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Abstract—This paper considers interactive Markov chains
(IMCs), a natural generalization of transition systems and
continuous-time Markov chains (CTMCs). We show how they
can be used to provide a truly simple semantics of Generalized
Stochastic Petri Nets (GSPNs). In fact, any GSPN. In particular,
no restrictions are imposed on the concurrent/conflicting en-
abledness of immediate transitions. This contrasts with classical
solutions for GSPNs which use weights. (A simple extension of
IMCs also covers weights.) In addition, we will present novel
analysis algorithms for expected time and long-run average
time objectives of IMCs, i.e., GSPNs. Two case studies indi-
cate the feasibility of these analyses and show that a classical
reliability analysis for confused GSPNs may lead to significant
over-estimations of the true probabilities. The key message is:
nondeterminism is not a threat, treat it as is! This yields both a
simple GSPN semantics and trustworthy analysis results.

I. PERFORMANCE EVALUATION WITH GSPNS

A. GSPNs in a nutshell

Generalized Stochastic Petri Nets (GSPNs [17]) are a well-
established modelling formalism for performance and depend-
ability evaluation supported by tools such as GreatSPN [9].
GSPNs support timed and immediate transitions. The former
have a random duration governed by a negative exponential
distribution. Immediate transitions take zero time units. GSPNs
adopt the token game of classical Petri nets, except that the
resolution between concurrently enabled timed transitions is
probabilistic. It is resolved according to a so-called race
policy. If two timed transitions with rate λ ∈ R>0 and
µ ∈ R>0 are concurrently enabled, the former wins the
race with likelihood λ

λ+µ , the second with probability µ
λ+µ .

This race policy is adopted from continuous-time Markov
chains (CTMCs) and generalizes in a simple way to multiple
enabled timed transitions. In case a timed and an immediate
transition are concurrently enabled, the latter will occur as the
probability that a timed transition occurs immediately is zero.
This conforms to the maximum progress policy: immediate
transitions have priority over timed ones. The choice between
concurrently enabled immediate transitions is resolved proba-
bilistically using weights (possibly enriched with some priority
scheme). For immediate transitions with weights w ∈ N>0 and
u ∈ N>0, say, the former is selected with probability w

u+w and
the other with the remaining probability.
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Performance evaluation of a safe GSPN –which corresponds
basically to nets with a finite marking graph– proceeds at
the level of its reachability graph. That graph is reduced to
a finite CTMC, for which efficient steady-state and transient
solvers are at hand, or that may be subject to stochastic model
checking [1], [6]. Due to their formality, visual representation,
and the availability of efficient evaluation support, GSPNs 1

have become popular in both academia and industry. GSPNs
are also attractive as semantic model for (quantitative versions
of) high-level design notations, such as extended fault trees,
logistic networks, AADL, fragments of the UML, BPEL4WS.
Providing a translational mapping onto GSPNs is a proper way
to unambiguously define the semantics, and to get access to
powerful performance evaluation tools.

B. Why revisit GSPNs?

So why should one revisit GSPNs after all? There is just
a single reason: nondeterminism. Nondeterminism is a well-
studied phenomenon in net theory. In its simplest form it
occurs as a conflict between two (unweighted) immediate
transitions. More involved scenarios occur in the presence of
confusion. Confusion basically arises if two transitions are
enabled (in some marking) and the occurrence of one of the
transitions changes the set of transitions that are in conflict
with the other transition, the so-called conflict set. Already in
the early days of GSPNs, the problem with nondeterminism
has been widely recognized: “the solution of a conflict due
to the firing order can cause very subtle problems in the
stochastic definition of GSPNs” [17, pp. 46]. The main point
is that in presence of nondeterminism, the marking graph of
a GSPN is not a stochastic process. This means that such
GSPNs are not amenable to standard analysis of CTMCs. In
this case, one can no longer speak about, e.g., the reachability
probability of a given marking M , or the transient probability
of M at some time t ∈ R≥0, or the probability to be in M
on the long run. These probabilities instead depend on the
resolution of the nondeterminism. Consider a simple example,
cf. Fig. 1. This net has a (simple form of) confusion. In the
initial marking, transitions t0 and t2 are enabled. Firing t0
yields a marking in which either t1 or t2 can be taken, but
not both. The choice between t1 and t2 is nondeterministic.
The likelihood of reaching a marking containing p 6 is zero

