2009 Ninth International Conference on Application of Concurrency to System Design

Scheduling Synchronous Elastic Designs

Josep Carmona

Universitat Politecnica de Catalunya

Barcelona, Spain

Jordi Cortadella

Universitat Politecnica de Catalunya

Barcelona, Spain

Abstract

Asynchronous and latency-insensitive circuits offer a
similar form of elasticity that tolerates variations in the de-
lays of communication resources of a system. This flexibility
comes at the expense of including a control layer that syn-
chronizes the flow of information. This paper proposes a
method for eliminating the complexity of the control layer,
replacing it by a set of iterative schedulers that decide when
to activate computations. Unlike previous approaches, this
can be achieved with low complexity algorithms and with-
out extra circuitry.

1 Introduction

Latency insensitive (or synchronous elastic) systems
have been suggested by a few research groups as a form
of discretized asynchronous systems (see, e.g., [4, 8, 10]).
Such systems are elastic in the sense that they can toler-
ate dynamic and static changes in latencies of computation
and communication components as counted in the number
of clock cycles.

f
—{AlF+HBI}~Cc[}-+D[H~ @

]]
—{ AT~ B~(cl}-+{D[}H~ ®
1

1
)

Consider part (a) of the previous figure, depicting a sys-
tem with four functional units A4,B,C,D, each one deliv-
ering the result to a register (shadowed boxes), and assume
that every functional unit has 1-cycle delay. If for scalability
reasons, when migrating to a new technology, the long wires
C — A and D — B no longer can produce the communi-
cation within one clock cycle, intermidiate registers must

1550-4808/09 $25.00 © 2009 IEEE
DOI 10.1109/ACSD.2009.12

IEEE
52 computgr

Jorge Jilvez
Universidad de Zaragoza
Zaragoza, Spain

Michael Kishinevsky
Intel Corporation
Hillsboro, USA

be inserted (as shown in part (b)), to allow the communica-
tion (this transformation is called pipelining). Other typical
situation is to incorporate variable latency units like C' in
figure (b) above, that takes two cycles for long operands
and one cycle otherwise. In synchronous circuits, this type
of modifications require drastic manual changes to accomo-
date the new delays of the system. In contrast, this prob-
lems are avoided if the elastic paradigm is adopted, due to
the aforementioned capability of tolerating communication
and computation delays.

The implementation of elastic systems relies on syn-
chronous handshakes containing stalling signals, optimized
for use in coordination with the clock. This elasticity comes
at the price of extra area and a reduction of the routability
zones, given that handshake wires wrap all the circuit area.

Scheduling latency-insensitive designs [1, 2, 6] is a
circuit-level transformation that replaces the handshake
controllers in each combinational block by iterative sched-
ulers (e.g. shift registers with the activation pattern for each
block), thus eliminating the need for the handshake sig-
nals. The idea is that once the critical cycle of the latency-
insensitive system is known, the system is transformed to
work at the speed of that cycle, and fast branches are de-
layed to avoid the need of stall signals. When the routing
constraints are hard to satisfy or when area reduction is a
goal, scheduling might be an elegant alternative.

Some attempts for applying scheduling to latency-
insensitive circuits have been done in the literature. In [6],
a scheduling technique is presented for simplifying la-
tency insensitive designs, based on a previous technique
for scheduling using software pipelining techniques [2].
Another approach is presented in [1]. Both approaches are
based on the following idea: the system must be equalized
to avoid the need for stalling signals, i.e. every elementary
cycle must work at the same throughput. When this cannot
be achieved, different solutions are presented, in space
or time: in [6], the clock is divided into multiphases

soclety

to ensure the equalization (time), while [1] introduces
fractional registers to be inserted in fast branches when
the equalization of such branches need a fractional delay
(space). Implicitly, both techniques assume a predefined
mode of operation (called ASAP, i.e. As Soon As Possible,
in [1]) that requires the activation of a computation node as
soon as the inputs are available.

