
Teak: A Token-Flow Implementation for the Balsa Language

Andrew Bardsley Luis Tarazona Doug Edwards

School of Computer Science, The University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

bardsley@cs.man.ac.uk tarazonl@cs.man.ac.uk doug@cs.man.ac.uk

Abstract—This paper describes a new target component set

and synthesis scheme for the Balsa asynchronous hardware

description language. This new scheme removes the reliance

on precise handshake interleaving and enclosure by separating

out control ‘go’ and ‘done’ signalling into separate channels

rather than using different phases of the asynchronous hand-

shake. This leads to circuits in which optimisation and control

overhead mitigation can be carried out by merging/separating

control and data channels and by introducing handshake-de-

coupling latches. This work aims to make Balsa descriptions

implementable in the more widely used and understood higher

performance token-based asynchronous circuit styles.

Keywords–asynchronous logic; logic synthesis

I. INTRODUCTION

The Balsa synthesis system[2] produces Handshake

Component[12] implementation of circuits described in the

Balsa language. The componentsproduced are substantially

similar to those produced by the Tangram system, the pre-

cursor of Handshake Solutions’ TiDE system[8]. Balsa has

been used to implement two substantial fabricated designs:

the DMA controller for the Amulet3h asynchronous proces-

sor subsystem of the DRACO chip and the SPA ARM-com-

patible processor (and peripherals) for the Buxton smart-

card chip. Balsa was developed to allow optimisation op-

portunities in Handshake Circuit designs to be explored. In

particular, the FalseVariablecomponent and input-enclosure

language construct[1] have allowed pipelined descriptions

with alternating latch and combinatorial handshake process-

ing stages to be more naturally described.

The work described in this paper extends the degree to

which the Balsa language can sympathetically be used to

describe pipelined systems by proposing a new set of com-

ponents, synthesis rules and Balsa language synthesiser col-

lectively called the Teak system. The aim is to provide a

path for future performance increases in Balsa synthesis by

exploiting high performance pipelined asynchronous cir-

cuit styles.

II. HANDSHAKE COMPONENTS AND CIRCUITS

Handshake Circuits[12] (HCs) are compositions of

Handshake Components connected exclusively by ‘chan-

nels’. Channels carry data from one component to another

under the control of ‘handshakes’. In implementation,chan-

nels often take the form of a ‘request’ wire, flowing from

the communication-initiating component to the target com-

ponent, and an ‘acknowledgement’wire, flowing back from

the target to initiator,and accompanying data-carrying wires.

Data transfer takes place by the exchange of events on those

two wiresbetween initiator and target. Many choicesof data

encoding schemes and handshake signalling protocols are

possible when devising gate-level implementationsfor chan-

nels and components. In the evaluations given at the end of

this paper, ‘dual-rail’ encoding is used. In dual-rail, data is

encoded onto pairs of wires (signalling data 0 or 1 for each

data bit) which form one of either the ‘request’or ‘acknowl-

edgement’portion of the channel. Dual-rail encoding allows

circuits to be built in which data transfer is delay-insensi-

tive[10].

A. Handshake Components and synthesis

In HC synthesis, templates for Handshake Components

are selected from a small predefined set designed to map di-

rectly onto source-language constructs such as control se-

quencing (in the Balsa system: the Sequence component), or

variables (the Variable component). Each template Hand-

shake Component has a parameterised gate-level implemen-

tation allowing gate-level netlists to be rapidly generated by

applying the parameters (for properties such as data width

or fan-out/in) for each component instance and composing

the resulting gate-level netlists. Control in HCs is handled

by channels consisting (in most signalling protocols) of only

‘request’ and ‘acknowledgement’ wires. Handshakes on

these data-less channels ‘encloses’ data-processing activity.

This is explained further in the below Balsa example.

HC-based designs have been shown to have good energy

usage characteristics[9] but poor performance[16]. Both of

these characteristics can be attributed to the control-heavy

nature of HCs. Explicit control channels mediate much of

the data transfers between parts of a circuit. A number of

methods have been used to mitigate this cost. These include

reimplementing control circuits using Petri nets and Burst-

Mode Machines[5], the replacement of critical components

with more ‘permissive’ versions[16] and the wholesale re-

placement of the language, synthesis method and many of

the components to produce a more pipeline-like implemen-

tation style[17].