1And related net formalisms such as stochastic activity networks (SANs).
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Fig. 1. A simple confused GSPN [17]. Immediate transitions are drawn as
solid bars, and timed transitions as rectangles.

if after the firing of t0, the conflict between t1 and t2 is
resolved in favour of t1; otherwise it is one. Associating the
weight wi = w to immediate transition ti yields that such
marking is obtained with probability 3

4 : either t2 fires before
t0 (which happens with probability 1

2 ) or t0 and t2 fire in
sequence (whose likelihood is 1

4 ). In fact, the weight of t0 has
a major influence on the reachability probabilities, as can be
seen from the general expression to eventually reach a marking
containing p6:

Pr{♦p6 } =
w2

w0+w2
+

w0

w0+w2
· w1

w1+w2
.

However, in the initial marking t0 is not in conflict, but
concurrent with t2. That is to say, the concurrency between t0
and t2 is resolved probabilistically.

C. How have GSPNs coped with confusion so far?

A simple solution is to only consider GSPNs that are
confusion-free, akin to free-choice Petri nets. This is however
far too restrictive. In fact, early approaches require that “it
[i.e., a GSPN] must be confusion-free at priority levels greater
than zero (i.e., in subnets of immediate transitions)” [17,
pp. 110]. Another, somewhat naive, solution is to inspect
the marking graph and resolve all nondeterminism in some
probabilistic manner, for instance, uniformly. This however
yields analysis results that are incomprehensible to the mod-
eller and requires the generation and inspection of the marking
graph. In addition, concurrency is resolved (as in the above
example) probabilistically. The common approach therefore
has been to develop modelling means and analysis checks
at the net level. Modelling means are to equip immediate
transitions with global priority levels and globally assigned
weights. This allows the modeller to diminish or sometimes
even delete the occurrence of nondeterminism. In the above
example such weight assignment indeed yields a stochastic
process. Using weights (and priorities) boils down to conflict
resolution being performed probabilistically rather than using
nondeterminism. However, priorities and weights do not, and
cannot, eliminate nondeterminism in all cases, e.g., not for
all kinds of confusion. This is not surprising, since confusion
is itself a semantic phenomenon. Despite several attempts to
define necessary conditions at the net level, e.g., [7], [8], [16]
–extended conflict sets and refinements thereof– that ensure
absence of confusion, in general the reachability graph is
needed so as to check the absence of confusion. (Similar “well-
specified” checks have been proposed for related formalisms

such as SANs [19].) The fact that it is difficult to come up
with net-level criteria is witnessed by [21] that shows the
insufficiency of extended conflict sets. In fact, [21] proposes a
net-level technique that is proven to yield a stochastic process
as marking graph but yields spurious warnings, i.e., it is too
conservative. Note that translational GSPN mappings of design
notations such as the UML, AADL, and fault trees should
contain an obligatory proof that the semantics is confusion-free
by construction. To our knowledge these proofs are seldomly
given, if at all.

D. Our approach

Nondeterminism in GSPNs is thus a well-established and
well-studied problem. This is not new. Our treatment of it
however will be different. The key issue is: we keep nondeter-
minism as is. This allows the treatment of a substantially larger
class of GSPNs. In particular, no restrictions are imposed on
the presence of confusion. First and foremost, this allows for
a substantially larger class of nets. There is no burden on the
modeller to ensure that certain net-level criteria are met. If
needed or convenient, weights can be used to diminish the
presence of nondeterminism in the net. The use of weights
(and priorities) can however be restricted to cases in which
the modeller has sufficient information and wants to quantify
conflict resolution. Our approach is backward compatible: in
case nondeterminism is absent, the same stochastic process
as for classical GSPNs results. However, if nondeterminism
remains –or is deliberately left present– this does not impose
a restriction. Neither semantically nor from an analysis point
of view. There is no need for imposing net-level constraints
and no proof obligation when using GSPNs as semantic model.
The resulting GSPN semantics is truly simple. The marking
graph of a GSPN is a stochastic decision process, a.k.a. a
(simple) continuous-time stochastic game. The quantitative
analysis of these games yields upper and lower bounds.
One thus obtains, e.g., the minimal and maximal reachability
probability of a given marking, or the minimal and maximal
probability to be in a certain marking at time t, and so on.

