Synthesis of Petri Nets from Infinite Partial Languages

Robin Bergenthum, Jorg Desel, Robert Lorenz and Sebastian Mauser*
Department of Applied Computer Science
Catholic University of Eichstatt-Ingolstadt
85072 Eichstatt, Germany
firstname.lastname @ku-eichstaett.de

Abstract

In this paper we present an algorithm to synthesize a
finite unlabeled place/transition Petri net (p/t-net) from a
possibly infinite partial language, which is given by a term
over a finite set of labeled partial orders using operators for
union, iteration, parallel composition and sequential com-
position. The synthesis algorithm is based on the theory
of regions for partial languages presented in [18] and pro-
duces a p/t-net having minimal net behavior including the
given partial language. The algorithm uses linear program-
ming techniques that were already successfully applied in
[17] for the synthesis of p/t-nets from finite partial lan-
guages.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has
been a successful line of research since the 1990s. There is
a rich body of nontrivial theoretical results, and there are
important applications in industry, in particular in hardware
system design [3, 11], and recently also in workflow design
[21]. Moreover, there are several synthesis tools that are
based on the theoretical results [2].

Originally, synthesis means algorithmic construction of
a Petri net from sequential observations. It can be applied
to various classes of Petri nets, including elementary nets
[6] and place/transition nets (p/t-nets) [1]. Synthesis can
start with a transition system representing the sequential be-
haviour of a system as well as with a step transition system
which additionally represents steps of concurrent events [1].
Synthesis can also be based on a language, i.e., on a set of
occurrence sequences or step sequences [4, 1].

Recently, we solved the synthesis problem for p/t-nets
with behaviour given in terms of a finite partial language,

*This paper was supported by the German Research Council, project
SYNOPS.

170

i.e., as a finite set of labelled partial orders (LPOs) [17].
LPOs are also known as partial words [8] or pomsets [19].
In contrast to previous work on the synthesis problem, we
considered partial order behaviour of Petri nets, truly repre-
senting the concurrency of events. Partial orders are often
considered the most appropriate representation of behaviour
of concurrent systems modelled by Petri nets.

Based on our previous work, this paper tackles synthesis
of Petri nets from infinite partial languages. More precisely,
we introduce terms built from LPOs and composition oper-
ators including iteration. The semantics of an iterated finite
LPO is an infinite set of LPOs. Moreover, we consider op-
erators for sequential and parallel composition as well as a
union operator. Given a term constructed this way from a
finite set of LPOs, we show in this paper how to synthesize
a finite p/t-net from this term such that the behaviour of the
net coincides with the set of LPOs represented by the term
— if such a net exists. The synthesis approach is based on
the so called theory of regions. Each transition of the syn-
thesized net is given by a label appearing in the term, and
each place of the net is given by a region. The synthesized
p/t-net has minimal net behaviour including the behaviour
specified by the given term.

In contrast to [17], in this paper we only give the con-
struction of the p/t-net, but not an algorithm to decide if the
behaviour of the synthesized net coincides with the speci-
fied behaviour. That means we do not characterize partial
languages generated by (unlabeled) p/t-nets. This is out of
scope of this paper and a topic of further research.

We emphasize at this point that we aim at the synthesis
of unlabeled Petri nets (i.e. Petri nets with unique transition
names) and concentrate on the algorithmic solution. In con-
trast, in [14] partial languages generated by safe labeled p/t-
nets are characterized. In [15, 16] partial languages which
can be generated from singletons via operators for union,
iteration, parallel composition and sequential composition
(so called series-rational sp-languages) are characterized
through so called branching automata, which can be inter-
preted as a restricted class of labeled p/t-nets. Other papers

consider unlabeled nets, but do not consider algorithmic as-
pects, such as [10] (characterizing the branching behaviour
of p/t-nets without auto-concurrency by event structures)
and [9] (proposing a trace semantics for p/t-nets).

The remainder of the paper is organized as follows: We
start with a brief introduction to the behavioural model con-
sidered in this paper: We define the so called partial lan-
guage of runs of a p/t-net in Section 2. In Section 3 the term
based representation of infinite partial languages is intro-
duced, generalizing regular expressions of sequential lan-
guages in two ways: a single partial word generalizes a se-
quential word, and we have a parallel composition operator.
The latter only makes sense for partial words which can ex-
press independent, parallel execution of events. In Section
4 we first recall definitions and main results from [18] and
[17] on the theory of regions for partial languages. Then
we introduce regions of terms. Finally, the last Section 5
shows that, although the set of regions of a term is infinite
in general, finitely many regions suffice for our construc-
tion, yielding a finite Petri net. This finite set is effectively
constructed using concepts of linear programming.

2 The Partial Language of Runs of a P/t-net

In this section we introduce the behavioural model con-
sidered in this paper. By N we denote the nonnegative in-
tegers. N denotes the positive integers. Given a finite set
A, the symbol |A| denotes the cardinality of A. The set
of all multi-sets over a set A is the set N4 of all functions
f : A — N. Given a binary relation R C A x A, we
write aRb to denote (a,b) € R. A directed graph is a pair
(V,—), where V is a finite set of nodes and —C V x V
is called the set of arcs. A partial order is a directed graph
po = (V. <), where <C V x V is irreflexive and transitive.

Definition 1 (Labelled partial order). A labelled partial or-
der (LPO) is a triple Ipo = (V,<,l), where (V,<) is a
partial order and 1 : V' — T" is a labelling function with set
of labels 7.

In our context, a node v of an LPO (V, <,1) is called
event, representing an occurrence of [(v). Two nodes
v,v" € V are called independent if v £ v and v/ £ wv.
Notice that by this definition, independence is reflexive. By
co € V x V we denote the set of all pairs of indepen-
dent nodes of V. A co-set is a subset C' C V satisfying
Vz,y € C': xcoy. A cut is a maximal co-set (w.r.t. set in-
clusion). For a co-set C' of a partial order (V, <) and a node
veV\Cwewritev < C,if v < s foranelement s € C,
and vco C, if vco s for all elements s € C. A partial or-
der (V' <') is a prefix of a partial order (V, <) if V' C V,
<=<|yixvrand (v € V' Av < V) = (v € V).
Given two partial orders po; = (V, <1) and po, = (V, <3),
we say that po, is a sequentialization of po; if <;C<s.

We use the notations defined for partial orders also for
LPOs. If T is the set of labels of lpo = (V,<,l) then
for a set V! C V, we define the multi-set |[V’|; € NT by
[V'i(t) = |{v € V' | l(v) = t}|. We consider LPOs
only up to isomorphism. As usual, two LPOs (V, <, 1) and
(V', <’ 1) are called isomorphic, if there is a bijective map-
ping ¢ : V — V' such that(v) = I'(¢)(v)) foreachv € V,
andv < w < ¢ (v) <" (w) foreach v, w € V. By [Ipo]
we denote the set of all LPOs isomorphic to Ipo.