III. A BALSA SYNTHESIS EXAMPLE

Balsa is a CSP[3] derived hardware description

language with explicit constructs for language com-

mand/statement-level parallelism. Data can be transferred

between parallel processes or commands using ‘channels’

which synchronise sender and receiver. These channels map

naturally onto the HC-level channels which are used to im-

plement them.

This is a simple one-place buffer for one bit of data

written in Balsa (comments look like -- comment):

procedure buffer (

input i : bit;
output o : bit

) is
variable v : bit -- storage

begin
loop -- repeat forever

i -> v -- chan. input to var.

; -- explicit sequencing

o <- v -- chan. output

end
end

The body of buffer has two commands: a channel in-

put to a variable, and a channel output from the same vari-

able. These commands are explicitly sequenced using ‘;’.

The loop … end construct repeats this behaviour indefi-

nitely. Fig. 1 shows a HC implementation for this descrip-

tion (as generated by the ‘balsa-c’ compiler from the Balsa

system). Circuit activity is started by beginning a handshake

on the ‘activate’ channel. The loop is implemented by the

Loop component connected to activate, and the sequenc-

ing by the Sequence component below that. The Sequence,

when activated by the ‘request’on the channel connected to

the port with the open bubble, performs a sequential hand-

shake on each of its output ports before completing the acti-

vation handshake (with an ‘acknowledgement’). In this ex-

ample, the left hand output initiates the first such handshake.

In this way, the activation handshake encloses the action of

the component, and so the activity of components connected

downstream of it. The Sequence outputs are each connected

to a Fetch component. Fetch uses its activation handshake to

mediate the transfer of data from one data port (on its left)

to the other (on its right). These data transfers link the input

channel, variable and output channel to form the buffer’s

data transferring behaviour.

IV. THE TEAK SYSTEM

Teak replaces the data-less activation channel (used

to enclose the behaviour of program fragments in HC

synthesis) with separate ‘go’ and ‘done’ channels. Con-

trol/datapath interactions using components which exploit

signal-level event interleaving are replaced by the ren-

dezvous/forking of control and data channels with local

handshaking to complete control interactions. This sepa-

ration of ‘go’ and ‘done’ makes Teak much more like the

Macromodules system [15] than Handshake Circuits, albeit

with more flexibility in the elimination of control channels

Fetch

0

0

0

11 1

0

1

activate

i o

Sequ−
ence

Loop

Vari−

able
Fetch

Figure 1. Handshake Circuit of buffer

through merging with data channels.

Explicit buffering is used to decouple one component

from another and to introduce the desired degree of token

storage to enable the circuit to function and, looking beyond

the work in this paper, to allow more transforming synthesis

methods to increase circuit parallelism.

Treating control channels in this way allows all the op-

timisation techniques usable with pipelined asynchronous

systems (i.e. those with input-enclosing-output processing

stages and decoupling buffering stages) to be used on Teak

circuits whilst still allowing local sequenced behaviour by

using control channels.

V. TEAK COMPONENTS

There are currently eight Teak components (as shown in

Fig. 2):

Steer (S) – conditional steer of input to exactly one output.

Parameterised with disjoint match conditions for each

output and bit ranges to carry to outputs. With 0 bits carried

to outputs, Steer works like the Balsa Case component.

Fork (F) – unconditional n-way fork. Fork can be parame-

terised by which (if any) bits of the input are carried to each

output. A two-way Fork of n and 0 bits can be used to gen-

erate a control token from moving data.

Merge (M) – input on one of the input ports is multiplexed

towards the output. Inputs must be mutually exclusive. In

some configurations, Merge may have to cope with second

input arrival during first input activity.

Arbiter (A) – merge with arbitration between inputs.

Join (J) – unconditional n-way join. Concatenates data bits

of arriving inputs.

