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ABSTRACT 
We present a bundled data communication scheme that is 
robust to crosstalk effects, and to manufacturing and 
environmental variations. Unlike a data bus, where each 
receiver always connects to all data lines from the 
sender, we consider the case where each receiver can 
have a subset of all data lines routed to it. Such 
generalization can be used for a bundled data 
communication method applicable to both local and 
global communication.  It can be used to make a clock 
unnecessary in a design. It also leads to a new routing 
problem for which we present an algorithm based on 
MRSA tree construction to solve it.         

1. Introduction 
One of the major problems associated with future system-
on-a-chip (SoC) designs arises from non-scalable global 
wire delays. Global wires carry signals across a chip, but 
do not scale in length with technology scaling [1]. A 
problem with global wires is that they are typically 
implemented in the top-level metal layers, with the 
routing performed automatically in later stages of the 
design cycle. Consequently, these wires have parasitic 
capacitance and resistance that are difficult to predict a 
priori. Process variation and dynamic effects such as 
cross-talk contribute further to the wire delay uncertainty.   

Several approaches have been proposed to improve the 
predictability of communication delays using predefined 
architectures (buses) and “self-shielding”  encoding [2, 3]. 
However, bus architectures often introduce area and 
performance penalties and are not flexible enough for 
fine-grain data communication. Sharing buses between 
different modules causes high wire loads and resistance 
levels, slowing down signal propagation.  

Developing a relatively cheap, reliable, and predictable 
scheme for point-to-point communication is important 
for SOC architectures. Such schemes are necessary also 
for data synchronization (in clocked or clockless) SOC 
designs. Difficulties with synchronization, stem from two 
sources: a) with technology scaling, global interconnects 
may have delays of several clock cycles, and b) SOC 
designs typically combine dozens of intellectual property 
blocks (IP-blocks) designed with different clocks.  

Implementing a global reference clock for the whole chip 
becomes increasingly problematic (if not impossible) in 
SOC technology. The most likely synchronization 
paradigm for future chips is GALS (globally 
asynchronous locally synchronous), with many clocks [4, 

5, 6]. The basic idea is to partition a system into 
independently clocked modules that are communicating 
in a self-timed fashion. In this, the functionality of each 
subsystem is still described and synthesized along with 
well-established synchronous design flows, while the 
communication between locally-synchronous modules 
requires specialized asynchronous components.  

In an asynchronous link, timing information must be 
transferred together with data. Two general strategies 
exist for such an implementation. In delay-insensitive 
(DI) communication [7], the completion of the data 
propagation can be logically inferred by the data content, 
using redundant encoding. One drawback is a significant 
increase in the number of wires (usually two-fold) with a 
subsequent increase in the power consumption for data 
transfers. Wire and power penalties incurred in 
implementing asynchronous links can be reduced by 
using some timing assumptions. This leads to another 
strategy, the bundled data approach [20], which infers 
the completion of communication by observing 
transitions on special dedicated outputs (called request or 
done). The timing requirement is that done/request must 
change last, relative to other signals. In general, the 
bundled timing assumption may be difficult to guarantee 
because of the low predictability of delays in global 
interconnects.  

This paper proposes a bundled routing scheme that easily 
satisfies the bundled data timing assumption, even under 
dynamic variations such as cross-talk.  

In the experimental section, we present some preliminary 
comparisons (in terms of area, timing, congestion, and 
wire lengths) between our bundled routing approach and 
the use of DI-encoded communications., using 
conventional single-rail routing as a reference (even 
though it is not reliable).  

We see two main applications for the suggested 
communication scheme: 

1. Point-to-point data transfer between different 
synchronous domains in SOC designs (e.g. for 
GALS architectures). 

2. Block-based design methods, where designers 
manipulate blocks consisting of hundreds or 
thousands of cells at a time rather than working with 
individual cells [8]. A major problem with such a 
flow is the loss of optimality due to the inherent loss 
of timing accuracy across block boundaries. This 
may be alleviated by using bundled data 



implementations where every block carries the 
information about its completion. An example of this 
use-case scenario is given by implementations based 
on dynamic PLAs [9]. 