Definition 2 (Partial language). Let T be a set. A set
L C {[lpo] | Ipo = (V,<,1) is an LPO, (V) C T} with
U[(V,<,l)]e£ I(V) =T is called partial language over 7.

A partial language is given by a set of concrete LPOs L
representing £ in the sense that [Ipo] € £ <= Jlpo’ € L :
[Ipo] = [Ipo”].

A netis atriple (P, T, F'), where P is a (possibly infinite)
set of places, T' is a finite set of transitions satisfying P N
T=0,and F C (P x T)U (T x P) is a flow relation.

Definition 3 (Place/transition net). A place/transition-net
(p/t-net) N is a quadruple (P, T, F,W), where (P, T, F)
is anet, and W : ' — N7 is a weight function.

We extend the weight function W to pairs of net ele-
ments (z,y) € (P xT)U (T x P) with (z,y) ¢ I' by
W(z,y) = 0. A marking of anet N = (P,T,F, W) isa
function m : P — N, i.e. a multi-set over P. A marked
p/i-net is a pair (N, mg), where N is a p/t-net, and mg is a
marking of N, called initial marking. The occurrence rule
of p/t-nets is defined as usual [20]. The non-sequential se-
mantics of a p/t-net can be given by enabled LPOs, also
called runs. An LPO is enabled in a net if the events of the
LPO can occur in the net respecting the concurrency rela-
tion of the LPO [22].

Definition 4 (Enabledness). Let (N,mg) be a marked
p/t-net, N = (P, T,F,W). An LPO lpo = (V,<,l)
with 1 V. — T is called enabled w.r.t. (N, mg)
if for every cut C of lpo and every p € P there
holds mo(p) + ey maccWU©),0) — W(p,U(v))) =
> wec W(p,l(v)). Its occurrence leads to the marking
m' given by m/(p) = mo(p) + X, (W(l(v),p) —
W (p,1(v))) foreach p € P.

Definition 5 (Partial language of runs). The set of all iso-
morphism classes of LPOs enabled w.rt. a given marked
p/t-net (N,mq) is denoted by L(N,mg). L(N,mq) is
called the partial language of runs of (N, mg).

Given a partial language £, we are interested in al-
gorithms to calculate a marked p/t-net (N,mg) with
L(N,mg) = L, if such a net exists. Observe that L(N, m)
is always sequentialization and prefix closed, i.e. every se-
quentialization and every prefix of an enabled LPO is again

171

enabled w.r.t. (N,mg). Moreover, the set of labels of
L(N,my) is finite by definition. Therefore, when specify-
ing the behaviour of a net by a partial language, this partial
language must necessarily be sequentialization and prefix
closed, and it must have a finite set of labels.

3 Term Based Finite Representation of Infi-
nite Partial Languages

When specifying a partial language as the input for a
synthesis algorithm, this specification has to be finite. In
[17] we developed an algorithm to solve the synthesis prob-
lem for finite partial languages. We consider infinite par-
tial languages in this paper. Consequently, we finitely rep-
resent infinite partial languages. More precisely we con-
sider term-based finite representations of infinite partial lan-
guages. This approach was already successfully applied
for the synthesis of nets from languages of occurrence se-
quences given by regular expressions over a finite alphabet
of transitions [4]. In this paper, the alphabet is a finite set of
LPOs. The considered terms extend regular expressions by
a parallel composition operator representing concurrency.
Thus we consider a class of partial languages specified by
terms over a given finite set of LPOs A, where terms are
constructed by iteration, parallel and sequential composi-
tion and union. For A € A we write A = (Va, <a,la),
and we denote by A = (0, 0, §) the empty LPO.

Definition 6 (LPO-term). The set of LPO-terms over a fi-
nite set of LPOs A is inductively defined as follows: The
characters A € A and \ are LPO-terms. Let o1 and oo
be LPO-terms. Then o = «q;a2 (sequential composi-
tion), a« = a1 + ay (union), « = ()" (iteration) and
a = a1 || az (parallel composition) are LPO-terms.

If each LPO in A is a singleton, an LPO-term defines a
so called series rational sp-language [15, 16]. In a simi-
lar way, we assign to an arbitrary LPO-term « a possibly
infinite set of LPOs L(«) representing a partial language.
Given an LPO-term «, we first inductively define a set of
LPOs K («) represented by aw. The set L(a) is the prefix
and sequentialization closure of K («). To define K («),
we define the sequential composition of LPOs A, B € A
by AB = (VA UVe, <4 U <p U(VA X VB),ZA @] lB),
the parallel composition of LPOs A, B € Aby A | B =
(VAU Vg, <4 U <p,la Ulg), and denote A° = X and
A" = A"~ 1A forn € NT (we can assume that A, B have
disjoint sets of nodes).

Definition 7 (Partial language of an LPO-term). We set
K(\) = {\} and K(A) = {A}. We further define in-
ductively for LPO-terms a1 and awa:

K(ozl + 062) = K(Oél) @] K(Olg)

K(O&l;ag) = {A1A2 | Al S K(al), Ag S K(az)}

172

@ @
& @@@% B e
b]
(@
&
la]
...
bl [3] B]
bl @
B

(b)
Figure 1. Representations of partial lan-
guages.

]{((()[1)*> = {Al .. An | Al, ey An S I(((Xl)} U {)\}
K(on | az) = {Ay1 || A2 | Ay € K(on), Az € K(a2)}
L(«) is the set of sequentializations of prefixes of LPOs in
K(a). L(a) = {[lpo] | Ipo € L(«)} is the partial lan-
guage of a.

An example for a partial languages of an LPO-term is de-
picted in Figure 1, part (a), showing the set of LPOs K (a ||
b*). The set of LPOs from part (b) cannot be generated by
an LPO-term (this is also the case if we consider its prefix-
closure), because by sequential composition and iteration it
is not possible to append an LPO only to a part of another
LPO. Note that this set of LPOs could be defined through a
recursive expression of the from A = a(A || b) + \. Syn-
thesis from such expressions is a topic of further research.
It is also possible to consider further composition opera-
tors (see [19] for an overview). In [12] an operator for syn-
chronous composition of single actions is used, leading to
terms which cannot longer be represented by (sets of) LPOs
but by causal structures extending LPOs.

Altogether, the partial languages of LPO-terms (over fi-
nite sets of LPOs) form a certain class of infinite partial
languages. Note that not each partial language of runs of a
p/t-net can be described through LPO-terms.! It is easy to
see that also not each partial language of runs of an elemen-
tary net or even of a marked graph can be described through
LPO-terms.>

Note that, for simplicity of figures, in all examples we
only consider LPO-terms constructed from singletons.