Variable (V) – persistent storage. Separate write and read

sections allow arbitrary control ordering/conditionality of

reads. Variables allow complicated control activity without

incurring the cost of always moving data along with control

around a circuit. ‘wg/wd’ and ‘rg/rd’ (go/done) pairs make

all writes data initiated and control token completed, all

reads control token initiated and data delivery terminated.

Operator (O) – any and all data transforming operations. In-

puts are formed into a single word. Internally an Operator

is organised into interconnected terms allowing Operators to

be amalgamated or separated to allow cheaper implementa-

tion or Buffer insertion.

Buffer (B) – data storage and channel handshake decou-

pling.

write portions

J

n

m

n+.+m

S
n

0/[n−2:0]

1/−

F
n

−

[n−1:0]

3: add 2 0[23:8]
2: app 1 0[7:0] 1
1: app 8 0[7]

iw ow
i o

Operator

O
B

n n
oi

Buffer

r

r

w

w

0

0

0

0

V

wg[0]

rg[0] rd[0]

rd[m−1]

wd[n−1]

wd[0]

wg[n−1]

rg[m−1]

n

n

n

A

M

(Distribute) (Gather)

Merge/

Fork Join

Steer

(C
h

o
ic

e
)

Arbiter

Variable

(S
y
n

c
ro

n
is

a
ti
o

n
)

(Unparameterised)(Parameterised)

read portions

Figure 2. Teak components

All of the components, except Buffer, can be imple-

mented with any chosen degree of input to output channel

coupling (i.e. concurrency of handshaking events). Buffer

must provide at least some decoupling so that it can be used

to separate pipeline tokens. In this way, Teak components

resemble the components of other elastic token pipeline

systems.

The Variable is included in this component set in order to

allow sequential, storage-centric descriptions to be mapped

directly into hardware. This is in contrast to other token flow

approaches to asynchronoussynthesis [4][11]which perform

single assignment analysis on the input language to allow

variables to be eliminated in favour of pipeline buffers. This

decision was made to allow the exploration of the possible

power and area implications of retaining ‘fixed’ variables.

Also, pipeline buffer-only approaches find it difficult to han-

dle descriptions of persistent register banks without messy

‘register refreshing’ loops.

Fig. 3 shows the buffer example from Section III con-

structed from Teak components using synthesis rules from

Section VI. Notice that the Loop component has become a

loop comprised of a Merge (to introduce the ‘go’ token), a

Join (to meet incoming data), and a Fork (to return a token

back around the loop, through the Merge, after the output

command) rather a composition of enclosing control com-

ponents.

i

M
0

1

v

w

r

0

11

0
go

0

1
o

J

F

Figure 3. Teak circuit of buffer

VI. TEAK SYNTHESIS

Teak synthesis is initially syntax directed. Optimisa-

tions can then be performed on the generated Teak compo-

nent netlists (Teak circuits). Each command in a Balsa de-

scription is mapped into components with dangling ‘go’and

‘done’ control channels (a few commands never terminate

and have no ‘done’). Expressions, channel accesses and as-

signment left-hand sides similarly have a pair of dangling

channels: one bearing data and the other a control initiat-

ing/completion channel. Control can be sequenced by join-

ing commands ‘done’ to ‘go’ in a chain. Data and control

usually meet with Fork and Join components.

As with Balsa intermediate (Breeze) netlists, there are

many possible choices of data encoding and signalling pro-

tocols on the channels between components. As Teak deals

in the flow of tokens rather than enclosing handshakes, Teak

component implementations also have choices of the de-

gree of interleaving between input to output handshakes, the

use of weak-condition behaviour and storage within com-

ponents.

A. Channels

Channels in Balsa have no capacity. Inputs and out-

puts on a channel form a synchronisation where either par-

ty can delay the transaction until both are ready for data to

be transferred. In Balsa, the select command (which al-

lows choice based on order of arrival of data on a number

of channels) and the ‘enclosed’channel input command can

be used to exploit the non-atomic nature of asynchronous

channel construction to allow latch-less implementations of

data processing stages to be described. In such stages, data

processing and outgoing channel outputs are enclosed with-

in the input handshake. Alternating such stages with latch-

containing pipelining stages allows push pipeline-like struc-

tures to be built.