II. SEMANTICS OF GSPNS: REVISITED

We suggest to use Markov automata (MA) [11], a combina-
tion of interactive Markov chains (IMCs) [14] and probabilistic
automata [20], as semantic model for (safe) GSPNs. MA are
finite transition systems with action and timed transitions. The
latter are labelled with a rate of an exponential distribution,
indicated as λ and µ before, and conenct a source state to a
target state. An action transition s a−→µ asserts that starting
from state s the system can engage in action a and yields
a probability distribution µ over the states. That is to say,
state s′ results with probability µ(s′). If s a−→µ and s a−→ ν,
a nondeterministic choice between the distributions µ and
ν is made. Action transitions are subject to the maximal
progress assumption. This means that action transitions trigger
instantaneously. They thus take precedence over all timed
transitions. The MA semantics of GSPNs is now rather simple.
States correspond to markings. Timed transitions match one to
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Fig. 2. An example confused (unweighted) GSPN

the marking graph of this GSPN as a Markov automaton
As the GSPN does not contain weights, the action transition
relation is relating a source state to a single target state (i.e.,
µ is a Dirac distribution). The timed transition relation is
indicated by solid arrows and the immediate transition relation
by dashed arrows. Tangible markings are shaded gray whereas
vanishing markings (i.e., markings in which only immediate
transitions are enabled) are white. Evidently, conflicts arise
between transitions t3 and t4 (in various markings) and t5
and t6 (in marking 0011). All classical approaches to GSPNs
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Fig. 3. The marking graph of the confused GSPN of Fig. 2

abandon the above example net, as it does not yield a CTMC
and thus cannot be analysed. According to [21, Sec. 2.4], it
is not well-defined. This can be seen as follows. In marking
0011, the set of reachable tangible markings is { 1000, 0001 }.
If the enabled transition t5 is chosen, the tangible marking
0001 is reached almost surely. However, if enabled transition
t6 is chosen, we enter the tangible marking t8.

It remains to explain the treatment of weights. Weighted
immediate transitions are represented by action transitions in
the following way. Suppose in marking M , a finite number of
immediate transitions ti with weight wi are enabled, where fir-
ing ti yields marking Mi. Then this yields the action transition
M τ−−→µ where τ is some internal action, and µ(Mi) = wi

W
with W =

∑
wi. (If multiple immediate transitions yield the

same marking, probabilities need to be added.)
A few remarks are in order. For confusion-free GSPNs,

the action transition relation is deterministic. The resulting
MA is then a CTMC up to weak bisimulation [11]. In
fact, for confusion-free nets, this CTMC is isomorphic to

the reachable marking graph obtained using the traditional
GSPN semantics after removal of vanishing states. Secondly,
MA are closed under parallel composition by synchronizing
on action transitions in a CSP-like manner. They are thus
compositional. This allows for building GSPNs from smaller
ones in a component-wise manner. As weak bisimulation is
a congruence with respect to parallel composition, it means
that component-GSPNs can be treated in isolation before
composing them with other component nets. Thirdly, the MA
semantics covers GSPNs that may contain reachable cycles of
immediate transitions. To our knowledge, existing semantics
of GSPNs have not covered this so far. Finally, as MA support
exponential distributions and nondeterminism, they are an
appropriate candidate model for a variant of the Petri box
calculus with GSPNs as denotational model. It would be
interesting to work this out in detail and compare this to the
Petri box calculus for GSPNs [15].

III. QUANTITATIVE ANALYSIS OF GSPNS: REVISITED

Our proposed GSPN semantics is not very deep and perhaps
not surprising. It is basically the usual GSPN semantics except
that if nondeterminism remains, this semantically does not
pose a restriction. The quest remains on how to analyze
these models. State-of-the-art software tools that support the
generation of interactive Markov chains, MA without discrete
probabilistic branching, from high-level descriptions such as
LOTOS [10], dynamic fault trees [3], or AADL [4] typically
can only perform a performance analysis if the IMC after weak
bisimulation minimization yields a CTMC. Then standard
CTMC analysis or model-checking techniques can be used.
This is however a severe restriction as in many cases non-
determinism remains after weak bisimulation. Due to recent
developments in the analysis of real-time stochastic games
–in fact, IMCs and MA are 1 1

2 -player real-time stochastic
games– several quantitative objectives can be analysed. In the
following we consider three such objectives: expected time,
long run, and time-bounded reachability objectives. It is worth-
while to mention that all these three measures are preserved
by bisimulation. Thus, bisimulation-equivalent marking graphs
have identical measures. In our analysis described below, the
nondeterminism is resolved by policies, oracles say, that in
any marking with several enabled immediate transitions select
one of them. One way of resolving the nondeterminism by a
policy is to pick an enabled transition in a randomized manner,
just as weights at the net level. The main difference, however,
is that our analysis provides results that are valid for an entire
class of policies, whereas the analysis of a weighted GSPN
would only be valid for that particular weighted resolution of
the nondeterminism, i.e. for a single policy.