IThe partial language of runs of the p/t-net having the two places p and
g defined by W (p,a) = W(a,p) = W(a,q) = W(q,b) = 1 equals the
partial language depicted in part (b) of Figure 1.

2Consider the marked graph having transitions a, b, ¢, d and four places
p,q,r, s defined by W(p,a) = W(a,q) = W(g,b) = W(b,p) =
Wi(a,r) = W(r,c) = W(b,s) = W(s,d) = 1.

4 Regions of LPO-terms

The synthesis problem tackled in this paper is as follows:
Given: An LPO-term o.
Searched: A marked p/t-net (N, mg) with L(N,mg) =
L(a) if such (N, mg) exists.
We use the so called theory of regions to solve the synthe-
sis problem. Like the synthesis algorithm for finite partial
languages in [17], the synthesis algorithm in this paper is
based on the notion of regions of partial languages intro-
duced in [18]. Transitions of the synthesized net are given
by the labels of the partial language and places are given by
regions. In the case of infinite partial languages, a region
according to [18] is a function with an infinite number of
variables that has to fulfill an infinite number of constraints.
Such regions are not computable. The aim of this section
is to define computable regions of an LPO-term « which
define the same places as the regions of £(«) from [18].

We first recall the general ideas of region based synthe-
sis. The basic approach is the construction of a marked p/t-
net from a given partial language £ according to the follow-
ing strategy: The set of transitions of the synthesized net is
the finite set of labels of L. Clearly, each LPO specified in £
is a run of the marked p/t-net consisting only of these transi-
tions (with empty set of places), because there are no causal
dependencies between the transitions. Therefore, this net
in general has many runs not specified in £. Thus, one re-
stricts the behaviour of this net by creating causal depen-
dencies between the transitions through addition of places.
Places are defined by their initial marking and the weights
on the arcs connecting them to transitions. Two kinds of
places can be distinguished. In the case that there is an LPO
specified in £ which is no run of the net which has only
the one considered place, this place restricts the behaviour
too much. Such places are non-feasible (w.r.t. L). In the
other case, the considered place is feasible (w.r.t. L). Every
feasible place is added to the net to be constructed.

Definition 8 (Feasible place). Let L be a partial language
over the finite set of labels T and let (N,m,), N =
({p},T, Fp, W,) be a marked p/t-net with only one place
p (Fp, Wy, my, are defined according to the definition of p).
The place p is called feasible (w.r.t. L), if L C L(N,my),
otherwise non-feasible (w.r.t. £).

Examples of a feasible place and a non-feasible place are
depicted in Figure 2, showing the set of LPOs K (b+(a; (a ||
b)*)) in part (a): Using Definition 4 one can easily verify
that all LPOs in L(b+ (a; (a || b)*)) are enabled in the one-
place net depicted in part (b). The third LPO of part (a) is
not enabled in the one-place net depicted in part (c).

Definition 9 (Saturated feasible p/t-net). Let L be a partial
language over the finite set of labels 'T'. The marked p/t-net

s’:

(c)

Figure 2. (a) K(b + (a;(a || b)*)), (b) feasible
place, (c) non-feasible place.

(N,mg), N = (P,T,F,W), such that P is the set of all
places feasible w.r.t. L is called saturated feasible (w.r.t. £)

Theorem 10 ([18]). Let (N, mq) be the saturated feasible
p/t-net w.r.t. a partial language L. Then L C L(N,my)
and L(N,myg) is minimal with this property.

Altogether, given an LPO-term «v, the saturated feasible
net (N, mg) w.r.t. L(a) solves the formulated synthesis
problem, i.e. £(N,mo) = L(a), or there is no such net.
A problem that we solve in Section 5 is that there are in-
finitely many feasible places.

By regions of partial languages it is possible to define the
set of all feasible places on the level of the partial language.
Given a partial language £ over T represented by a set of
LPOs L, the idea of defining regions of £ was developed
in [18]: If two events x and y satisfy z < y in an LPO
Ipo = (V,<,l) € L, this specifies that the corresponding
transitions [(z) and [(y) may be causally dependent. Such
a causal dependency arises exactly if the occurrence of the
transition [(x) produces one or more tokens in a place, and
some of these tokens are consumed by the occurrence of the
other transition /(y). Such a place can be defined as follows:
Assign to every edge (z,y) of an LPO in L a natural num-
ber representing the number of tokens which are produced
by the occurrence of [(x) and consumed by the occurrence
of l(y) in the place to be defined. We extend each LPO
Ipo € L by an initial and a final event, representing transi-
tions producing the initial marking and consuming the final
marking (after the occurrence of 1po).

Definition 11 (x-extension). A *x-extension of Ipo = (V, <
,) € Lisan LPO 1po* = (V*, <*,1*) satisfying: There is
an initial node v;,;; € V* smaller than all other nodes and
a final node vyinq € V* bigger than all other nodes, both
with new labels, and there holds V. = V* \ {Vinit, Vfinal }-

For each lpo € L, let Ipo* = (V*,<*I*) be a x-
extension of 1po such that x-extensions have disjoint node
sets and all initial and final nodes have different labels.

173

Then the set L* = {lpo* | Ipo € L} is called x-extension
of L. We denote E7, =y . jycp- <

Assume we have fixed a x-extension of L. According
to the above explanation, we define a place p, by assign-
ing for each LPO lpo = (V,<,l) € L a natural number
r(x,y) to each edge (z,) of the x-extension of Ipo through
a function » : £ — N. The sum of the natural num-
bers assigned to ingoing edges (z,y) of anode y € V* is
denoted by In(y,r) = >, ., 7(z,y). We call In(y,r)
the intoken flow of y. If y is no initial or final node, the
intoken flow of y is interpreted as the weight of the arc
connecting the new place p, with the transition [(y), i.e.
we define W(p,,1(y)) = In(y,r). The sum of the nat-
ural numbers assigned to outgoing edges (z,y) of a node
z € V*isdenoted by Out(z,r) =3, ., 7(z,y). Wecall
Out(z,r) the outtoken flow of x. If x is no initial or final
node, the outtoken flow of z is interpreted as the weight of
the arc connecting the transition {(z) with the new place p,,
i.e. we define W(l(z),p,) = Out(z,r). If z is the ini-
tial node of the x-extension of Ipo, then the outtoken flow
of z is interpreted as the initial marking of the new place
pr, .. we define mo(p,) = Out(z, 7). We also denote
Init(lpo,r) = Out(z,r) and call Init(lpo, r)the initial to-
ken flow of Ipo. The value r(z,y) is called the token flow
between = and y. Since equally labeled nodes formalize
occurrences of the same transition, p, is well-defined only
if equally labeled nodes have equal intoken flow and equal
outtoken flow. Since the initial token flow of all LPOs for-
malizes the initial marking, p, is well-defined only if all
LPOs have equal initial token flow. In general we say that a
function 7 : E% — N fulfills the property (x) w.rt. L if for
all LPOs Ipo = (V, <,1),Ipo’ = (V',<’,1') € L and for
allv € V,v' € V' holds

(x) Imit(Ipo,r) = Init(Ipo’,r) A (I(v) = I'(v)) =
In(v,r) = In(v',r) A Out(v,r) = Out(v',r)).

