n bits contains 2n wires. In the
set phase half of the wires go up, while in the reset
phase they return to “0” . In addition, the receiver
needs to infer the completion of the communication
phases. The complexity of the completion circuitry is
linear from the width of the bus (it requires an OR
gate for every dual-rail pair and an AND gate to
collect all outputs of the OR gates). Hence the power
consumption of a single communication cycle in the
dual-rail bus is:

P2rai l= n*Pwire� + n* Pwire� + Pcomplete
�

2*n* Pwire+ Pcomplete,
4. 1-out-of -4 DI communication.

1-out-of-4 encoding is known to be one of the most
power efficient among DI encodings [12]. It
represents the values for a pair of data bits by 4
wires using one-hot encoding. In this way the width
of the 1-out-of-4 DI bus is the same as for the 2-rail
bus (2n) but only one out of 4 wires is transitioning
in the set and reset phases. However, each wire
requires an additional encoder (at the sender) and
decoder (at the receiver). The power consumption of
a single communication cycle in the 1-out-of-4 bus
is:
P1of4=2*n*(Pwire� /4+Pwire� /4+Pencode+Pdecode)+Pcomplete

� 2*n* (Pwire/2 + 2*Penc_dec)+ Pcomplete,

where Pencode, Pdecode and Penc_dec is the power
consumption for the encoding, the decoding and the
average of the encoding-decoding of a single wire in
1-out-of-4 DI bus.

The above results on the power consumption per a
transfer of 1-bit of data are summarized in Table 1.

Table 1. Power consumption for self-timed communications

 Bundled Bundled
(no
reset)

2-rail 1-of-4

Pwire
Pcomplete
Penc_dec

2*p1+2/n
none
none

ptr+2/n
none
none

2
� POr_gate

none

1
� POr_gate

� 2*POr_gate
Note, that the typical values of ptr are in the range of
0.15-0.2 for modern designs [13], while p1 is usually less
than 0.5 [14]. Based on this, we conclude that bundled
data communications are more power efficient than DI
schemes.

5. Experimental Results
5.1. Experimental flow
The algorithm shown in Figure 2 is integrated in a block
placement program to provide global routing after
placement. The block placement program, (Figure 3)
uses a simulated annealing (SA) framework with
sequence pairs as the layout representation. At each SA
step, a new placement is generated, and the heuristic

algorithm for constructing an RSA tree,
General_RSA/G(P, N, null), is used to generate a net
topology for each bundled net. Then a cost function,
which includes area, aspect ratio, routing congestion, and
wire delay, is computed to evaluate the placement. After
a final placement is obtained, the function
General_RSA/DP/G is run on each net. After the MRSA
tree is obtained for each net, a post processing function is
called. This targets reducing routing congestion by
repositioning Steiner merging points while maintaining
the topology of the Steiner Arborescence tree.

Experiments compared conventional single-rail, bundled
data and dual-rail DI communication. For the
experiments, we used a set of benchmarks that are
commonly used in logic synthesis. Multi-level networks
of nodes in these benchmarks were first clustered into
multi-output nodes. The outputs of each of these nodes
formed a bundle. All data signals as well as done signals
were assumed to have the same driving buffer. Two
groups of examples are representative of the two
proposed use-cases for communication schemes:

- Group 1 consists of examples with high capacity of
communication resources. For these, additional
wiring required by different communication schemes
does not impact the areas because the designs are not
congested. This case, in our opinion, represents the
SOC design scenario when wiring area is negligible
with respect to the area of IP modules.

- Group 2 consists of examples with relative low
capacities for communication resources. For these,
wiring penalties have a higher impact on the design
area because the designs are wiring congested. This
case represents block-based design flow where both
block and wiring areas matter.

Table 2 gives the details of the examples used in the
experiments.

The SA_Place algorithm (Figure 3) was applied to each
example to obtain a placement with global routing for
bundled communication. For the dual-rail DI
communication experiments, each data signal becomes
two separate wires, and there are no done signals. We ran
the same SA_Place algorithm on this, but instead of
bundled routing, the original RSA/DP/G routing
algorithm was run for each net (the same was applied for
single-rail communication). For each example, the three
placements were compared and if the difference in
congestion was beyond some threshold, the one with
worst congestion had SA_Place rerun with more weight
on the routing congestion parameter. This was continued
until the final congestion values (after post processing) in
the two placements were similar. For some examples,
modification of the cost function could not lead to the

requested congestion values; in that case, the lowest
congestion values achieved are shown.

Table 2. Examples for experiments

Design #blocks #data signals Ave. Bundle Size

Group 1

D1 19 18 2.5

D2 25 48 3.0

D3 42 43 3.3

D4 43 61 3.0

Group 2

D5 25 52 3.5

D6 54 161 4.1

D7 38 102 3.9

D8 114 221 3.9

In all experiments, 0.18um technology was used with
routing done on metal layers metal_3 and metal_4.
Experimental results are shown in Table 3 and Table 4.