1.1 Example and contributions

The main contributions of this paper are the following:

1) Enhance the schedules by incorporating stalling infor-
mation into the model. Previous works require the equaliza-
tion of every elementary cycle of the system. This might be
too constraining (both in complexity of the methods and in
the feasibility of the solution to satisfy), and in this way we
found that if the ASAP mode of activation is dropped, the
constraint of equalization of every cycle can be left out. The
core idea in our approach is that stall information is explic-
itly inserted in the initial model of the latency-insensitive
circuit, and therefore the behavior of the model contains this
information and the consequent analysis and schedule com-
putation takes into account the stalling.

In circuits where the maximal throughput cannot be
achieved due to stalls, performance optimization techniques
are applied before computing schedules. This is illustrated
in the example of Fig. 1. A fragment of the real elastic
system is shown in Fig. 1(a). The initial model, shown
as a Petri net in Fig. 1(c), models the behavior of the sys-
tem where transitions (boxes) represent combinational logic
in stages, arcs denote latches and bullets in arcs represent
the initial data distribution. The model is augmented with
stalling information where backward arcs, denoted in dis-
continuous lines, are used to make the stalling information
explicit. The model in Fig. 1(c) reveals an important infor-
mation: the backward cycle {d, h, j, i} determines the per-
formance of the system, since its ratio tokens/delay is the
minimal (1/4). Fig. 1(d) shows a possible transformation
(called recycling [5]) to avoid the throughput degradation
due to the stalling policy of an elastic system. The trans-
formed system has throughput 3/5. Finally, the schedules
are found by simulating the system represented in Fig. 1(d).
These schedules replace controllers and the wires corre-
sponding to handshake signals, as shown in Fig. 1(b).

2) An efficient method to compute a partition of the set
of computation blocks is provided, for which any block in a
given partition can share the same scheduling register. In
this sense, a second level of optimization is provided in
which the set of registers needed for the scheduling might
be significantly reduced. In the example of Fig. 1, our tech-
nique will find that the registers for b, f and ¢ can share
the same iteration scheduler, and hence only one instead

53

(d)

Figure 1. (a) Fragment of an elastic system
(Ci are controllers, F'i are latches, a, b and f
denote combinational logic), (b) schedule re-
placing the control layer (only shown the reg-
isters for ¢ and b), (c) Initial Petri net model
extended with stall information for the com-
plete system (grey box represents the part
depicted in (a)-(b)), (d) transformation to ac-
quire optimal performance.

of three are needed. A theoretical result of the paper is that
the number of schedules sufficient for controlling the elastic
system is upper bounded by the number of blocks in critical
cycles. In an idealistic case the schedules of all computa-
tion blocks can be mapped to a schedule from a block in
a critical cycle. In practice, this might be infeasible due
to placement/routing constraints. We have implemented a
placement-aware partition technique that takes into account
this information.

The remainder of this paper is organized as follows: in
Section 2 we provide the necessary theory for the paper. In
Section 3 a method for finding the clusters of computation
blocks that may share the iteration scheduler without per-
formance degradation is presented (contribution 2) in Sec-
tion 1.1). The scheduling technique of Section 4 is then
merged with the clustering technique of Section 3, deriving

a complete flow for scheduling elastic designs. Finally, ex-
periments on the combination of scheduling and clustering
are presented, illustrating how the complexity of an elastic
design can be significantly reduced by the application of our
approach.

2 Marked Graph Model

This section presents the class of timed marked graphs
that is used for modeling elastic systems. Although the pa-
per is self-contained the reader can be referred to [13] for a
survey on Petri Nets.

2.1 Timed Marked Graphs

Definition 1 A Timed Marked Graph (TMG) is a tuple
G = (T, A, My,0), where T is a set of transitions (also
called nodes), A is a set of directed arcs, My : A — N is
a marking that assigns an initial number of tokens to each
arc, and § : T — IR assigns a non-negative delay to every
transition.