Every function r fulfilling () for a set of LPOs L defines
a place p, as shown above. The place p, is said to be cor-
responding to r. If z is the final node of the x-extension of
Ipo € L, we denote F'inal(Ipo,r) = In(z,r). Moreover,
we write Init(p,) = Init(lpo,r) and Final(lpo,p,) =
Final(lpo,r). For a function r on the edges of a *-
extension of a single LPO Ipo we say that it fulfills (x) if
r fulfills (x) w.r.t. {Ipo}.

Definition 12 (Region). A region of a partial language L is
a functionr : B} — N fulfilling (x).

The main result of [18] is that the set of places corre-
sponding to regions of a partial language equals the set of
feasible places w.r.t. this partial language.> Thus the sat-

3In [18] it is assumed that the set of LPOs L representing £ fulfills
some technical requirements. Since such representation is always possible
we omit a detailed presentation here.

174

urated feasible net can be given by the set of places corre-
sponding to regions.

Theorem 13. Let L be a partial language. Then each place
corresponding to a region of L is feasible w.r.t. L and each
place feasible w.r.t. L corresponds to a region of L.

In this paper we deal with partial languages £(«) given
by an LPO-term «. According to property (*) of regions it
is enough to define regions of a partial language £(c) on
the edges of LPOs in K (c)* because such regions can be
extended to edges of LPOs in L(«a)* \ K(a)*: If Ipo =
(V, <,1) is a prefix of Ipo’ = (V’,<’,1') and a region is
defined on (<’)* then merge the nodes of (V’)* \ V* to one
node representing the maximal node of Ipo* thus defining
aregion on <*. If Ipo = (V, <, 1) is a sequentialization of
Ipo’ = (V’/,<’,1') and a region is defined on (<’)* then
assign the value 0 to edges in <* \ (<’)*.

An example region of the partial language £(«) intro-
duced in Figure 2 is depicted in Figure 3. The feasible place
in Figure 2, part (b), corresponds to this region. The non-
zero values of r are assigned to the arcs of the LPOs in
K (). Initial and final nodes are not drawn. The non-zero
values of r assigned to edges starting from an initial node
respectively ending in a final node are depicted with small
ingoing resp. outgoing arrows. The intoken flow of ¢ and b
equals 1, the outtoken flow of a equals 2, the outtoken flow
of b equals 0. The initial token flow equals 1.

Figure 3. A region of a partial language.

We now describe a technique to represent the regions of a
possibly infinite partial language £(«), defined on the edges
of K («), through regions of a finite representation of K («).
By now K () may contain infinitely many LPOs, caused by
the iteration operator. An LPO A can occur arbitrary often
consecutively in a certain marking if and only if it consumes
in every place at most as many tokens as it produces in this
place (then an occurrence of A does not reduce the num-
ber of tokens in this place). Consequently, if A can occur
iterated in a certain marking m, then another LPO B can
occur after the occurrence of A™ for each n € N if and only
if it can occur in m, since an occurrence of A does not re-
duce the number of tokens in a place. This principle can
be used to represent the infinite set K () by two finite sets
of LPOs R(«) and I(«). We define regions by these two
sets. This approach is similar to the ideas in [4] where the
authors define regions by two finite sets representing a reg-
ular expression. Our sets differ from these sets because of

two reasons. First, [4] deals with occurrence sequences of
pure nets instead of LPOs of p/t-nets. Second, a region in
[4] does not include the value of the initial marking of the
corresponding place.

For arbitrary LPO-terms o we define inductively the fi-
nite representation set R(«) consisting of, roughly speak-
ing, all LPOs in K («) neglecting iterations. To ensure that
all LPOs in R(c) are enabled w.r.t the place defined by the
region, we require that regions satisfy (%) w.r.t. R(a). It
remains to ensure that certain LPOs can occur iterated. For
this we define inductively the second finite iteration set / (cv)
of LPOs consisting of, roughly speaking, all LPOs associ-
ated to iterated subterms of cv. We require that the LPOs in
I(«) produce at least as many tokens as they consume in
the place to be defined by the region. This ensures that the
place defined by the region is feasible w.r.t. £(a).

Definition 14 (Representation/Iteration set). The repre-
sentation set R(cv) and the iteration set I(«) of a partial
language L(«) are defined inductively for LPO-terms o
and o as follows:

RN\ ={A}L I(N) =0,

R(A) = {A}, I(A) =0 for A€ A

R +as) = R(ap)UR(av2), I(ag+az) = I(ar)UI(az),
R(Oél;ag) = {A:[AQ | A € R(ozl), As € R(OZQ)},
](061; Oég) = I(al) U](Oég),

R((e1)") = R(on) U{A} I((en)") = I(on) U R(en),
R(on || a) = {A1 || A2 | Ay € R(an), Az € R(az)},
I(al || (12) = I(al) @]](ag).

We denote W, = U(V,<,l)€R(a)* vV, E,

U< per@r < la=Uw.<per:- b

Figure 4, part (a), shows the representation set R(b +
(a;(a || b)*)) and the iteration set I(b + (a;(a | b)*))
of the partial language £(b + (a; (a || b)*)) introduced in
Figure 2, together with an annotated region (defined later).

O <25

oao [b] [a]
R o b @ s
(a)

(b)
Figure 4. (a) Region of representation and it-
eration set, (b) A part of the synthesized net.

The requirement, that every LPO in I(«a) produces at
least as many tokens as it consumes, corresponds to the re-

quirement, that the final token flow of each LPO in I () ex-
ceeds its initial token flow. Given an LPO lpo = (V, <,)
and some place p, the sum

Prod(lpo,p) :== > [V[i(t)(W(t,p) — W(p,t))
tel(V)

equals the difference of the final and the initial token flow.

Lemma 15. Ler (V*,<*,1*) be a *-extension of lpo =
(V,<,1). If r :<*— N satisfies (x) then there holds
Prod(lpo, pr) = Final(lpo, p,) — Init(p,).