Routing congestion was computed as follows. The entire
layout area was separated into grids, each grid containing
around 60 routing lines. Since our global routes for each
net are made up only of point-to point connections
between Steiner points of a tree, and we know for each
segment its width, the congestion through each grid is
computed using the probability that each segment may
pass through it. The percentage of the number of grids,
with metal usage greater than 1 in probability, is listed in
Table 4. This serves as a measure of the difficulty that
detailed routing would face.

5.2. Analysis of experimental results
Table 3 shows area numbers for different communication
schemes. As expected for examples from Group 1, the
total area does not depend on the choice of
communication scheme. In contrast, for the examples
from Group 2, wiring overhead for bundled data and DI
communications does impact the total area, resulting in
7% (bundled) and 42% (DI) penalties versus single-rail
designs. Thus, area penalty for bundled data is
significantly lower than for DI designs.

Table 4 shows the comparison of designs by total-
length/congestion of communication wires. For Group 1,
most of the extra wire length of the bundled data scheme
comes from the presence of the additional done wires,
while DI communication shows approximately 2x wire
length penalty because of twice the number of wires. For
Group 2 the wire length overhead of bundled data
communication increases slightly for Group 1 (from 40%
to 41%) while for DI it increases considerably (from 93%

to 136%). The latter increase is due to the area increase
in DI designs from Group 1 to Group 2. For Group 2,
Table 4 also reports the number of congested grids for
each of the designs next to the total wire length numbers.
DI designs are the most congested.

Table 3. Total implementation area

 Area_SR

um2

Area_B

um2

Ratio

B/SR

Area_DI

um2

Ratio

DI/SR

Group 1

D1 5736 5832 1.02 5864 0.99

D2 15688 15862 1.01 15596 0.99

D3 15116 15128 1.00 15152 1.01

D4 11947 12233 1.02 12201 1.02

Ave 1.01 1.00

Group 2

D5 8623 8621 1.00 9225 1.07

D6 27139 28831 1.06 32784 1.21

D7 14601 15501 1.06 23678 1.62

D8 35994 42208 1.17 63780 1.77

Ave 1.07 1.42

Table 4. Wire-length ratios and congestion percentages

 WL_SR

um/%cong

WL_B

um/%cong

Ratio

B/SR

WL_DI

um/%cong

Ratio

DI/SR

Group 1

D1 965/0 1451/0 1.50 1863/0 1.93

D2 4939/0 6513/0 1.32 9033/0 1.83

D3 4431/0 6255/0 1.42 8598/0 1.94

D4 4512/0 6073/0 1.35 9039/0 2.00

Ave 1.40 1.93

Group 2

D5 5805/.004 8184/.028 1.41 11614/.026 2.00

D6 24111/.008 27832/.006 1.15 44380/.022 1.84

D7 14461/.010 19797/.018 1.37 38469/.041 2.66

D8 35233/.002 59753/.048 1.70 104055/.055 2.95

Ave 1.41 2.36

Table 5 shows relative communication delays of bundled
data and DI designs versus single-rail communication.

Table 5. Communication delay ratios

 Del_SR Del_B Del_DI

Group 1

D1 1 1.04 1.00

D2 1 1.10 1.06

D3 1 1.00 1.00

D4 1 1.07 1.03

Ave 1.05 1.02

Group 2

D5 1 1.27 1.17

D6 1 1.02 1.08

D7 1 1.27 1.61

D8 1 1.28 1.77

Ave 1.21 1.41

To compare wire delays in the three communication
schemes, we used the Elmore delay model. (Note: we are
only computing wire delays which do not include module
delays). Then, we determined the delay for each signal in
the single-rail experiment. For the other communication
schemes, we found the corresponding signal and assigned
a delay to it. For the bundled scheme, we assigned the
delay of each data signal to be the delay of its
corresponding done signal, since all wires in the bundle
have delay less than done. For dual-rail DI, we take the
delay as the maximum delay of the two wires. We then
compute the total wire delays for each scheme and show
ratios to the single-rail total in Table 5. For designs in
Group 1, the delay penalties of bundled data and DI
schemes are low (5% and 2% respectively). This is
different for Group 2 where the delay penalties are
significant (21% and 41% respectively).

Note that the data of Table 5 is overly optimistic for
single-rail communication because it is not robust and
delays need to be given some margins. To give a flavor of
a more fair comparison under process variations and
crosstalk, we assumed the following models of
variability:

1. Wire delay variations due to process variations is
30% [15], out of which approximately half is
systematic and half is random. For long wires the
random component of variations tend to compensate
and therefore altogether we assume wire delay
variations to be about 20%

2. According to some sources [16], the slowdown due
to crosstalk in global interconnects can be as high
as 75%. We assume a more moderate penalty of

15% which is typically cited by tools for signal
integrity analysis [17].