Given a transition ¢ € T, ®*t and t*® denote the set of
incoming and outgoing arcs of ¢, respectively. Given an arc
a € A, *a and a® refer to the source and target transition
of a respectively. A transition ¢ is enabled at a marking M
if M(a) > 0 for every a € °t. An enabled transition ¢
fires after 0(¢) time units. The firing of ¢ removes one token
from each input arc of ¢, and adds one token to each output
arc of ¢. This paper focuses on synchronous elastic circuits.
Hence, all transitions have the same delay: 6(¢;) = d(¢;)
forevery t;,t; € T.

2.2 State equation and token preservation

Some useful basics of strongly connected MGs are [13]:
Reachability. We say that the marking M is reachable from
M, if there is a sequence of transitions that can fire starting
from My leading to M.

State equation. Let C be the n x m incidence matrix of the
MG with rows corresponding to n arcs and columns to m
transitions.

-1 lftj S a;\'ai

(Cij = +1 iftj € %aq; \ CL;

0 otherwise
The marking M is reachable from the initial marking M
iff the state equation

M=My+C-0>0 (h

is satisfied for some firing count vector o (the j’s compo-
nent of ¢ corresponds to the number of times transition t;
has fired).

Token preservation. If the marking M is reachable then
YaecM(a) = ZaeeMop(a) for every cycle c of the MG.

2.3 Elastic Marked Graphs

Definition 2 An Elastic Marked Graph (EMG) is a TMG
such that for any arc a € A there exists a complementary
arc a' € A satisfying the following condition *a = a'® and
.a/ — a.'

A labelling function L maps all arcs of an EMG as for-
ward or backward L : A — {F, B} such that L(a) = F'iff
L(da") = B.

We assume that for any complementary a and o', M (a)+
M(a’) = 2 (see any pair of complementary arcs in
Fig. 1(c)). Therefore, all EMGs in this paper are 2-bounded
(an arc cannot have more than two tokens). Semantically,
the pair {a, a’} represents the state of an FIFO between two
stages of the elastic system. Assume that L(a) = F and
L(a’) = B. We say that the FIFO is full when M (a) = 2,
M(a’) = 0; when M(a) = 0, M(a') = 2 we say that
there is a bubble in the system. For instance, the FIFO rep-
resented by the arc pair {c,d} in Figure 1(c) is a bubble.
M (a) represents the number of information items inside
the buffer, while M (a’) represents available free space in
the state of the system that corresponds to the marking M.
My(a), and My(a') represents the corresponding values at
the time of system initialization after the reset.

2.4 Throughput of an EMG

The performance of an EMG can be measured by the
throughput of its transitions. Given that we are considering
strongly connected EMGs, in the steady state all transitions
have exactly the same throughput, ©. The throughput intu-
itively corresponds to the number of times each operation is
performed on average per unit of time during the infinitely
long execution of the system.

If C is the set of simple directed cycles in an EMG, its
throughput can be determined as [14]:

E<1€cj\40 (a)

2
Seed () @

O = mincecc
Definition 3 (Critical cycle and arc) A cycle c satisfying
the equality (2) is called critical. An arc is called critical if
it belongs to a critical cycle.

For instance in Fig. 1(c), the critical cycle is {d, h, j,i}.
Many efficient algorithms for computing the throughput of

an EMG exist that do not require an exhaustive enumeration
of all cycles [9].

2.5 Average marking

The average marking of an arc a, denoted as M (a), rep-
resents the average occupancy of the arc during the steady

54

state execution. Formally the average marking vector for all
arcs is defined as:

I 1 T
M= lim.,.ﬁoof/ M (t)dt
T Jo

where 7 is the time variable.

Each pair {a,a®} of the EMG can be seen as a simple
queuing system for which Little’s formula [11] can be di-
rectly applied!. Hence, it holds M (a) = R(a) - ©, where
R(a) is the average residence time at arc a, i.e., the aver-
age time spent by a token on the arc a [3]. The average
residence time is the sum of the average waiting time due
to a possible synchronization, and the average service time
which in the case of EMGs is 6(a®). Therefore the service
time d(a®) is a lower bound for the average residence time.
This leads to the inequality:

M(a) > 6(a®)-©

for every arc a 3)