Proof. 1t holds » . Out(v,r) = > c_.7(e) =
> wevs In(v, 7). Let vy, be the initial node and vinai
be the final node of the x-extension of Ipo. Then
Y ovey Out(v,r) + Out(vini,7) + Out(Vfinal,7) =
dovey In(v,r) + In(vini,) + In(vgina,r). Since
Out(vtinat,) = 0 = In(vipg,), we get In(vina, 1) —
Out(Vinie,) = Y ey (Out(v,r) — Infv,r)) =
ztel(V) V@) (W (t, pr) — Wi(ps,t)). O

We define a region of an LPO-term as a function on the
edges of R(«)*.

Definition 16 (Region of an LPO-term). A region s of an
LPO-term « is a function s : E, — N satisfying () w.r.t.
R(«), which additionally fulfills for all LPOs Ipo € I(«):

(x%) Prod(lpo, ps) = 0.

Each region s of an LPO-term defines a corresponding
place ps in an analogous way as regions of partial lan-
guages. Figure 4, part (a), shows a region s of the LPO-
term b + (a;(a || b)*) (illustrated analogously as in Fig-
ure 3). It defines the feasible place ps shown grey in Fig-
ure 4, part (b). For the single LPO Ipo € I(«) the value
Final(lpo,ps) = 2 (Init(ps) = 2) is attached to a big
outgoing (ingoing) arc.

Finally, we will prove that the places defined by regions
of a and the places defined by regions of £(«) coincide.
For this we need three lemmas. Two of these regard techni-
cal constructions. These two are arranged at the end of the
section after the main theorem. The relationship between
K («) and R(«) gets clear in the following lemma.

Lemma 17. Given an LPO-term « and a region s of q,
for each Ipo € K(a) there is Ipo” € R(«) such that
Prod(lpo, ps) > Prod(Ipo™, py).

Proof by induction. Given A € Aitholds K(A) = {A} =
R(A),i.e. wecanset A® = A. Assume the statement holds
for a7 and oo

ad (+): Given lpo € K (o + a2), then Ipo € K(aq)
orlpo € K(az). Letlpo € K («1). By assumption there is
Ipo® € R(a1) € R(ay + az) such that Prod(Ipo, ps) >
Prod(1po®, py).

175

ad (;): Given lpo € K (a;), there is Ipo; € K(ay)
and lpo, € K(a2) such that lpo,;lpo, = lpo. By as-
sumption there are Ipoj* € R(ai), Ipoy’ € R(as) such
that Prod(lpof{,ps) < Prod(lpo,,ps), @ = 1,2. It holds
lpof;lpog € R(aq;aq) with Prod(lpof‘;lpof,ps) =
Prod(lpot, ps) + Prod(lpos,ps) < Prod(Ipo,,ps) +
Prod(1po,, ps) = Prod(Ipo,;1po,, ps).

ad (||): Givenlpo € K (a1 || a2), thereislpo; € K(a1)
and lpo, € K(ag) such that Ipo; || lpo, = lpo. By
assumption there is Ipoj* € R(ay), Ipoy € R(as) such
that Pr()d(lpoZR,ps) < Prod(lpo,,ps), ¢ = 1,2. It holds
Ipo®® || Ipos’ € R || az) with Prod(Ipof || Tpo&,r) =
Prod(lpof, py) + Prod(lpo%,p,) < Prod(Ipoy,ps) +
Prod(lpoy, ps) = Prod(Ipo, || 1poy, ps).

ad (*): Given lpo € K(«f), there are Ipo,, ..., Ipo, €
K(aq) such that lpoy;...;lpo, = lpo. By assump-
tion and (**), for each Ilpo, (¢ € {1,...,n}) there
is Ipoff € R(a) C I(o*) with Prod(lpo,,ps) >
Prod(lpof,p,) > 0. It holds lpof e R(a})
with Prod(lpof‘,ps) < Prod(lpoy,ps) + ... +
Prod(lpo,,, ps) = Prod(Ipoy;...;1po,, ps). O

The following theorem proves the correspondence be-
tween regions of LPO-terms and regions of partial lan-
guages corresponding to LPO-terms.

Theorem 18. Let o be an LPO-term. It holds:

(i) Let s be a region of o with corresponding place p. Then
there is a region r of L(«) with corresponding place p.

(ii) Let 1 be a region of L(«) with corresponding place p.
Then there is a region s of o with corresponding place p.

Proof by induction. As described, it is enough to consider
K (o) instead of L(a).

ad (i): Given A € A we have R(A) = {A} = K(A).
That means we can chose » = s. Assume the statement
holds for o, vy and s

ad (;): Let s be a region of a1;as with correspond-
ing place p. First we construct a region s; of «; and a
region sy of ap from s. For the construction of s; fix
Ipo, € R(as). For each lpo; € R(«y) there holds
Ipo;;lpo, € R(aq;asz). In Lemma 19 we describe how
to construct a function s|;,, which satisfies (x) on {Ipo, }
and corresponds to the place p. On every lpo; € R(a1)
define s; = $|jpo,. Since I(ay) C I(ag;as), s1 satis-
fies (xx), i.e. is a region of a;. For the construction of
sy fix Ipo*™ € R(ay) such that for all Ipo € R(ay)
there holds Prod(Ipo™™, p) < Prod(lpo, p). For each
Ipo, € R(az) there holds Ipo}"":1po, € R(ay;az). In
Lemma 19 we describe how to construct a function s/,
which satisfies (x) on {lpo,} and corresponds to the place
po which differs from p only in its initial marking. It holds
Init(pa) = Init(p)+ Prod(Ipoy™, p). Define s2 = 5|ipo,
on every Ipo € R(as). Since I(as) C I(aq;), so sat-
isfies (xx), i.e. is a region of 2. By assumption there is

176

a region 7, of K (c) with corresponding place p and a re-
gion o of K () with corresponding place po. Givenlpo €
K (a1; az) thereis Ipol* € K (ay)andlpos € K(az)such
that 1p0{< ; 1p0§ = lpo. Observe that F' z‘nal(lpo{(\p) =
Init(p) + Prod(lpo¥, p) > Init(p) + Prod(Ipo,,;,,p) =
Init(p2). This is the precondition for Lemma 20 and we
are able to construct a function ryp,,, fulfilling () and corre-
sponding to p. Define r = 7|, on each lpo € K (ay;az).

ad (+): Let s be aregion of a;; + ap with corresponding
place p. Since R(cv; + a2) = R(a1) U R(a) and I (o +
as) = I(a1) U I(ag) we directly get regions s; of oy and
so of aip both corresponding to p just by restricting s onto
R(ap) resp. R(as). By assumption there is a region r4
of K(«y) and a region ro of K («s) corresponding to p.
Given lpo € K(ay + as), there holds lpo € K(ay) or
Ipo € K (az). Therefore ry U r is a region of K (aq +)
with corresponding place p.