This paper is organized with Section 2 describing two 
self-timed schemes for communication. Section 3 covers 
our bundled data communication in more detail, arguing 
its immunity to noise and global variations. Also, a 
bundled routing algorithm is introduced in Section 3. 
Section 4 compares power consumption of the bundled 
routing scheme with 2- and 4-rail DI encoding. Section 5 
shows some preliminary results comparing bundled data, 
DI, and conventional single-rail. Section 6 concludes 
with some final remarks and directions for future work.    

2. Communication schemes with self-timing 

2.1 Delay-insensitive communication 

Due to the absence of timing assumptions about signal 
propagation, communication between modules in self-
timed links usually relies on a two-phase operation; data 
changes from the spacer phase (reset) to a proper data 
codeword during the set phase, and then back to the 
spacer in the reset phase.  The most common approach to 
DI encoding uses multi-valued one-hot encoding of the 
communicating signals. 

Examples of DI encoding based on one-hot codes are:  
1) dual-rail encoding, in which each signal a is 

represented by two wires a.0 and a.1 (i.e. a = 1 is 
encoded as a.0=0, a.1=1, and a = 0 encoded as 
a.0=1, a.1=0), or  

2) n-rail encoding, in which a n-value signal a is 
encoded by n wires a.0,…a.n.   

An attractive property of DI encoding is the capability for 
a receiver to determine that a proper result has arrived by 
the codeword itself, without appealing to timing 
assumptions.  For example, if a dual-rail encoded signal 
a is transmitted as soon as one of the wires (a.0 or a.1) 
goes high, a valid dual-rail codeword has been received 
at the inputs of a receiver module. A completion detector 
in this case is implemented simply by an OR gate.  

Once a receiver deduces the completion of data transfer, 
it needs to acknowledge it to the sender. This can be done 
explicitly by triggering a transition on a dedicated ack 
line or implicitly by a protocol implying that the sender 
should stall (not issue new communication) until some 
indication comes from a receiver or through the expiring 
of some timing delay. 

The main advantages of DI communication are:  

a) the simplicity of detecting the completion of data 
transfer, and  

b) its very high tolerance to variability of physical 
properties of interconnects and environment 
conditions. 

The main shortcoming of this scheme is an excessive 
penalty in wiring: the most popular dual-rail and 1-out-
of-4 DI encodings both require a 2x wire increase in 
interconnects. Increasing the number and/or the length of 
interconnects induces power penalties, which may be 
significant since power consumption related to 
interconnects can be as high as 70% in modern chips 
[10]. Although power penalty might be reduced in more 
elaborated DI encodings through the  reduction of the 
number of switching wires (see [21] e.g.) the latter  
results in even higher increase in the wiring and presents 
significant challenges for automatic routing.  

2.2 Bundled communication 
Bundled data communication relies on observing the 
behavior of special dedicated signals, done, to deduce 
when data is ready. For that, two conditions must be 
ensured  

a) done must be generated by a sender strictly after all 
data lines have settled to their correct values.  

b) done must propagate though interconnects not faster 
than the data signals.  

Formally, bundled data communication must satisfy the 
following timing constraint at the receiver: 

Arrival_time(data) 
�
  Arrival_time(done) (2.1) 

If the proper ordering of done and data signals is ensured 
at the sender then the above constraint can be simplified 
to 

Propagation_time(data) 
�
  Propagation_time(done)   

(2.2) 

The latter is usually ensured by including an additional 
delay in the done interconnect to provide a safe margin 
for (2.2). 

The main advantages of bundled data communication are 
its simplicity and low cost. Indeed, in this scheme, the 
encoding of the data is used as is, with the only penalty 
coming from adding a single line for the done signal. 

However, satisfying (2.2) is tricky and is becoming even 
more challenging with technology scaling. Guarding 
done by an additional delay implies a performance 
penalty, which increases with the growth of the delay 
uncertainty in global interconnects.  

3. A reliable scheme for bundled communication  

In the subsequent discussion, we assume that the proper 
temporal ordering of done and data lines at the sender 
end is ensured. Then the main task to support bundled 



data communication is in satisfying the timing constraint 
(2.2). Bearing in mind that crosstalk is the main 
contributor to the possible delay variations of wires in a 
bundle we need a signaling protocol where the validity 
signal (done) is always put in the worst noise conditions 
compared to data signals. We propose a communication 
scheme with the following characteristics: 

1. Use single-rail signals in communication, i.e. one 
wire for each data signal. 

2. Use two-phase communication: one phase is reset 
when all data lines are 0 and done is 1; the other is 
the data phase when data lines may remain 0 or rise 
to 1, while done always changes from 1 to 0 (when 
data is ready). We note (for a comment about power 
in Section 4) that the reset phase for the data lines is 
not necessary for correct operation; reset is used on 
the data lines to make the communication 
invulnerable to crosstalk effects. Note, that for some 
technologies (dynamic logic e.g.) two-phase 
operation is a natural choice.  