Fig. 4 shows a single output, single input channel imple-

mented using Teak components, with a Balsa-style channel.

The pair of data and acknowledging channels between out-

put and input commands form a synchronisation and limit to

a single token the capacity of the loop formed from output

command (as data), through input command and back to the

output command (as an acknowledging ‘done’). Note the

use of Forks and Joins between data and control.

CHAN <− EXPR

0

J

0

F

EXPR

n

0

n

w

0

gogo

VAR

done done

CHAN −> VAR

Figure 4. Balsa-style channel implementation

Unfortunately, Balsa’s channel implementation doesn’t

allow the capacity of buffered Teak channels to be exploit-

ed. Instead we have chosen to change the semantics of Bal-

sa channel to make writes ‘fire and forget’. Channel outputs

and inputs are no longer synchronised and enclosure inside a

sending handshake can no longer be relied upon. In practice,

this reduces the utility of the select language construct but

also allows descriptions to be formed which exploit (or pos-

sibly rely upon) non-zero channel capacity. This introduces

an incompatibility with the Balsa system’s interpretation of

Balsa descriptions.

−− jth input

F

EXPR

n

0

i

S
0

n

M

J
M

F

0

0

n

n

M

J S

j

w

0

done

VAR

0

O: num i

done

go

outputs definitely muxed

i/−

−− ith output

CHAN <− EXPR

go

j.../[n−1:0]

CHAN −> VAR

Figure 5. Multiple-output channel implementation

Fig. 5 shows how channel read and write commands

are combined to form a complete Teak style language-level

channel. The i and j constant-valued Operator compo-

nents ‘tag’ the request channels from different input/output

commands so that once those requests are merged, with the

following Merge component, the source of the request is en-

coded on the Merge output. This common request is then

Joined to a token Forked from the outgoing data Merge (or,

for inputs, the incoming data itself) and Steered to provide

the local command acknowledgements.

The combination of tagging Operators, the following

Merge and the Join/Steer combination (the two dotted box-

es in Fig. 5) plays a similar role to the Balsa DecisionWait[1]

Handshake Component. This involves steering an incoming

token (in this case the acknowledgement from the data-bear-

ing merge) to the correct output based on the arrival of a sin-

gle token on one of a group of input tokens (in this case, the

choice of output command site). In Teak, we have chosen to

separate out the component parts of the DecisionWait,rather

than provide a single component, to allow for flexibility of

Buffer insertion.

In cases where acknowledgement tokens need not be

steered (e.g. where there is only one read or write to a chan-

nel in the description) much of the control/data interaction

can be optimised away (as shown in Fig. 6). This implemen-

tation is similar to that of Fig. 4, but without the sequencing

of variable write to the output command’s ‘done’.

−− one output

F

EXPR

n

0

0

n

0

J

w

0

done

VAR

0

done

go

CHAN <− EXPR

go

CHAN −> VAR

−− one input

Figure 6. Channel component optimisation

B. Commands

Fig.7 shows sequential and parallel composition of com-

mands. Command ‘go’and ‘done’channels can be connect-

ed in series to form sequencing, and so no explicit Sequence

component is required. Parallel composition requires two

components (Fork and Join) in contrast to Balsa’s Concur

component which contains both functions in one compo-

nent. Fig. 7’s presentation of command composition is very

similar to that used in non-return-to-zero (2-phase) signalled

handshaking. This is illustrated well by Brunvand[6]. Note,

however, that here we are using handshake channels rather

than individual wire signals for each of ‘go’ and ‘done’.

On a channel, the token recipient can stall a handshake (by

denying an acknowledgement) and so the token capacity of

a string of commands is not necessarily limited to one (i.e.

the strict alternation, from the ends of the string, of ‘go’,

‘done’, ‘go’, ‘done’…). Where resources are not shared be-

tween sequentially composed commands, this property al-

lows pipelining to naturally arise.

go

CMD2CMD1

J

F

CMD2

CMD1

00

0 0

0

0

0

0

0

done

go

CMD1 || CMD2CMD1 ; CMD2

go

done

go

go

done

done

donedone

go

Figure 7. Sequential/parallel composition

Fig. 8 shows the structure of a while loop. The Steer

component provides the control choice at the top of the loop.