ad (||): Let s be a region of a; || a2 with correspond-
ing place p. First we construct a region s; of «;. Fix
an lpo, € R(as). For every Ipo; € R(ay) there holds
Ipo, || lpo, € R(a; || ag). To define s; on lpo; we
start with s on (Ipo; || 1po,)* and just delete all nodes of
Ipoy and adjacent edges. There results a function s; on a
*-extension of lpo, which fulfills () and corresponds to
a place p’, where p’ equals p except for its initial mark-
ing. On every Ipo; € R(o) define s1 = $|ipo,. Since
I(a) C I(aq || o), s1 satisfies (), i.e. is a region of
a;. Analogously we fix some Ipo; € R(«q) and construct
aregion sy of as with corresponding place p” equal to p ex-
cept for its initial marking. It holds Init(p’) + Init(p”") =
Init(p). By assumption there is a region 7, of K (a) with
corresponding place defining p’ and a region r2 of K (a2)
with corresponding place p”. Given lpo € K(«; || as),
there is Ipo’ € K(ay) and IpoX € K(as) such that
1IpoX || IpoX € K(ay || as). To get a function on the edges
of (IpoX || Ipof)* fulfilling (+) take (Ipo,)* and (Ipo,)*
with the annotated regions 7; and 75 and join the two initial
and final nodes. The resulting function corresponds to p.

ad (x): Let s be a region of o* with corresponding place
p. s directly defines a region s; of o with corresponding
place p since R(a) C R(a*) and I(«) C I(a*). By as-
sumption there is a region r; of K («) with correspond-
ing place p. Given lpo € K(«*) there is Ipo; € K(«),
¢t = 1,...,n, such that Ipo,;...;lpo, = Ipo. As in the
case (;), we apply Lemma 20 to get a function 75 on the
edges of (Ipo;;lpo,)* satisfying (*) with corresponding
place p. For this we need to show that the preconditions
of lemma 20 are fulfilled. For Ipo, € K () there is Ipo’ e
R(e) with Prod(Ipo,,p) > Prod(Ipo¥, p) (Lemma 17).
Because of R(a) C I(a*) it holds Prod(lpof, p) > 0.
We get Prod(lpo;,p) > 0 and it holds Init(lpo,,r1) =
Init(lpoy,r1) since r; is a region of K(«;). Finally
it holds Final(lpoy,p) = Init(p) + Prod(lpo,,p) >

Init(p). Inductively we get a function r,, on the edges of
Ipo* fulfilling (%) with corresponding place p.

ad (ii): r| g, is a function on the edges of R(«) satisfying
() corresponding to p since R(«) € K (). It remains to
show () for s = r|p,. We assume that there is Ipo €
I(@) such that Prod(lpo,p) < 0. From the definition of
I(«) there are subterms 3 and v of o with 3 = ~* and
Ipo € R(y) C I(B8) C I(«). It holds (Ipo)™ € L(3) and
Prod((Ipo)™, p) = n- Prod(lpo, p) < —n foreachn € N.
That means (3 satisfies the following property

(+): For each n there is an LPO 1po,, € L(/3) such that
Prod(lpo,,p) < —n.

It is easy to observe that if an LPO-term «; satifies prop-
erty (+), then for arbitrary LPO-terms c also the LPO-
terms a1 + o, a1 || @2, ai;a0, az; o and o satisfy
property (+). Since 3 is a subterm of « this implies that
also « satisfies property (+). Therefore there is an LPO
Ipoy € L(«) such that Prod(Ipoy,p) < —Init(p). This
gives Final(lpoy,p) = Prod(lpoy,p) + Init(p) < 0, a
contradiction. O

Lemma 19. Let s be a function on the edges of
(Ilpo1; lpo2)* satisfying (%) with corresponding place ps.
Then there is a function s|ipe, on the edges of lpoy satisfy-
ing (x) with corresponding place ps and a function sy, on
the edges of lpos satisfying (x) with corresponding place p’,
such that W (pl,,t) = W(ps,t) and W (t,p.) = W(t, ps)
foreveryt € T and Init(p,) = Init(ps)+ Prod(lpoy, ps).

Proof. Denote lpo; = (V1,<1,11), Ipoy = (Va,<s,l2)
and Ipo = Ipo,; Ipo,. Let v},,;, and v%;, ., be the initial and
final nodes of the x-extension of Ipo,, i = 1,2, and let v;y;
and vfinq be the initial and final node of the x-extension of
Ipo. First define s|1,,, on the edges of 1po] by:

(i) Ve € Vi x V1 s|ipo, (€) = s(e),

(i) Yo € Vi ¢ Slipo, (Ufnigs V) = $(Vinit,),

(111) Yo eV 5|1D01 (U7 Ujl’inal) = Zwevzu{vfmal} 5(1), IU),
(V) $lipo, (Vinits Vfinal) = 2owevaulo i} S (Vinits W)
Since by this construction the intoken and outtoken flow of
nodes in V) and of the initial node are not changed, 5|1pol
fulfills (+) and corresponds to ps. We define s|ip,, on the
edges of Ipo} by _

(i) Ve € Vo x Vi 1 s|ipo,(€) = s(e),

(i) Yo € Vo 1 8[1po, (1:,1';“)%”(11) = 5(v, Vfinal),

(i) Vo € Va 1 8[ipo, (Vpirs 0) = 2wV U{vamy S(Ws),
(iv) 5|lp02 (”?m'm ”szmaz) = Zwevlu{vm,;,,} 8(W, Vfinat)-
Since by this construction the intoken and outtoken flow of
nodes in V5 and of the final node are not changed, s|;po,
fulfills (%) and corresponds to a place p/, with Init(p}) =
Init(ps) + Prod(lpoq, ps). O

Lemma 20. Consider two LPOs lpo; and lpo,, a function
1 on the edges of 1po] fulfilling () with corresponding
place p and a function ro on the edges of 1pos fulfilling

() with corresponding place pa, such that W (pa, 1) =
W(p,t) and W (l,p2s) = W (t,p) for every t € T and
Final(lpoy,p) > Init(ps) for a place p. Then there is
a function r on the edges of Ipo* = (Ipoy;1po,)* fulfilling
() with corresponding place p.