3. Route each data signal only to the modules where it 
is needed (its fanouts); route done to all its 
associated data fanouts.  

4. Route the data and done signals that are output from 
the same module, as a bundle of varying width as 
shown in Figure 1. 

  

Figure 1. Bundled data communication among modules 

An example of a signaling protocol for communication is 
shown by the Signal Transition Graph (STG) in Figure 2. 

Events for data_sendi and done_send denote the 
transitions at the sender outputs for data and done lines, 
while data_reci and done_rec denote the corresponding 
transitions at the inputs of the receiver. Solid arcs in the 
STG stand for causal relations while dotted arcs show 
timing constraints that must be satisfied for the protocol 
correctness. Data signals are produced at the sender end 
before the sender releases the done signal (see timings 
arcs between data_sendi+ and done_send-). Similar 

relationship must be maintained at the receiver end. The 
latter is ensured by two arguments:  1) there is no 
vulnerability to delay variations due to crosstalk (see the 
discussion below) and 2) since the same metal layers and 
routing lengths are shared in the bundle as well as 
having all vias similar and close, the delay constraint will 
be invulnerable to global and/or systematic variations. 

 
Figure 2. Signaling protocol for communication 

The communication proceeds in two phases. In the set 
phase the sender sets data lines to a proper codeword and 
releases the done signal. The receiver acknowledges a 
transition at signal done by setting the ack signal e.g. 
which tells the sender to proceed with the reset phase. 
Note, that the use of the dedicated ack signal is not 
always needed because the acknowledgement might also 
come implicitly through changing the data lines at the 
sender inputs (with corresponding signal done) caused by 
the receiver actions.  

Different variations of the protocol from Figure 2 are 
possible using timing assumptions (reset phase e.g. might 
be triggered simultaneously for several blocks and be 
acknowledged by timeout simply, as in the case of 
dynamic PLAs e.g.). 

The varying width of a bundle is decided as follows. If 
the number of data lines in a segment is 1 or 2, the width 
will be 3, (1 for done, 1 for data, and 1 for an added 
shield wire or 1 for done, and 2 for data). The bundle 
width increases by 1 with each additional data signal 
beyond 2.  In addition, the bundle is constructed with 
done being internal, so its neighbors are either its 
associated data wires or the shield wire. 

Now consider what could happen during the data (set) 
phase. Two cases are possible. 

Set 

phase 

Reset 

phase 

data_send + 
i 

data_send + 
j 

done_send- 

data_rec + 
i 

data_rec + 
j 

done_rec- 

ack+ 

data_send - 
i 

data_send - 
j 

done_send+ 

data_rec - 
i 

data_rec - 
j 

done_rec+ 

ack- 



Case 1. Data wires adjacent to done are quiescent. In this 
case done is not impacted by crosstalk. Although the line 
lengths, metal dimensions, and via resistances, may vary 
as functions of the distance along the bundle, we assume 
that this variation is close to the same for all wires in the 
bundle (i.e. local variations across these wires are 
small.). This is because the same metal layers and 
routing lengths are shared in the bundle as well as 
having all vias similar and close.1 Thus, we have  

Delay00(done) �  maxi[Delay00(datai)], 

where Delay00 is the delay of a line with both neighbors 
quiescent. Of course datai can be sped up by a (rising) 
neighboring dataj, which only reinforces the inequality. 

Case 2. Data line(s) adjacent to done propagate rising 
transitions. If the slews and the strengths of the drivers 
for done and data signals are similar then by symmetry, 
done is slowed down by approximately the same amount 
as the maximally-slowed data signal (its neighbor). The 
following inequality is valid: 

00 00Delay ( ) max [Delay ( )]i idone dataδ δ+ ≥ + , 

where δ  is the slowdown caused by crosstalk when 
adjacent lines propagate opposite transitions.  