Due to the token preservation property of EMG cycles
it can be proven that the token preservation property holds
not only for any reachable marking, but also for the aver-
age marking. That is for any cycle c¢ the sum of tokens in
the initial marking and in the average marking is the same,
i, YgecMp(a) = Y,ecM(a). In particular, this state-
ment holds for any critical cycle. Thus, equation (2) can be
rewritten for a critical cycle c as follows:

_ ZaECM(a)

0= 4
EtEcé(t) ()

Combining expressions (3) and (4) yields the following
equation for every critical arc a:

M(a) =6(a®)-©)

Similarly, the state equation (1) can be expanded to real
domain for markings M and firing vectors o and is, in par-
ticular, satisfied by the average marking M .

M = My +C-o,where M € R4 and o e RITI (6)

3 Clustering of schedulers

3.1 Tight marking

This section introduces a special marking, called tight
marking, that facilitates the task of partitioning the initial
set of transitions into clusters. Each cluster represents a set
of transitions that may be collapsed into a single transition,
provided that they can be activated at the same instant, with-
out degrading the system throughput. In our scheduling set-
ting, they can thus share the same iteration scheduler. Fork

ILittle’s formula can be applied to any general queuing system. The
formula L = AW, connects the expected value L of the queue length and
W, the average waiting time for a customer through), the arrival rate for
customers eventually served.

0.67 [0.5]
0.5

Figure 2. An EMG illustrating a tight marking.

transitions (like a in Fig. 2) are potential sources of arcs
with same average markings, ab and ag, since fork transi-
tions serve as synchronization points. A tight marking as-
signs, if possible, the same marking to the output arcs of
fork transitions. It will be shown that a tight marking can
be obtained in polynomial time by means of a linear pro-
gramming problem.

Definition 4 A marking M € R4l s called a tight marking
of an EMG if it satisfies:

M:M0+C'U (7)
Ya: M(a)>d(a®)-0© (8)
Vtdaec®t: M(a)=20d(a")-©)

where M € R4, o € RITI, and © is the throughput of the
EMG. An arc a satisfying condition M (a) = 6(a®) - O is
called tight.

Since a tight marking satisfies (7) and (8), each critical
arc a is necessarily tight. On the other hand, non critical
arcs have some slack to satisfy (7) and (8). The tight mark-
ing exploits this flexibility by adjusting the marking value
for some arcs, at least one per transition (9), to the system
throughput. This tight making eases the formulation of suf-
ficient conditions to compute clusters of transitions that can
share the scheduler.

Let us consider the EMG in Fig. 2. It has a single criti-
cal cycle {a, b, ¢, d, e, f} with a throughput 0.5. Each arc in
Fig. 2 is labeled with one number if its average and tight
markings coincide. When they are different the average
marking is listed first and the tight marking is shown in
square brackets. It can be seen that the tight marking sat-
isfies all the conditions of Definition 4.

Proposition 1 A tight marking of a EMG can be computed
by solving the following Linear Programming (LP) prob-
lem:

Mazimize Yo :
5(a®)-© < M(a) foreveryac A
M= My+C-o
o(te) =k

(10)

55

where t, is a transition that belongs to a critical cycle and
k is any real constant number.

Proof: See Appendix.
The first two constraints of (10) can be transformed into:

5-0-My<C-o (11)

Since we are dealing with MGs, each row of the inci-
dence matrix C contains a single positive (1) and a single
negative (—1) value, while all other values are zeros. There-
fore, equation (11) is a system of difference constraints and
hence the LP (10) can be efficiently solved by the Bellman-
Ford algorithm [7].

3.2 Partition of transitions into clusters

This section describes conditions that guarantee the safe,
i.e., no throughput degrading, merging of transitions. The
set of transitions that can be merged into a single transi-
tion without performance degradation will be called clus-
ter. This partition has two purposes: first, in the next sec-
tion it is used to reduce considerably the initial net without
degrading the performance, and second, Section 4 demon-
strates that all transitions in a cluster can be assigned the
same schedule.