Proof. Let v}, and U}inal be the initial and final nodes of
the x-extension of Ipo,, i = 1,2, and let v;y,;; and v a1
be the initial and final node of the x-extension of Ipo. We
define a function r on the edges of Ipo™ by:

() Ve e Vi x Vi r(e) =ri(e),

(i) Ve € Vo x Vo i r(e) = ra(e),

(i) Vo € Vi 1 7(Vinit, v) = 11 (0}, 0),

iv)Vv € Vo : 7(v, vpinal) = TQ(”»UJ%mal)'

By now all nodes in V; got the right intoken flow, all
nodes in V5, got the right outtoken flow. It remains to
distribute the final token flow of lpo, onto the edges in
({vinie} U Vi) x ({Va U {vfinai}), such that r fulfills
() on the edges of Ipo®, i.e. such that each node in
({V2 U {vfinat}) gets enough intoken flow. This is pos-
sible since F'inal(lpoy, p) > Init(p2). By construction the
function r satisfies (*) and corresponds to p. a

5 Computing Regions of Term-based Partial
Languages

In this section we develop an algorithm to calculate a fi-
nite representation of the saturated feasible net w.r.t. a par-
tial language £(«) given by an LPO-term «. This algorithm
solves the formulated synthesis problem.

The algorithm is based on a method to compute regions
of an LPO-term as solutions of a finite homogenous linear
inequation system. More precisely, we calculate a basis of
the solution space of such a system. The places correspond-
ing to such a basis span the set of all feasible places. That
means the calculated net has the same partial language of
runs as the saturated feasible net.

To construct a region of an LPO-term o we first need to
construct a function r on the set of edges E, of R(a) =
{Ipoy; - . -, Ipo| g(q) } fulfilling (). Such a function can be
found by solving a corresponding equation system Ap -
x = 0 (Ap finite). The vector x contains |F,| = n
entries. Considering a fixed numbering of the edges in
E, = {ei,...,e,}, a solution x = (z1,...,x,) of
AR - x = 0 defines a function r on F, via r(e;) := z;.
The rows of Ap encode the property (x) as follows: We
order the events of W, with the same label ¢ € T in a set
Wy ={veW,|ls(v) =1t} = {v‘l”,...,vrwtl}. For each
set W, we define rows a§ (and rows bﬁ) of AR to ensure
that the intoken (outtoken) flow of the first node v} and the
i-th node v} with label ¢ are equal, i = 2,...,|W;|. We
define a} = (af ,,...,qa;,), where a; ; equals 1 if ¢; is an

ingoing edge of v}, equals —1 if e; is an ingoing edge of

177

v} and equals 0 otherwise. We define b} = (b} ;,...,0}),
where b} ; equals 1 if e; is an outgoing edge of v{, equals
—11if e; is an outgoing edge of v} and equals 0 otherwise.
Then it holds a}-x = 0 (b!-x = 0) if and only if the intoken
(outtoken) flows of v% and v} are equal. Finally, to ensure
that all LPOs have the same initial token flow, we add rows
¢i,2 <1< |R(a)| to Ag. Wedefine ¢; = (¢;1,....Cin)s
where ¢; ; equals 1 if e; is an outgoing edge of the initial
node of Ipo7, equals —1 if e; is an outgoing edge of the
initial node of Ipo and equals 0 otherwise. Then it holds
c; - x = 0 if and only if the initial token flows of Ipo,
and Ipo, are equal. Each non-negative integer solution of
A -x = 0 corresponds to a function r : F, — N given by
r(e;) = x; fulfilling () w.r.t. R(«) and vice versa.

Given a non-negative integer solution x of A - x = 0,
the set of LPOs I(«) should additionally fulfill (xx). For
each Ipo, = (V;,<;, 1) € I(a) = {lpoy,...,1poj ()}
we define a row d; = (d;1,...,d;) of a second ma-
trix A such that the inequation d; - x > 0 ensures
Prod(lpo;,p;) > 0. Foreacht € T, we fix one node
vy € W, with [(v;) = t (such a node always exists by con-
struction of R,). We define for each edge e; the entries
dij = d4" — d" of the vector d;. The value d?%" equals
|Vi]:(t) if e; is an outgoing edge of v; (¢ € T') and 0 other-
wise. The value dﬁ'; equals |V;|;(t) if ¢; is an ingoing edge
of vy (t € T') and 0 otherwise. Then it holds d; - x > 0 if

and only if Prod(lpo,;, p,) > 0.

Theorem 21. Given an LPO-term « there is a one-to-one
correspondence between the regions r of o and the non-
negative integer solutions of A - x=0,A; -x > 0.

Thus we can compute regions of « and subsequently
places of the searched saturated feasible p/t-net by solv-
ing a finite linear homogenous inequation system. The set
of solutions of such a system is called a polyhedral cone.
According to a theorem of Minkowski polyhedral cones
are finitely generated, that means there are finite solutions
Yi,...,yn (also called basis solutions) such that each ele-
ment x of the polyhedral cone is a non-negative linear sum
x =y Ay; for some Aq,..., A\, > 0. Such basis so-
lutions y1,...,y, can be effectively computed. Since all
inequations contain only integer coefficients, the entries of
all y; can be chosen as integers.

Lemma 13 in [17] shows that all places which do not
correspond to a basis solution can be deleted from the sat-
urated feasible p/t-net without changing its partial language
of runs. That means computing such a basis yields a finite
representation of the saturated feasible p/t-net, called basis
representation. Altogether to solve the formulated synthe-
sis problem, we add to the set of all transitions (given by the
labels appearing in «) the places corresponding to basis so-
lutions of the constructed inequation system. The described
synthesis algorithm is shown in Algorithm 1.

178

Figure 4, part (b), shows a part of the net synthesized
from the LPO-term b + (a; (a || b)*) by this algorithm. Al-
together, the algorithm computes 12 basis regions (places)
for this example, where those not shown in the figure
are less restrictive than the drawn places. It is easy to
see, that the net still generates the occurrence sequences
abb, ababb, abababb, . . . which do not belong to the partial
language specified by b + (a; (e || b)*). That means, this
partial language is not a net language. In general the run-
time of the presented synthesis algorithm (Algorithm 1) is
not polynomial. In particular the set of basis solutions can
be exponential in the worst case, but in practice the num-
ber of basis solutions of such inequation systems is often
small. We are currently working on an implementation of
the algorithm.

form = 1to |R(«)| — 1 do
Agr.addRow(cy,)

end for

10: form = 1to |I(«)| do

Aj.addRow(d,,)

12: end for

13: Solutions < get BasisSolutions(Agr, Ar)

14: (N, mg) «— (0,7,0,0,0)

15: for all € Solutions do

16: (N, mp).addCorrespondingPlace(r)

17: end for

18: return (N, mg)

1: Ar, Ar < EmptyM atrix
2: forallt € T'do

32 form=1to |W;| —1do
4: Ap.addRows(at,, bt))
5. end for

6: end for

7

8:

9:

—_
—_

Algorithm 1: Calculates a net (N, mg) from an LPO-term
« which solves the formulated synthesis problem.