From the above analysis, it follows that bundled routing 
guarantees that inequality (2.2) is not vulnerable to 
crosstalk as well as to global manufacturing or 
environmental variations. However, local variations 
within the wires, such as variations in via resistance, if 
substantial would have to be checked.  

3.2 An MRSA-based routing algorithm 
The bundled data communication scheme proposed in 
Section 3.1 poses a new kind of routing problem. Since 
the data signals in the bundle are routed only to modules 
where they are needed, a bundle can have different 
widths along its different segments. One naive idea is to 
use a constant-width thick wire routing with the width set 
to accommodate all data lines and done. Clearly, this 
overestimates space needed for most segments and can 
cause unnecessary rip up and reroute later. Experiments 
show a large wire length and interconnect delay penalty 
for this. 

We generalize the MRSA (Minimum Rectangular Steiner 
Arborescence) tree routing algorithm [11] to solve such a 
variable-width wire routing problem and develop a new 
router to implement bundled communication. The MRSA 
algorithm was chosen mainly because it constructs the 
routing structure from sinks to the source. Thus, at each 
merging point of the tree, the sinks connected to it are 
                                                             
1 An interested reader may look into [22]  to see the evidence that 

random variations have negligible  (less than 5%) impact on timing. 

known, so the actual width of the segment starting from 
this merging point is known and overestimation can be 
avoided. The algorithm is shown in Figure 2.  

The MRSA algorithm [11] is based on branch-and-
bound. The nodes in the routing graph are ranked by 
their distances from the source terminal. Nodes are 
scanned in a rank decreasing order until the source 
terminal is reached. At each scan level i, terminal nodes 
above this level have all been connected into subtrees and 
the roots of all subtrees form a peer set P. Branching in 
the algorithm happens when a Steiner node is met.  At 
this point, two cases are considered, whether the Steiner 
node is chosen as a merging point or not. It has been 
shown that P together with C, the total wire length in all 
subtrees, and S, the set of selected Steiner points, can 
completely characterize the constructed partial 
arborescence tree. All formal definitions can be found in 
[11].  

Our algorithm is a modification of this and we only 
discuss differences from the original algorithm. The 
main differences lie in the characterization of merging 
points and the bounding conditions. To characterize a 
merging point, we need not only the location information 
but also its data signal set. We add a set SigSet for each 
point in the peer set, which contains all data signals 
appearing in the subtree rooted at this point. Another 
difference is the bounding condition when a terminal 
merging point is met. In the original algorithm, since 
each wire has the same width, all points that are 
dominated by this terminal point should be merged with 
it. This dominance does not hold for all cases when the 
data signal set is considered. As shown in Figure 2, there 
are two cases:  

1. The data signal set of the terminal point contains the 
signal set of the dominated point: SigSet vj �  SigSet 
vi. Then only connecting vj to vi can lead to the 
optimal result.  

2. Otherwise, both merging at vi and not merging needs 
to be considered.  

The difference in this bounding condition also leads to a 
difference in the program to generate arborescence from 
S: when a terminal merging point is met, we need to 
check if it is contained in S to determine if the points 
dominated by it but whose signal set is not covered 
should be connected to it. 

In Figure 2 the function General_RSA/G(P, N, deleted) is 
called to finally generate the MRSA tree. This function is 
the same as function RSA/G(P, N, deleted) shown in 
Table 1 in [11] except that we compute the width for 
each segment. Note that when no nodes are deleted, this 
function becomes a heuristic algorithm for constructing 
an RSA tree. It is much faster than the optimal algorithm 



and can be used for fast evaluation which we do in our 
experiments.     

4. Power consumption 

Since the data signals and the done signal in the same 
bundle are always routed together, the coupling 
capacitance of internal wires in the bundle is maximized 
by having their neighbors always occupied. Thus, in 
bundled routing communication propagating a transition 
through a wire might consume more power versus wires 
that are routed freely. However, we argue (informally) 
that a bundled routing scheme would consume less power 
than a DI scheme. The arguments are derived from the 
analysis of the switching activity of communication wires 
and of the additional circuitry (if needed) for the data 
encoding/decoding and completion. The impact of 
coupling capacitance on power consumption for these 
two schemes can be qualitatively derived from 
experimental data about total wire lengths (see Section 
5). 