Merging two transitions ¢; and ¢; in an EMG G =
(T, A, Myp,0) leads to a new EMG G < t;,t; >=
(T",A’, My, d") in which two transitions ¢; and ¢; are re-
placed with a new one ;5. All input and output arcs of ¢;
and ¢; are replaced with input and output arcs of ¢;; such
that a € *t;; iff (a € *t; Va € °t;) and a € ¢t} iff
(a € t? Va € t§). The initial marking for a new arc is
equal to the initial marking of the corresponding replaced
arc. After merging two transitions a multi-graph is obtained
since two transitions can be connected by more than one
arc. If the new EMG G < t;,t; > has two identical arcs v
and w, i.e., M{(v) = M{(w), L(v) = L(w), *v = *w and
v® = w*®, then v and w can be merged into a single arc.

Definition 5 Transitions t; and t; are called mergeable if
an EMG G < t;,t; > obtained by merging transitions t;
and t; in an EMG G has the same throughput as G.

The following theorem forms a basis for computing clus-
ters in a EMG.

Theorem 2 Transitions t; and t; in an EMG are mergeable
if there exist arcs a; € *t; and a; € *t; such that:

° L(QL) = L(aj),
o M(a;) = M(a;) = d(a?) - ©,

e (*a; = *a;)or (*a; and *a; are mergeable).

Proof: See Appendix.

The first two conditions of Theorem 2 narrow the search
space to tight arcs with the same label (forward or back-
ward). The third condition defines iterative merging. These
three conditions ensure the existence of an initialization,
i.e., firing sequence of transitions, that produces a marking
M in which M(a;) = M/(a;) (see the proof of the The-
orem 2 in the Appendix). After such initialization, transi-
tions ¢; and ¢; can effectively be merged. This merging will
make arcs a; and a; be identical, since M(a;) = M(a;),
L(a;) = L(a;), *a; = *a; and aj = af, and hence they
will be merged into a single arc. The set of transitions that
can be merged with a given transition ¢, i.e. the cluster con-
taining ¢, is denoted by [t].

Fig. 3 shows the tight arcs of the EMG in Fig. 2. The
only remaining cycle is the critical one. Transitions b and g
in Fig. 2 do fulfill the conditions of Theorem 2 and therefore
they are mergeable. Moreover, since My(ab) = My(ag)
transitions b and g can be merged without retiming the ini-
tial state. Transitions ¢ and h also fulfill the conditions.
Given that My (bc) # My(gh), an initialization is required
before merging c and h. In this case, firing h is enough to
initialize the system: such firing removes one token from
gh and ¢h, and adds one token in hg and hi. This way,
a marking M is obtained in which M (bc) = M(gh) and
transitions ¢ and h can be effectively merged.

The system in Fig. 2 shows why the tight marking bet-
ter captures the flexibility for merging transitions than the
average marking. The arc gh is tight since M (gh) = 0.5.
However it is not critical since M (gh) = 0.67. Therefore,
transitions c and h could not get merged if the average mark-
ing is used in place of the tight marking in Theorem 2.

Figure 3. Tight subgraph of the system from
Fig. 2.

3.3 Heuristics for reducing an EMG

When clusters have been found, the EMG can be reduced
to alleviate the complexity of the model. The overall strat-
egy involves the following steps: 1) Computation of the sys-
tem throughput [9], 2) computation of a tight marking (Sub-
section 3.1), 3) determine the sets of mergeable transitions

56

(Theorem 2) by traversing the tight subgraph, 4) fire tran-
sitions to obtain the same marking in the input arcs of the
mergeable transitions, and 5) merge mergeable transitions
and identical arcs.

In step 3), a good heuristics is selecting critical fork tran-
sitions and exploring tight arcs at the output of these tran-
sitions. Every set of mergeable transitions then becomes
a new starting point for the search of the next set and the
method iterates until the fixed point 2,

4 A flow for scheduling

The purpose of this section is to compute efficiently the
schedule of each transition of the initial elastic system. Let
us start by defining the notion of schedule:

Definition 6 A schedule is a binary word w € {0,1}*
denoted by the regular expression w = u - (v)¥, with
u,v € {0,1}*, and (v)* denoting infinite repetition of word
.