Without the Steer, a similar control loop with an incoming

Merge can be used to implement a non-terminating loop

with the ‘go’ token providing initialisation. Note that the

loop formed by the Merge and Steer components must have

at least some buffering to prevent deadlock. Insertion of

Buffers will, obviously, affect circuit performance. The ex-

amples examined in Section VIII have had Buffers manually

inserted as this process is not yet automated.

loop CMD1 while COND then CMD2 end

M
0

CMD1 COND S
1

0

0

0

CMD2
0

0/−

1/−

go

done

go

done

go done

Figure 8. While loop implementation

C. Expressions

Expressions are compiled from variable reads by adding

pairs of ‘rg’ (read go) and ‘rd’ (read done) ports on variable

components, and Operator components to process data.

Reading from channels within expressions (when within

select commands or enclosed input commands, e.g.chan

-> then var := chan + 1 end) is achieved by insert-

ing Variable components to capture channel read data, and

then using read port pairs on those variables to use that data.

These variables can then often be removed if data is uncon-

ditionally used within the body command.

VII. OPTIMISATION STRATEGIES

This section introduces some of the possible optimisa-

tions that can be performed over Teak-compiled circuits

by taking advantage of some properties of either individual

components or groups of them. Optimisations will be pre-

sented using simplified practical descriptionsextracted from

the design examples used in section VIII.

A. Variables

As stated in section V, in cases where channel reads are

performed unconditionally after a write, the Variable can be

removed (for single-read channels) or replaced by a cheaper

and faster Fork component (for multiple-read channels),

provided they are not used to enforce sequencing. Fig. 9

shows a single-write, unconditional single-read after write

channel structure before and after optimisation.

out

n

v

w

r

0

n

in

n

n
in

out

Figure 9. Variable read-after-write optimisation.

As an example,consider the following description whose

implementation will contain Variables implementing the in-

puts on a,b and c as described in Section VI.C. This is a de-

scription of a full adder whose output is separated into sum

and carry-out portions:

procedure adder (

input a, b : N bits;
output sum : N bits;
output carry : bit

) is
channel cs : N+1 bits

begin
loop

a, b -> then
cs <- (a + b as N+1 bits)

end ||

cs -> then
sum <- (#cs[0..N-1] as

N bits) ||

carry <- (#cs[N] as bit)
end

end
end

For simplicity, let’s consider only the part of the circuit

that provides the sum and carry outputs as shown in Fig.

10(a). The Variable that implements the channel cs has

a single write port and two read ports for sum and carry.

Reads are initiated as soon as the cs Variable ‘wd’ (write

done) port indicates that new data has been stored. The Fork

component at the top provides tokens for both read ports. As

a write operation is directly followed by a read, the Variable

can be substituted by a Fork that provides ‘sum’, ‘carry’and

‘done’ results as shown in Fig. 10(d). In dual-rail circuits,

an additional benefit of this type of optimisation is that the

forked channels would only need to wait for the arrival of

those input bits that will be carried to the output. This opti-

misation can be viewed as a 3-step process:

(i) The Fork labelled 1 is displaced ‘downstream’ in the

datapath, after the Variable cs, leaving a single write,

single read Variable,as shown in Fig. 10(b).

(ii) Variable cs can be removed as a write is directly fol-

lowed by a read and the three Forks can be merged into

a four-way Fork, leading to the circuit in Fig. 10(c).

(iii) Now, the Join component in Fig. 10(c) is redundant

because both inputs come from the same fork. The

inputs of the Join can be merged and the final circuit is

shown in Fig. 10(d).

Similar kinds of optimisations based in component

displacement will be presented in the following sections.