The comparison is provided for an n-bit data bus. We 
assume that three probabilities are given for each data 
signal: 1) p0 (p1) is the probability that the signal takes 
value 0 (1) in the current data pattern and 2) ptr is the 
probability of the signal to have a data value different 
from the one taken in the previous communication cycle.  

1. Bundled data communication.  
Bundled routing requires only single-rail signals. In 
the reset phase, all data signals that have values “1”  
are discharged to “0” , while in the set phase, those 
that should take value “1”  are charged from “0”  to 
“1” . A done signal changes once per phase. Then for 
a single communication cycle consisting of set and 
reset phases we have the following power 
consumption: 
Pbundled=  n*(p1*Pwire�  + p1*  Pwire� ) + Pdone�  + Pdone�  

� 2*(n*p1 +1) *  Pwire, 
where Pwire� , Pwire�  is the power consumption for  
propagating the falling and the rising transitions 
respectively through a data line. 

2. Bundled data communication (no data reset) 
As mentioned in Section 3 (point 2), using two 
phases is only necessary for the done signal. If 
enough of a timing margin is provided by the 
module to tolerate crosstalk effects in its bundle, the 
charging up events for those data lines can be 
reduced (by not resetting them to 0).  In this case the 
power consumption for a single cycle for the bundled 
communication is reduced to:    
Pbundled_noreset=  n*ptr*Pwire + Pdone�  + Pdone�   

�  
                              (n*ptr +2) *  Pwire 

3. Dual-rail DI communication. 

A dual-rail DI bus for n bits contains 2n wires. In the 
set phase half of the wires go up, while in the reset 
phase they return to “0” . In addition, the receiver 
needs to infer the completion of the communication 
phases. The complexity of the completion circuitry is 
linear from the width of the bus (it requires an OR 
gate for every dual-rail pair and an AND gate to 
collect all outputs of the OR gates). Hence the power 
consumption of a single communication cycle in the 
dual-rail bus is:  

P2rai l= n*Pwire�  + n*  Pwire�  + Pcomplete  
�  

2*n*  Pwire+ Pcomplete, 
4. 1-out-of -4 DI communication. 

1-out-of-4 encoding is known to be one of the most 
power efficient among DI encodings [12]. It 
represents the values for a pair of data bits by 4 
wires using one-hot encoding. In this way the width 
of the 1-out-of-4 DI bus is the same as for the 2-rail 
bus (2n) but only one out of 4 wires is transitioning 
in the set and reset phases.   However, each wire 
requires an additional encoder (at the sender) and 
decoder (at the receiver). The power consumption of 
a single communication cycle in the 1-out-of-4 bus 
is:  
P1of4=2*n*(Pwire� /4+Pwire� /4+Pencode+Pdecode)+Pcomplete     

             
�  2*n*  (Pwire/2 + 2*Penc_dec)+ Pcomplete, 

where Pencode, Pdecode and Penc_dec is the power 
consumption for the encoding, the decoding and the 
average of the encoding-decoding of a single wire in 
1-out-of-4 DI bus. 

The above results on the power consumption per a 
transfer of 1-bit of data are summarized in Table 1. 

Table 1. Power consumption for self-timed communications 

 Bundled  Bundled 
(no 
reset) 

2-rail 1-of-4 

Pwire 
Pcomplete 
Penc_dec 

2*p1+2/n 
none 
none 

ptr+2/n 
none 
none 

2 
� POr_gate 

none 

1 
� POr_gate 

� 2*POr_gate 
Note, that the typical values of ptr are in the range of 
0.15-0.2 for modern designs [13], while p1 is usually less 
than 0.5 [14]. Based on this, we conclude that bundled 
data communications are more power efficient than DI 
schemes. 

5. Experimental Results 
5.1. Experimental flow 
The algorithm shown in Figure 2 is integrated in a block 
placement program to provide global routing after 
placement. The block placement program, (Figure 3) 
uses a simulated annealing (SA) framework with 
sequence pairs as the layout representation. At each SA 
step, a new placement is generated, and the heuristic 



algorithm for constructing an RSA tree, 
General_RSA/G(P, N, null), is used to generate a net 
topology for each bundled net. Then a cost function, 
which includes area, aspect ratio, routing congestion, and 
wire delay, is computed to evaluate the placement. After 
a final placement is obtained, the function 
General_RSA/DP/G is run on each net. After the MRSA 
tree is obtained for each net, a post processing function is 
called. This targets reducing routing congestion by 
repositioning Steiner merging points while maintaining 
the topology of the Steiner Arborescence tree.   