0

20

40

60

80

100

120

140

160

Group1 Group2

Single rail

Bundled data

DI

Figure 4. Communication delays with process variations
and crosstalk

Both bundled data and DI schemes tolerate process
variations and crosstalk noise well because the
information about the completion of communication is
derived from data content rather than from timing
assumptions. Therefore variations do not impose
additional delay penalties in these schemes. For single
rail communication all the variability margins must be
imposed up-front because single-rail designs are
implemented for the worst case scenario. Figure 4
summarizes the adjusted delay numbers for all
communication schemes.

The chart shows that when using automatic routing for
SOC interconnects, the DI scheme might be slightly
more timing efficient than bundled, while for the block
based design flow the bundled routing scheme is
superior.

The qualitative picture for area/power/delay trade-offs for
different communication schemes based on the above
experimental results is shown in Figure 5. We stretched
the positions for DI and bundled data implementations
along the power axis because our power analysis is not
accurate and is based purely on switching activities. We
also stretched the position of single rail implementations
along the delay axis because its performance varies with
different assumptions about the process variations and
crosstalk impacts. Note, that our analysis and conclusion
(possibly) are different from some known works for
evaluating the efficiency of communication schemes (see
[18] [19] e.g.). This is because we based our observations
on automated methods for implementing global
interconnects rather than checking the potential of what
the custom based approaches may show.

Figure 5. Area/power/delay trade-offs for communication

6. Conclusions and Future Work

We presented a scheme for bundled data communication,
argued that it is immune to noise and global variations,
and developed a routing algorithm for this. This bundled
routing method was compared with dual-rail DI
communication (which would also have such
immunities) with respect to power consumption, routing
congestion, wire length, wire delay and area.
Experimental results show that bundled routing
communication can result in large reductions in
congestion, wire lengths and area as compared to dual-
rail DI communication. It also outperforms the
conventional single-rail communication when process
variations and crosstalk are taken into account

In the future, it is necessary to obtain experimental
results on power consumption for the bundled routing
scheme to measure its efficiency in reducing power
consumption. A DI communication scheme which is a
more power-attractive one would use 1-out-of-4
signaling, in which pairs of data wires are combined and
encoded with one-hot encoding. This would have the
same number of wires as dual-rail DI encoding, but
should be superior in power. However, it would also
come with some penalty in terms of extra synthesis and
clustering causing increased logic area.

Acknowledgements.
This work was supported partially by the C2S2 Marco
research center as well as the California Micro program
and our industrial sponsors, Fujitsu, Intel, Magma, and
Synplicity.

References
[1] M.A. Horowitz, et al., “The Future of Wires” ,

Proceedings of the IEEE, Volume: 89 Issue: 4, April
2001 pp. 490–504.

[2] B.M. Victor and K. Keutzer, "Bus encoding to prevent
crosstalk delay," in Proc. Int. Conf. Computer-Aided
Design (ICCAD), Nov. 2001.

[3] K.N.Patel and I.L.Markov "Error Correction and
Crosstalk Avoidance in DSM Busses," IEEE Trans. on
VLSI, Volume 12, Number 10, pp 1076-1080, 2004

[4] Daniel M. Chapiro, Globally-Asynchronous Locally-
Synchronous Systems, Ph.D. thesis, Stanford University,
Oct. 1984.

power

delay Group1

power

delay Group2

SR

DI
Bundled

SR
DI

Bundled

area

delay Group2
SR

DI

Bundled

[5] J. Muttersbach, Globally-Asynchronous Locally-
Synchronous Architectures for VLSI Systems, Series in
Microelectronics Volume 120, Hartung Gorre Verlag,
ISBN-3-89649-724-3, 2001.

[6] S. Moore, G. Taylor, R. Mullins, and P. Robinson, Point
to point GALS interconnect, in Proc. of Int. Symp. on
Asynchronous Circuits and Systems, pp. 769--775, Apr.
2002.

[7] David E. Muller and W. S. Bartky. A theory of
asynchronous circuits. In Proceedings of an International
Symposium on the Theory of Switching, pages 204-243.
Harvard University Press, April 1959.

[8] M. Hunt and J. Rowson. Blocking in a system on a chip.
IEEE Spectrum, November 1996

[9] Fan Mo, R. Brayton, “PLA-Based Regular Structures
and Their Synthesis” , IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Jun
2003.