B. Fork displacement

In some circumstances, Fork components can also be

displaced ‘upstream’ in a data or control path to allow for

more concurrent operation. Consider the following segment

of code where the results generated by the two output com-

mands must be written sequentially to a common channel

out:

1Fcs

sum carry

done

F F

cs w0 r0 r1

J

cs

cs w0 r0

1F

sum carry

done

F F

J

(a) (b)

RJ

cs

sum

done

F

carry

cs

sum done

F

carry

(c) (d)

Figure 10. Variable substitution example

procedure tenFifteen (

output out : 4 bits
) is
begin

loop
out <- 10; -- exprA

out <- 15 -- exprB

end
end

The resulting circuit is shown in Fig. 11. Note how the

Forks labelled U fork the result of exprA and exprB to gen-

erate the output and the ‘tag’constants (cA and cB). As ex-

plained in Section VI.A, those constants indicate which of

the expressions will be output in the next iteration. If those

Forks are moved upwards through the expression genera-

tors, as in Fig. 12, the constant that steers the control for the

next iteration will be generated concurrently with the out-

put. This kind of displacement can be done through any

data transforming operation or even single-input command

blocks.

C. Join displacement

If circuit conditions allow it, Join components can also

be moved upstream resulting in faster operation and smaller

circuits.

Consider the following segment of code which is a sim-

plified version of a ‘sign adjust’ unit for the multiplicand

input of the Booth multiplier in the nanoSpa processor

[13][14]. The circuit takes an N bit input word b and, de-

pending of the type of multiplication specified by themType

go

cB2’d2cA2’d1

UFUF

exprB4’d15exprA4’d10

S

M

M

J

MF

out

Figure 11. Sequenced channel write example.

go S

M

M

2’d22’d1

M

4’d154’d10

F

UFUF

out

J

Figure 12. Fig. 11 after Fork displacement.

input, either appends M zeroes after the most significant bit

of input b or sign-extends it to N + M bits to generate the

adjusted output ba. For clarity, let N = 8 and M = 3 in this

example:

loop
mType, b -> then

case mType of MUL,UMULL,UMLAL

then -- unsigned, pad with 0s

ba <- zeroExtend (8, 11, b)

else -- signed, sign-extend

ba <- signExtend (8, 11, b)

end
end

end

The resulting circuit is shown in Fig. 13. In this figure,

the dotted blocks on top, labelled inB and inM, contain the

implementation of the two input channels reads and writes.

The optimisation for blocks inB and inM works as follows:

(i) The Join labelled j0 connected to Variable mType is

moved upstream through variables b and mType trans-

forming them into a single-write, single-read variable

b_mType whose width is now (sizeof mType) +

8 bits. The size of the inputs and outputs of the Steer

within inB are resized accordingly. The modified cir-

cuit for inB and inM blocks is labelled inMB in Fig.

14.

(ii) The previous transformation has exposed new opti-

misation opportunities: Variable b_mType can be re-

moved (as explained in Section VII.A) and the three

Joins can be merged into one, which in turn makes the

Fork at the top of the circuit redundant. The resulting

circuit is shown in Fig. 15.

BOut

inB

inM

go

M

FmType b

c2S

c1J

c1Mc0F

c0M

c2M

zE{3’d0,in[7:0]}sE{3in[7:7],in[7:0]}

ba

2’d22’d1

FF

J

b w0 r0 r1

Sj0JJ

mType w0 r0

Figure 13. Unoptimised sign adjust circuit.

D. Fork-Merge-Join and Steer-Merge

Another target for optimisation are Steer-Merge and

Fork-Merge-Join compositions. In Teak circuits, Forks are

used in a datapath to generate a control token from a data to-

ken, to either synchronise or sequence operations. If the to-

ken sources of a Merge are derived from the control branch-

es of a set of data Forks whose data channels are merged at

some point ahead and then Joined with the control-derived

output of the Merge, this Fork-Merge-Join composition can

be simplified and the final control token can be derived from

the merged data.

inMB

mType b

c1J

c1M

F

c0F

c0M

zE{3’d0,in[7:0]} sE{3in[7:7],in[7:0]}

F F

S

JJ

J

b_mType w0 r0

M

F

go

ba

Figure 14. First optimisation steps of Fig. 13.