Experiments compared conventional single-rail, bundled 
data and dual-rail DI communication. For the 
experiments, we used a set of benchmarks that are 
commonly used in logic synthesis. Multi-level networks 
of nodes in these  benchmarks were first clustered into 
multi-output nodes. The outputs of each of these nodes 
formed a bundle. All data signals as well as done signals 
were assumed to have the same driving buffer. Two 
groups of examples are representative of the two 
proposed use-cases for communication schemes:  

- Group 1 consists of examples with high capacity of 
communication resources. For these, additional 
wiring required by different communication schemes 
does not impact the areas because the designs are not 
congested. This case, in our opinion, represents the 
SOC design scenario when wiring area is negligible 
with respect to the area of IP modules. 

- Group 2 consists of examples with relative low 
capacities for communication resources. For these, 
wiring penalties have a higher impact on the design 
area because the designs are wiring congested. This 
case represents block-based design flow where both 
block and wiring areas matter.  

Table 2 gives the details of the examples used in the 
experiments.  

The SA_Place algorithm (Figure 3) was applied to each 
example to obtain a placement with global routing for 
bundled communication. For the dual-rail DI 
communication experiments, each data signal becomes 
two separate wires, and there are no done signals. We ran 
the same SA_Place algorithm on this, but instead of 
bundled routing, the original RSA/DP/G routing 
algorithm was run for each net (the same was applied for 
single-rail communication). For each example, the three 
placements were compared and if the difference in 
congestion was beyond some threshold, the one with 
worst congestion had SA_Place rerun with more weight 
on the routing congestion parameter. This was continued 
until the final congestion values (after post processing) in 
the two placements were similar. For some examples, 
modification of the cost function could not lead to the 

requested congestion values; in that case, the lowest 
congestion values achieved are shown. 

Table 2. Examples for experiments 

Design #blocks #data signals Ave. Bundle Size 

Group 1 

D1 19 18 2.5 

D2 25 48 3.0 

D3 42 43 3.3 

D4 43 61 3.0 

Group 2 

D5 25 52 3.5 

D6 54 161 4.1 

D7 38 102 3.9 

D8 114 221 3.9 

In all experiments, 0.18um technology was used with 
routing done on metal layers metal_3 and metal_4. 
Experimental results are shown in Table 3 and Table 4.  

Routing congestion was computed as follows. The entire 
layout area was separated into grids, each grid containing 
around 60 routing lines. Since our global routes for each 
net are made up only of point-to point connections 
between Steiner points of a tree, and we know for each 
segment its width, the congestion through each grid is 
computed using the probability that each segment may 
pass through it. The percentage of the number of grids, 
with metal usage greater than 1 in probability, is listed in 
Table 4. This serves as a measure of the difficulty that 
detailed routing would face. 

5.2. Analysis of experimental results 
Table 3 shows area numbers for different communication 
schemes. As expected for examples from Group 1, the 
total area does not depend on the choice of 
communication scheme. In contrast, for the examples 
from Group 2, wiring overhead for bundled data and DI 
communications does impact the total area, resulting in 
7% (bundled) and 42% (DI) penalties versus single-rail 
designs. Thus, area penalty for bundled data is 
significantly lower than for DI designs. 

Table 4 shows the comparison of designs by total- 
length/congestion of communication wires. For Group 1, 
most of the extra wire length of the bundled data scheme 
comes from the presence of the additional done wires, 
while DI communication shows approximately 2x wire 
length penalty because of twice the number of wires. For 
Group 2 the wire length overhead of bundled data 
communication increases slightly for Group 1 (from 40% 
to 41%) while for DI it increases considerably (from 93% 



to 136%). The latter increase is due to the area increase 
in DI designs from Group 1 to Group 2. For Group 2, 
Table 4 also reports the number of congested grids for 
each of the designs next to the total wire length numbers. 
DI designs are the most congested.   