6 Conclusion

In contrast to [17] we did not present an algorithm to
decide if £(N,mg) = L(a) for the computed p/t-net
(N, mgp). Such an algorithm cannot be developed similarly
as in [17]. On contrary, it is an open question whether
this equality problem is actually decidable. We believe
that there is an algorithm deciding the equality of those
language, but to prove this, an elaborated examination of
the class of partial languages generated by LPO-terms is
needed. One possibility is to consider so called wrong con-
tinuations. A wrong continuation is a not specified LPO
minimally extending a specified LPO. The basic idea is to
calculate a finite set of wrong continuations of LPOs speci-
fied by an LPO-term satisfying that the synthesized net ex-
actly generates the specified partial language if and only if

none of these wrong continuations is enabled in this net.
The problem is that it is not clear whether such a finite set
of wrong continuations exists in general, i.e. whether the
(infinite) set of all wrong continuations is finitely gener-
ated. For sequential languages, it is proven that if a lan-
guage satisfies certain conditions on semi-linearity, the set
of wrong continuations is finitely generated and therefore
the equality problem is decidable [5]. This s the case for ex-
ample for regular and deterministic context free languages
and can possibly be carried over to partial languages gen-
erated by LPO-terms. There are also several results con-
cerning context-equivalence of LPOs w.r.t partial languages
[71, which are perhaps useful to establish the result. An-
other, more indirect, approach is to translate a partial lan-
guage given by an LPO-term into its corresponding step
language. We believe that such a step language can be rep-
resented by a regular expression over a finite set of steps.
Interpreting steps as singletons, existing techniques for se-
quential languages as described above can be applied to de-
cide on language equality on the level of steps. Then it can
be used that the synthesized net exactly generates the given
partial language if and only if it exactly generates the corre-
sponding step language and the partial language is complete
w.r.t. the step language (this means that each LPO, whose
corresponding step sequences belong to the step language,
belongs to the partial language [13]). Thus, it remains to
decide on completeness of the partial language w.r.t. the
corresponding step language. Also this is an open problem
for partial languages defined by LPO-terms. Nevertheless,
Theorem 10 shows that the net (N, mg) computed from «
in any case represents the best upper approximation to the
behaviour given by the partial language £(«).

References

[1] E. Badouel and P. Darondeau. Theory of Regions. In
W. Reisig; G. Rozenberg, editor, Petri Nets, volume 1491
of Lecture Notes in Computer Science, pages 529-586.
Springer, 1996.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: A Tool for Manipulating Con-
current Specifications and Synthesis of Asynchronous Con-
trollers. [EICE Trans. of Informations and Systems, E80-
D(3):315-325, 1997.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Hardware and Petri Nets: Application to
Asynchronous Circuit Design. In M. Nielsen; D. Simpson,
editor, ICATPN, volume 1825 of Lecture Notes in Computer
Science, pages 1-15. Springer, 2000.

[4] P. Darondeau. Deriving Unbounded Petri Nets from Formal
Languages. In D. Sangiorgi; R. de Simone, editor, CON-
CUR, volume 1466 of Lecture Notes in Computer Science,
pages 533-548. Springer, 1998.

[5] P. Darondeau. Unbounded Petri Net Synthesis. In J. De-
sel, W. Reisig, and G. Rozenberg, editors, Lectures on Con-

[6

[t

(7]

[8

—

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

(20]

(21]

[22]

currency and Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 413—438. Springer, 2003.

A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-Structures.
Part I: Basic Notions and the Representation Problem /
Part II: State Spaces of Concurrent Systems. Acta Inf.,
27(4):315-368, 1989.

J. Fanchon and R. Morin. Regular Sets of Pomsets with
Autoconcurrency. In L. Brim; P. Jancar; M. Kretinsky; A.
Kucera, editor, CONCUR, volume 2421 of Lecture Notes in
Computer Science, pages 402—417. Springer, 2002.

J. Grabowski. On Partial Languages. Fundamenta Informat-
icae, 4(2):428-498, 1981.

P. Hoogers, H. Kleijn, and P. Thiagarajan. A Trace Se-
mantics for Petri Nets. Information and Computation,
117(1):98-114, 1995.

P. Hoogers, H. Kleijn, and P. Thiagarajan. An Event Struc-
ture Semantics for General Petri Nets. Theoretical Computer
Science, 153(1&2):129-170, 1996.

M. B. Josephs and D. P. Furey. A Programming Approach to
the Design of Asynchronous Logic Blocks. In J. Cortadella,
A. Yakovlev, and G. Rozenberg, editors, Concurrency and
Hardware Design, volume 2549 of Lecture Notes in Com-
puter Science, pages 34—60. Springer, 2002.

G. Juhas, R. Lorenz, and S. Mauser. Causal Semantics of
Algebraic Petri Nets distinguishing Concurrency and Syn-
chronicity. Fundam. Inform., page to appear, 2007.

G. Juhds, R. Lorenz, and S. Mauser. Complete Process Se-
mantics for Inhibitor Nets. In J. Kleijn and A. Yakovlev, ed-
itors, ICATPN, volume 4546 of Lecture Notes in Computer
Science, pages 184-203. Springer, 2007.

D. Kuske and R. Morin. Pomsets for Local Trace Languages
- Recognizability, Logic & Petri Nets. In C. Palamidessi, ed-
itor, CONCUR, volume 1877 of Lecture Notes in Computer
Science, pages 426-441. Springer, 2000.

K. Lodaya and P. Weil. Series-Parallel Posets: Algebra, Au-
tomata and Languages. In M. Morvan; C. Meinel; D. Krob,
editor, STACS, volume 1373 of Lecture Notes in Computer
Science, pages 555-565. Springer, 1998.

K. Lodaya and P. Weil. Series-Parallel Languages and
the Bounded-Width Property. Theor. Comput. Sci., 237(1-
2):347-380, 2000.

R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Syn-
thesis of Petri Nets from Finite Partial Languages. In ACSD,
pages 157-166. IEEE Computer Society, 2007.

R. Lorenz and G. Juhds. Towards Synthesis of Petri Nets
from Scenarios. In S. Donatelli and P. S. Thiagarajan, ed-
itors, ICATPN, volume 4024 of Lecture Notes in Computer
Science, pages 302-321. Springer, 2006.

V. Pratt. Modelling Concurrency with Partial Orders. Int.
Journal of Parallel Programming, 15:33-71, 1986.

W. Reisig. Petrinetze - Eine Einfiihrung. Springer, 2 edition,
1986.

W. M. P. van der Aalst, T. Weijters, and L. Maruster. Work-
flow Mining: Discovering Process Models from Event Logs.
IEEE Trans. Knowl. Data Eng., 16(9):1128-1142, 2004.

W. Vogler. Partial Words Versus Processes: a Short Compar-
ison. In G. Rozenberg, editor, Advances in Petri Nets: The
DEMON Project, volume 609 of Lecture Notes in Computer
Science, pages 292-303. Springer, 1992.

179