This Fork-Merge-Join optimisation can be seen more

clearly referring to the bottom part of Fig. 13: The output

data from Operators zE (zeroExtend) and sE (signExtend)

are forked to produce control (thin lines) and data (wide

lines) tokens. The data tokens are merged and then forked

to produce the output ba an a new control token (Merge and

Fork labelled c0). The control tokens from the top Forks

in block BOut generate tag values (constant Operators 2’d1

and 2d’2) required to steer the control to the correct source

in the next iteration (components labelled c1). As both data

tokens are derived from a common source, the outputs of

the Steer are the only inputs to the Merge that generates the

control token for the next iteration of the loop (components

labelled c2). The simplification steps are as follows:

go

mType M

J

S

M

{3’d0,in[7:0]}{3in[7:7],in[7:0]}

b

ba

F

Figure 15. Optimised version of Fig. 13.

(i) The bottom Steer-Merge can be simplified into a

single-output Fork that acts as an adapter that generates

a control token from a data token as shown in Fig. 14.

(ii) As the generation of the control token in the new Fork

is independent of the data value, the data channels

that carry the constants can be simplified into control

channels, making the constant blocks redundant. These

are simplified in Fig. 14.

(iii) Now the control tokens from the Forks are redundant

because each one will always synchronise with its

sibling data token at the Join c1, hence those Forks and

the Merge and Join with labels c1 can be reduced. The

new single-input Fork inserted in step (i) can also be

removed. The final circuit is shown in Fig. 15.

VIII. DESIGN EXAMPLES AND RESULTS

This section presents the experimental results of a num-

ber of non-trivial, medium-complexity designs and com-

pares Teak-style versus Balsa-style implementations. The

main purpose of these experiments was to have an initial es-

timation of the performance of Teak circuits. For each de-

sign, the same Balsa language description was used to gen-

erate both Balsa and Teak circuits, targeting a dual-rail data-

encoding implementation and mapped to an example gate li-

brary. The results shown here are for fixed-gate delay, gate-

level simulation. For the Balsa circuits, all performance-

driven optimisations described in [13] were applied. Teak

circuits are produced by compiling Balsa language descrip-

tions with the ‘teak’compiler, producing component netlists

which are then expanded into gate-level netlists using ‘balsa-

netlist’ from the Balsa system. Component descriptions

are written in the Balsa system’s ABS language. A simple

Buffer insertion strategy is applied to the component netlists

that ensures no deadlock will occur was used. At the time

of writing the optimisations presented in Section VII, and

the Buffer insertion, have not been automated. These were

applied by hand only to critical sections of the resulting net-

work of Teak components.

TABLE I. EXPERIMENTAL RESULTS

Design Balsa
(ns)

Teak
(ns)

Teak overhead

Mod-100 SC 19.52 23.11 18.39%

VDec 20.36 21.29 4.60%

nMult32 111.66 131.44 17.71%

The designs used as examples used are:

Mod-100 SC – A modulo-100 systolic counter in the style

described in [12]. For this design we compared the average

tick period of the counters.

VDec – A Viterbi decoder with architecture similar to that

described in chapter 14 of [10]and [7]with the following pa-

rameters: code rate =
1
⁄2, constraint length k = 3 (4 states), 3

bit soft-decision decoding and 16 time slots of backtracking

memory. The parameter used to compare the designs was

the data output cycle time.

nMult32 – The 32 × 32 multiplier with 32 bit accumulate

implemented using a radix-8 Booth algorithm [14] used in

the nanoSpa processor. The parameter used to compare the

designs was the average cycle time of signed multiply-and-

accumulate operations.

The experimental results are shown in Table I. The results

show that a non-fully optimised, initial token flow imple-

mentation of Balsa can produce circuits with comparable

performance (within 5% – 18% slower).

IX. CONCLUSIONS AND FUTURE WORK

Implementations of Teak circuits currently have worse

performances than those of Balsa circuits. This is unfor-

tunate but not unexpected. The implementations for Teak

components are at an early stage of development, and the

analysis tool required to perform satisfactory Buffer inser-

tion is not present. We do, however, see a lot of headroom in

the Teak approach as its small, regular component set allows

the freedom to merge and split data and control much more

naturally than is the case in Handshake Components. This

feature will allow a greater degree of freedom in optimising

Teak circuits than is possible with Handshake Components.