Table 3. Total implementation area      

 Area_SR 

um2 

Area_B 

um2 

Ratio 

B/SR 

Area_DI 

um2 

Ratio 

DI/SR 

Group 1 

D1 5736 5832 1.02 5864 0.99 

D2 15688 15862 1.01 15596 0.99 

D3 15116 15128 1.00 15152 1.01 

D4 11947 12233 1.02 12201 1.02 

Ave   1.01  1.00 

Group 2 

D5 8623 8621 1.00 9225 1.07 

D6 27139 28831 1.06 32784 1.21 

D7 14601 15501 1.06 23678 1.62 

D8 35994 42208 1.17 63780 1.77 

Ave   1.07  1.42 

 

Table 4. Wire-length ratios and congestion percentages 

 WL_SR 

um/%cong 

WL_B 

um/%cong 

Ratio 

B/SR 

WL_DI 

um/%cong 

Ratio 

DI/SR 

Group 1 

D1 965/0 1451/0 1.50 1863/0 1.93 

D2 4939/0 6513/0 1.32 9033/0 1.83 

D3 4431/0 6255/0 1.42 8598/0 1.94 

D4 4512/0 6073/0 1.35 9039/0 2.00 

Ave   1.40  1.93 

Group 2 

D5 5805/.004 8184/.028 1.41 11614/.026 2.00 

D6 24111/.008 27832/.006 1.15 44380/.022 1.84 

D7 14461/.010 19797/.018 1.37 38469/.041 2.66 

D8 35233/.002 59753/.048 1.70 104055/.055 2.95 

Ave   1.41  2.36 

Table 5 shows relative communication delays of bundled 
data and DI designs versus single-rail communication.  

 

 

 

Table 5. Communication delay ratios 

 Del_SR Del_B Del_DI 

Group 1 

D1 1 1.04 1.00 

D2 1 1.10 1.06 

D3 1 1.00 1.00 

D4 1 1.07 1.03 

Ave  1.05 1.02 

Group 2 

D5 1 1.27 1.17 

D6 1 1.02 1.08 

D7 1 1.27 1.61 

D8 1 1.28 1.77 

Ave  1.21 1.41 

To compare wire delays in the three communication 
schemes, we used the Elmore delay model. (Note: we are 
only computing wire delays which do not include module 
delays). Then, we determined the delay for each signal in 
the single-rail experiment. For the other communication 
schemes, we found the corresponding signal and assigned 
a delay to it. For the bundled scheme, we assigned the 
delay of each data signal to be the delay of its 
corresponding done signal, since all wires in the bundle 
have delay less than done. For dual-rail DI, we take the 
delay as the maximum delay of the two wires. We then 
compute the total wire delays for each scheme and show 
ratios to the single-rail total in Table 5. For designs in 
Group 1, the delay penalties of bundled data and DI 
schemes are low (5% and 2% respectively). This is 
different for Group 2 where the delay penalties are 
significant (21% and 41% respectively). 

Note that the data of Table 5 is overly optimistic for 
single-rail communication because it is not robust and 
delays need to be given some margins. To give a flavor of 
a more fair comparison under process variations and 
crosstalk, we assumed the following models of 
variability: 

1. Wire delay variations due to process variations is 
30% [15], out of which approximately half is 
systematic and half is random. For long wires the 
random component of variations tend to compensate 
and therefore altogether we assume wire delay 
variations to be about 20%  

2. According to some sources [16], the slowdown due 
to crosstalk in global interconnects can be as high 
as 75%. We assume a more moderate penalty of 



15% which is typically cited by tools for signal 
integrity analysis [17].  
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Figure 4. Communication delays with process variations 
and crosstalk 

Both bundled data and DI schemes tolerate process 
variations and crosstalk noise well because the 
information about the completion of communication is 
derived from data content rather than from timing 
assumptions. Therefore variations do not impose 
additional delay penalties in these schemes. For single 
rail communication all the variability margins must be 
imposed up-front because single-rail designs are 
implemented for the worst case scenario.  Figure 4 
summarizes the adjusted delay numbers for all 
communication schemes.  

The chart shows that when using automatic routing for 
SOC interconnects, the DI scheme might be slightly 
more timing efficient than bundled, while for the block 
based design flow the bundled routing scheme is 
superior.  

The qualitative picture for area/power/delay trade-offs for 
different communication schemes based on the above 
experimental results is shown in Figure 5. We stretched 
the positions for DI and bundled data implementations 
along the power axis because our power analysis is not 
accurate and is based purely on switching activities. We 
also stretched the position of single rail implementations 
along the delay axis because its performance varies with 
different assumptions about the process variations and 
crosstalk impacts. Note, that our analysis and conclusion 
(possibly) are different from some known works for 
evaluating the efficiency of communication schemes (see 
[18] [19] e.g.). This is because we based our observations 
on automated methods for implementing global 
interconnects rather than checking the potential of what 
the custom based approaches may show.  