[10] G. Chandra, P. Kapur and K. C. Saraswat, Scaling
Trends for the On Chip Power Dissipation, Proc. Of the
IEEE 2002 International Interconnect Technology
Conference, pp 154-156, 2002

[11] Jason Cong, Andrew B. Kahng, Kwok-Shing Leung.
Efficient Algorithms for the Minimum Shortest Path
Steiner Arborescence Problem with Applications to VLSI
Physical Design. In IEEE Transactions on CAD of IC
and Systems, vol. 17, No. 1, Jan 1998.

[12] John Bainbridge and Steve Furber. CHAIN: A delay-
insensitive chip area interconnect. IEEE Micro, 22:16-
23, 2002.

[13] Private communication. Cadence customers

[14] J. L. Hennessy and D. A. Patterson. Computer
Architecture -- A Quantitative Approach. Morgan
Kaufmann Publishers, 3rd edition, 2003.

[15] Sani R. Nassif: Modeling and forecasting of
manufacturing variations (embedded tutorial). ASP-DAC
2001: 145-150

[16] R. Ho, K. Mai, and M. Horowitz, "The Future of Wires,"
Proceedings of the IEEE, vol. 89, no. 4, pp. 490-504,
April 2001.

[17] User guide. Celtic User Manual, Cadence Design
Systems, Inc., 2004.

[18] Kenneth S. Stevens. Energy and Performance Models for
Clocked and Asynchronous Communication. In 9th
International Symposium on Asynchronous Circuits and
Systems, May 2003, pp. 56-66

[19] C.Svensson. Low-power and low-voltage
communications for SOCs” , Low-power Electronics
design, C. Piguet ed., CRC press, 2003

[20] Victor I. Varshavsky, editor. Self-Timed Control of
Concurrent Processes: The Design of Aperiodic Logical
Circuits in Computers and Discrete Systems. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1990.

[21] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B.
Furber. Delay-insensitive, point-to-point interconnect
using M-of-N codes. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, pages 132-140. IEEE Computer Society Press,
May 2003.

[22] C.Amin, N.Menezes, K.Killpack, F.Dartu, Y.Ismail.
Statistical static timing analysis: How simple can we get?
In Proceedings of the ACM International Workshop on
Timing Issues in the Specification and Synthesis of
Digital Systems (TAU), 2005.

Function General_RSA/DP/G(G, N, SigSetN)

Given an SPDAG G=(V, E) with ranked nodes and a set of terminals N � V, the signal set SigSetN for each
terminal, return the minimum wire length arborescence.

Compute the “ � ” relation;
H � { ({ v|V|} , { SigSet v|V|} , |V|, 0, �)} ;
while H� � do
(*) find T=(P, SigSetsP, i, C, S) ��� such that i is maximized;
 H � H � T;
 X��� ;

foreach vj � Ci do
W�
	 v | vj � v and v �
��� ;

 if |W|>1 then
 Cost_merge=| SigSet vj |* | vi � vj|+ � v � W | SigSet v |* | v� vj|;
 Cost_nomerge= � v � W | SigSet v |* | v� vi|;
 if Cost_merge< Cost_nomerge then goto (*);

X� X� W;

 if vi � N then
 foreach vj � X do
 if SigSet vj � SigSet vi then
 P� P� 	 vj � ; X� X� 	 vj � ;
 C� | SigSet vj |* | vi � vj|;
 SigSets� SigSetsP+{ SigSet vi} ;
 H � H

�
{ (P� 	 vi � , SigSets, i-1, C,

�
)} ;

 if |X|>0 then
 SigSet vi �������
	�� SigSet v) U SigSet vi;
 SigSets� SigSetsP-{ SigSet v| v � X} +{ SigSet vi } ;
 H � H

�
{ (P� 	 vi � , SigSets, i-1, C+ � v � X | SigSet v |* | vi � v |,

��
 	 vi �)} ;
else if |X|>1 then

 H � H
�
{ (P, SigSetsP, i-1, C,

�
)} ;

 SigSet vi �������
	�� SigSet v);
 SigSets� SigSetsP-{ SigSet v| v � X} +{ SigSet vi }
 H � H

�
{ (P-X� 	 vi � , SigSets, i-1, C+ � v � X | SigSet v |* | vi � v |,

��
 	 vi �)} ;
foreach vi � V do deleted[i] ��� vi � S)? false:true;
return General_RSA/G(P, N, deleted);

Figure 2. Generalized MRSA algorithm for various-width wire routing

SA_Place

randomly generate an initial placement
for each scheduled annealing step {
 randomly do one of the following:
 (1) swap a pair in one of the sequence pairs
 (2) flip one of the blocks
 update layout
 for each bundled net, run General_RSA/G to generate a RSA tree net topology
 evaluate area, aspect ratio, congestion and delay
 evaluate cost
 accept or reject
}
for each bundled net, run General_RSA/DP/G
postprocess for reducing congestion
Figure 3. Simulated annealing based placement with RSA/DP/G for global routing