There is still much work that can be done to improve the

optimisation of Teak-generated circuits. This includes: the

creation of effective buffering schemes, the implementation

of components with different data encodings (e.g. one-hot

codes running up to Steer inputs) as well as extensions and

automation of the optimisations described in Section VII.

X. ACKNOWLEDGEMENTS

The authors would like to thank Fabien Gavant (of

Grenoble INP-ENSERG, FR) for the use of his Viterbi de-

coder Balsa description.

REFERENCES

[1] A. Bardsley. Balsa: An Asynchronous Circuit Synthesis Sys-

tem. Master’s thesis (1998), Department of Computer Sci-

ence, The University of Manchester, UK.

[2] Balsa project homepage at The University of Manchester,

UK. URL http:// intranet.cs.man.ac.uk/apt/projects/ tools/

balsa/ .

[3] C.A.R. Hoare. Communicating Sequential Processes. Com-

munications of the ACM 21(8), Pages 666–677 (August

1978).

[4] C.G.Wong, A.J.Martin. Data-Driven ProcessDecomposition

for Circuit Synthesis. In ICECS 2003: Proceedings of the

IEEE Conference of Electronic Circuits and Systems, 2001.

[5] T. Chelcea, A. Bardsley, D. A. Edwards, S. M. Nowick. A

Burst-Mode Oriented Back-End for the Balsa Synthesis Sys-

tem. In Proceedings of DATE’02.

[6] E. Brunvard. Translating Concurrent Communicating Pro-

grams into Asynchronous Circuits. Ph.D. thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213, USA.

[7] F. Gavant. Asynchronous Viterbi decoder described in Balsa

language (unpublished report), School of Computer Science,

The University of Manchester, UK and Grenoble INP-EN-

SERG, FR, 2008.

[8] Handshake Solutions company website. URL

http://www.handshakesolutions.com.

[9] H. van Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A.

Peeters, G. Stegmann. An asynchronous low-power 80C51

microcontroller. In
th

4 International Symposium on Asyn-

chronous Circuits and Systems,ASYNC’98, March 1998.

[10] J. Sparsø, S. Furber (eds.). Principles of asynchronous circuit

design - A systems perspective. Kluwer Academic Publishers,

2001.

[11] J. Teifel, R. Manohar. Static Tokens: Using Dataflow to Au-

tomate Concurrent Pipeline Synthesis. In
th

10 IEEE Inter-

national Symposium on Asynchronous Circuits and Systems,

ASYNC’04, 2004.

[12] Kees van Berkel. Handshake Circuits - An asynchronous ar-

chitecture for VLSI programming. Cambridge International

Series on Parallel Computers 5. Cambridge University Press,

1993.

[13] L.A. Plana, D. Edwards, S. Taylor, L. Tarazona, A. Bardsley.

Performance-Driven Syntax-Directed Synthesis of Asyn-

chronous Processors. In CASES’07: Compilers,Architecture,

and Synthesis for Embedded Systems. School of Computer

Science, The University of Manchester, UK, October 2007.

[14] L.A. Tarazona, L.A. Plana, D.A. Edwards. Architectural en-

hancements for a synthesised self-timed processor. In Pro-

ceedings of the
th

19 UK Asynchronous Forum. School of

Computer Science, The University of Manchester, UK, 2007.

[15] M. J. Stucki, S. M. Ornstein, W. A. Clark. Logical Design of

Macromodules. In AFIPS Spring Joint Computer Conference

1967, pages 357–364, 1967.

[16] L.A. Plana, S. Taylor, D. Edwards. Attacking Control Over-

head to Improve Synthesised Asynchronous Circuit Perfor-

mance. In Proceedings IEEE International Conference on

Computer Design ICCD-2005, pages Pages 703–710, October

2005.

[17] S. Taylor, D. Edwards, L.A. Plana. Automatic Compilation of

Data-Driven Circuits. In
th

14 IEEE International Symposium

on Asynchronous Circuits and Systems, ASYNC’08. School

of Computer Science, The University of Manchester, UK.