 
Figure 5. Area/power/delay trade-offs for communication 

6. Conclusions and Future Work 

We presented a scheme for bundled data communication, 
argued that it is immune to noise and global variations, 
and developed a routing algorithm for this. This bundled 
routing method was compared with dual-rail DI 
communication (which would also have such 
immunities) with respect to power consumption, routing 
congestion, wire length, wire delay and area. 
Experimental results show that bundled routing 
communication can result in large reductions in 
congestion, wire lengths and area as compared to dual-
rail DI communication. It also outperforms the 
conventional single-rail communication when process 
variations and crosstalk are taken into account 

In the future, it is necessary to obtain experimental 
results on power consumption for the bundled routing 
scheme to measure its efficiency in reducing power 
consumption. A DI communication scheme which is a 
more power-attractive one would use 1-out-of-4 
signaling, in which pairs of data wires are combined and 
encoded with one-hot encoding. This would have the 
same number of wires as dual-rail DI encoding, but 
should be superior in power. However, it would also 
come with some penalty in terms of extra synthesis and 
clustering causing increased logic area. 
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Function General_RSA/DP/G(G, N, SigSetN) 

Given an SPDAG G=(V, E) with ranked nodes and a set of terminals N � V, the signal set SigSetN for each 
terminal, return the minimum wire length arborescence. 

Compute the “ � ”  relation; 
H � { ({ v|V|} , { SigSet v|V|} , |V|, 0, � )} ;  
while H�  � do 
(* )    find T=(P, SigSetsP, i, C, S) ��� such that i is maximized; 
        H � H �  T; 
        X��� ;

foreach vj � Ci do 
W�
	 v | vj � v and v �
��� ; 

               if |W|>1 then  
                        Cost_merge=| SigSet vj |* | vi � vj|+ � v � W | SigSet v |* | v� vj|; 
                        Cost_nomerge= � v � W | SigSet v |* | v� vi|; 
                        if Cost_merge< Cost_nomerge then goto (* ); 

X� X�  W; 



         if  vi � N then  
                   foreach vj � X do 
                           if SigSet vj �  SigSet vi then 
                                   P� P� 	 vj � ; X� X� 	 vj � ; 
                                   C� | SigSet vj |* | vi � vj|; 
                    SigSets� SigSetsP+{ SigSet vi} ; 
                    H � H

�
{ (P� 	 vi � , SigSets, i-1, C, 

�
)} ; 

                    if |X|>0 then  
                            SigSet vi �������
	�� SigSet v) U SigSet vi; 
                            SigSets� SigSetsP-{ SigSet v| v � X} +{ SigSet vi  } ; 
                            H � H

�
{ (P� 	 vi � , SigSets, i-1, C+ � v � X | SigSet v |* | vi � v |, 

��
 	 vi � )} ; 
else if |X|>1 then  

                 H � H
�
{ (P, SigSetsP, i-1, C, 

�
)} ; 

                 SigSet vi �������
	�� SigSet v); 
                 SigSets� SigSetsP-{ SigSet v| v � X} +{ SigSet vi  }                   
                 H � H

�
{ (P-X� 	 vi � , SigSets, i-1, C+ � v � X | SigSet v |* | vi � v |, 

��
 	 vi � )} ; 
foreach vi � V do deleted[i] ��� vi � S)? false:true; 
return General_RSA/G(P, N, deleted);

Figure 2. Generalized MRSA algorithm for various-width wire routing 

 

SA_Place 

randomly generate an initial placement 
for each scheduled annealing step {  
      randomly do one of the following: 
             (1) swap a pair in one of the sequence pairs 
             (2) flip one of the blocks 
      update layout 
      for each bundled net,  run General_RSA/G to generate a RSA tree net topology 
      evaluate area, aspect ratio, congestion and delay 
      evaluate cost 
      accept or reject 
}  
for each bundled net, run General_RSA/DP/G 
postprocess for reducing congestion 
Figure 3. Simulated annealing based placement with RSA/DP/G for global routing 