Given a schedule w = u - (v)*, u and v are called tran-
sient and periodic schedules, respectively. The schedule ac-
tivates a given transition at instant ¢ if the i-th bit of the
schedule is a one. Once the EMG is transformed to its re-
duced form (as explained in Section 3.3), a simulation on
the simpler EMG will assign a schedule to each transition
of a cluster. An explanation on how to do this simulation
can be found in [1]. It is important to stress that in our
setting, the simulation is done on the reduced net, poten-
tially requiring significantly less resources. An example of
scheduling is shown in Fig. 1.

Let us now state an important property of the clusters
computed in Section 3.2:

Proposition 3 (Properties of scheduled clusters) Ler [t]
be the cluster with schedule w = u - (v)*, and © be the
throughput of the system. The following properties hold:

1. The system considering that every transition in [t] is
activated according to schedule w has throughput ©.

2. Every transition of the initial system S is scheduled
together with some critical transition in the clustered
system Sp.

Proof: 1. holds due to the fact that the throughput of
the EMG for which the schedule is computed is ©, and
the activation of each transition in [t] has been decided
according to a simulation of this EMG. 2. is obtained from
the following features of a tight marking: i) every arc of a

2Clearly, step 4) implies a change in the initial state of the system. If
this must be avoided, less mergeable transitions might be found but still
the approach can be applied.

critical cycle is tight, ii) the graph composed of tight arcs is
connected, and iii) for every transition ¢, there exists a € *t
such that a is tight.

The general strategy for scheduling presented in this
paper has the following steps:

Transform the initial system into the EMG model: this
is a crucial step that has not been considered in previous
approaches. By incorporating the dynamic information
provided by the stop signals (backward arcs in the EMG),
the stall information might be explicitly transferred to the
scheduling. This makes unnecessary to consider predefined
semantics (e.g. ASAP in [1]). It is also remarkable the
fact that in previous approaches, the complete equalization
of the system is required, meaning that the throughput of
the system is required for every elementary cycle of the
net [1,6]. This restriction is no longer required in the
approach presented in this paper.

Recycling/buffer sizing to achieve the throughput
of the forward net: when some critical cycle contains a
backward arc, it might be possible to improve the system
performance by applying well-known performance opti-
mization techniques. The goal is to attain the throughput of
the initial net, i.e. to avoid throughput degradation caused
by the back-pressure from stop signals. To achieve this,
buffer sizing [12] or recycling [5] can be applied.

Computation of the clusters and net reduction: as
explained in Section 3 and demonstrated in this section,
clusters represent an easy way of finding a good partition
for both reducing the net without performance penalty
and determining the sets of transitions having the same
schedule. The initialization step (firing some transitions, as
shown in Section 3), required for merging some transitions
is crucial to guarantee that every transition can share the
schedule of a transition in a critical cycle.

Simulation to find schedules for each cluster: the
synchronous simulation of the reduced net will find the
periodic schedules necessary for substituting the control
logic in charge of the elastic protocol.

5 Experimental results

We have performed some experiments for the theory de-
veloped in this paper. The goal was to verify the capacity
of sharing schedules with or without placement informa-
tion. After this crucial step, the creation of the schedules
for each cluster must be done with a technique similar to

57

Sched. Place & Sched.
example |T| [A] €] cls | arcs cls arcs CPU
s208 155 450 | 0.50 2 6 2 6 <ls.
s344 270 764 | 0.50 2 6 4 24 Is.
s713 505 1360 | 0.33 3 15 12 142 Is.
832 1121 4686 | 0.33 3 15 9 102 Is.
953 925 2688 | 0.25 4 28 18 365 Is.
s1423 1079 3252 0.25 4 28 26 475 Is.
$5378 4324 12160 | 0.16 6 66 | 124 | 2493 Im.

Table 1. Experimental results.

the ones presented in the literature [1,2].

We have selected a set graphs of different sizes from the
ISCAS benchmarks. The graphs were interpreted as coarse-
level netlists. Each gate was interpreted as a computational
block with unit delay (transition in the EMG), whereas each
edge was interpreted as a communication channel (arc in
the EMG). Moreover, each channel was supposed to have a
half-full FIFO with capacity 2.

To generate physical information for an n-block netlist,
a unit square grid with s x s cells, s = [y/n], was gen-
erated. All the blocks were assumed to have unit size and
were placed on the layout using Capo [15]. After place-
ment, wire pipelining was applied to those channels longer
than 10 units. Empty FIFOs with capacity 2 were inserted
in such a way that the length of each channel did not exceed
10. It is important to realize that the insertion of empty FI-
FOs reduces the throughput of the system when the channel
is critical (i.e. it belongs to a critical cycle) due to the lack
of tokens. When the channel is critical due to the absence
of bubbles, the insertion of empty FIFOs only increases the
latency.

In Table 1 columns |T|/|A| report the size of the exam-
ples, and column O reports the throughput of each example
after having inserted the empty FIFOs for wire pipelining.
Two experiments are reported in Table 1. In columns under
Sched. the result (number of clusters, cls, and arcs connect-
ing them) of finding clusters without any restriction on the
placement is shown. Clearly, this is an idealistic case that
might be infeasible in many cases, but shows that in prin-
ciple (as Proposition 3 asserts) the set of schedules for the
critical cycle are enough to provide a static scheduling for
the elastic system.

Columns under Place & Sched. show a more realis-
tic experiment, when the information of placement is taken
into account to avoid classes containing nodes for which
the schedule register might be too far. The K-means algo-
rithm is used for cluster splitting when the distance inside
the cluster is greater than 10.

6 Conclusions and Open problems

The methods presented in this paper reduce the complex-
ity of the control layer necessary in an elastic design. Iter-
ation schedulers are used to mimic the stalling signals con-

trolling the data flow. By replacing the controllers and wires
implementing the handshake protocols by iteration sched-
ules, no control communication is needed and routing and
placement constraints are alleviated. In a higher optimiza-
tion level, an efficient method for clustering is presented for
further optimization, allowing several computational blocks
to share the same schedule.

A future line of investigation is how to integrate the the-
ory presented in this paper together with the use of vari-
able latency units. It is clear that schedules assume a static
functioning of the system, and therefore the activation bits
produced by the schedulers cannot be delayed when the
unit takes longer than expected, because this local blocking
may affect to adjacent schedulers and so on, thus creating
a global effect that may corrupt the functioning of the sys-
tem. A possible solution would be to use maximal delays
when computing the schedules, but then the system will be
working in a sub-optimal manner. Another possibility is to
use different schedules for different latencies per unit (acti-
vated by means of a multiplexer and extra logic), but then
it is not clear whether it is worth the substition of the initial
control implementing the handshake signals by this compli-
cated mechanism.

Acknowledgements

This work has been supported by the project FORMAL-
ISM (TIN2007-66523), and a grant by Intel Corporation.

References

[1] J. Boucaron, J. Millo, and R. de Simone. Formal
methods of scheduling for latency-insensitive designs.
EURASIP journal on Embedded Systems, 2006.

[2] F. R. Boyer, E. M. Aboulhamid, Y. Savaria, and
M. Boyer. Optimal design of synchronous circuits us-
ing software pipelining techniques. ACM Trans. De-
sign Autom. Electr. Syst., 6(4):516-532, 2001.

[3] J. Campos and M. Silva. Structural Techniques and
Performance Bounds of Stochastic Petri Net Models.
In Advances in Petri Nets 1992, volume 609 of LNCS.
Springer, 1992.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-
Vincentelli. Theory of latency-insensitive de-
sign. IEEE Transactions on Computer-Aided Design,
20(9):1059-1076, Sept. 2001.

[5] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Per-
formance analysis and optimization of latency insensi-
tive systems. In Proc. ACM/IEEE Design Automation
Conference, pages 361-367, June 2000.

58

[6] M. Casu and L. Macchiarulo. A new approach to la-
tency insensitive design. In Proc. Digital Automation
Conference (DAC), pages 576-581, June 2004.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiser-
son. Introduction to Algorithms. McGraw-Hill Higher
Education, 2001.

[8] J. Cortadella, M. Kishinevsky, and B. Grundmann.
Synthesis of synchronous elastic architectures. In
Proc. ACM/IEEE Design Automation Conference,
pages 657-662, July 2006.

[9] A. Dasdan and R. K. Gupta. Faster maximum and
minimum mean cycle algorithms for system perfor-
mance analysis. [EEE Transactions on Computer-
Aided Design, 17(10):889-899, 1998.

[10] A. Edman and C. Svensson. Timing closure through
a globally synchronous, timing partitioned design
methodology. In DAC, pages 71-74, 2004.

[11] J. D. C. Little. A proof of the queueing formula L=)\
W. Operations Research, 9:383-387, 1961.

[12] R. Lu and C.-K. Koh. Performance optimization of
latency insensitive systems through buffer queue siz-
ing of communication channels. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 227-
231, Nov. 2003.

[13] T. Murata. Petri Nets: Properties, analysis and ap-
plications. Proceedings of the IEEE, pages 541-580,
Apr. 1989.

[14] C.V.Ramamoorthy and G. S. Ho. Performance evalu-
ation of asynchronous concurrent systems using Petri
nets. IEEE Trans. Software Eng., 6(5):440-449, 1980.

[15] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N.
Ng, J. E. Lu, and I. L. Markov. Capo: robust and scal-
able open-source min-cut floorplacer. In ISPD 05,
USA, 2005.

Appendix

Proof of Proposition 1:

Since EMG s are repetitive systems, a marking M can
be reached with any firing sequence o + j - 1 where j
is any real number. A constraint like o(t,) = k ensures
boundedness of the solution. Since ¢, is in a critical cycle,
there exists an arc a € °t, such that a is also in the same
critical cycle. Hence, the solution of the LP will necessarily
verify M (a) = 6(a®) - © (see equation (5)). Given that the
objective function Yo is maximized, for every transition ¢
there will exist a € *¢ such that M (a) = d(t) - ©. Hence,

the obtained marking Misa tight marking.]

Proof of Theorem 2:

Let us assume that there exist ¢;, ¢; that verify the conditions
of the theorem. Since ®a;, ®a; are joinable (or *a; = *a;)
we can reason on the graph obtained after merging ®*a; and
®a; into a single transition ¢,,. Assume without loss of gen-
erality that Mo (a;) > Mo(a;). Let us fire transition ¢; as
many times as My(a;) — Mo(a;) producing marking M
(notice that the EMGs consider in this paper are 2-bounded,
and hence, it holds My(a;) — Moy(a;) < 2). At M it holds
M (a;) = M(a;). Since a; and a; have the same input
transition ¢, if ¢; and ¢; are merged arcs a; and a; will
have the same input transition and the same output tran-
sition. Thus, a; and a; will be identical, i.e., they will
always have the same marking. In addition, the fact that
M(a;) = M(aj) = 6(a?) - © ensures that in the steady
state every arc is allowed to verify (3) after merging ¢; and
t;. Therefore, after merging ¢; and ¢; the system throughput
is preserved. It must be taken into account that the firing of
t; may produce a marking with negative values in some of
its input arcs *¢;. Since such marking is not a valid initial-
ization, the input transitions of the arcs with negative val-
ues must also be fired. These new firings may produce a
new set of arcs with negative values, and then, more firings
have to be carried out. Given that M(a;) = M(a;) and
M(a}) = 2 — M(a;), where a} is the complementary arc
of a;, any of the cycles containing a} and a; will have at
least 2 tokens. This implies that the firing process to avoid
negative markings (the lowest possible value is —2 since
Moy(a;) — Mo(aj) < 2) will not fire transition ¢;. More-
over, since each cycle has a positive number of tokens that
is preserved by any firing sequence, it will not fire any cy-
cle of transitions. Hence, such firing process will eventually
finish, and will yield a marking M’ in which all arcs have
non-negative values and M’ (a;) = M'(a;). O

59