A. Expected time objectives

What is an expected time objective? Let M be a marking,
and G a set of (goal) markings. The random variable TG is
the elapsed time before visiting some marking in G for the
first time when starting from M . The value of TG depends on
how the nondeterminism is resolved by the policy at hand. In



fact, we are not interested in the expected value of TG for a
given policy, but in its minimal expected time for all possible
policies. Stated differently, we are interested in the expected
time to reach G under the worst possible policy, i.e., a policy
that attempts to keep the GSPN away from all markings in
G. In this setting, the most demonic policy determines the
minimal expected value of TG Dually, we are interested in the
maximal expected time to reach G. This corresponds to the
most angelic policy, i.e., a policy that maximally assists the
GSPN to get to a marking in G. It turns out that memoryless
policies are optimal, i.e., there is a memoryless policy that
achievs the minimal (or maximal) expected time to reach G.
Such policies select an enabled immediate transition in a given
vanishing marking in a fully deterministic way. That is to say,
such policy is just a function that associates an immediate
transition to a given vanishing marking.

Evidently, for a CTMC (confusion-free GSPN), the mini-
mal and maximal values of TG coincide. In fact, computing
expected time objectives for CTMCs boils down to solving
a linear equation system. It recently has been shown that the
computation of minimal (or maximal) expected time objectives
in IMCs can be reduced to to a non-negative stochastic shortest
path (SSP) problem in Markov decision processes (MDPs).
It is well-known that such SSP problems can be solved by a
linear programming problem [2] for which efficient algorithms
and tools (such as SOPLEX) exist. Details of this reduction
and the algorithms can be found in [12]. First experiments
indicate that computing expected time objectives scales rather
well. Our current investigations show that the reduction to SSP
problems can easily be adapted to MA.

B. Long run objectives

As a next performance measure, we consider long-run
objectives. As before, let M be a marking and G a set of
markings. Let IG be an indicator function with IG(M) = 1 if
M ∈ G and 0, otherwise. The fraction of time spent in G on
an infinite path π up to time bound t ∈ IR≥0 is given by the
random variable

AG,t(π) =
1

t

∫ t

0

IG(π@u) du

where π@t denotes the marking along path π at time point t.
A path through an MA is an alternating sequence of markings
and either an action or a non-negative delay. Recall that G
only contains tangible markings, such that π@t is a single
marking. Let AG be the random variable obtained when taking
the limit of t to infinity of AG,t. We are now interested in the
expected value of this random variable. As for expected time
objectives, we do not focus on a single given policy, but on the
expected minimal and maximal time spent in some marking
in G on the long run. As for expected time objectives, it can
be shown that memoryless policies achieve the minimal (or
maximal) long run time to spent in G. For all CTMCs (i.e.,
confusion-free GSPNs), the expected minimal and maximal
long-run time is equal. In case the CTMC is ergodic, this
measure coincides with the stationary probability to be in G.

(Stationary probabilities are one of the most used measures for
GSPN analysis.) We may assume w.l.o.g. that G only contains
tangible markings, as the long-run average time spent in any
vanishing marking state is always zero. This claim follows
directly from the fact that states that only have outgoing action
transitions are instantaneous, i.e., their sojourn time is 0 by
definition. The general idea of computing the minimal long-
run time spent in G is the following three-step procedure:

1) Determine the maximal end components {L1, . . . , Lk}
of the MA at hand.

2) Determine the minimal long-run time spent in G within
each maximal end component Lj .

3) Solve a stochastic shortest path problem.

The first step is performed by a graph-based algorithm,
whereas the last two steps boil down to solving linear pro-
gramming problems. Determining the minimal expected long-
run time in an end component can be reduced to a long-run
ratio objective in an MDP equipped with two cost functions.
For details, algorithms and proofs we refer to [12].

C. Time-bounded reachability objectives

Let M be a marking and G a set of tangible markings. We
are interested in the minimal (or maximal) probability to reach
some marking G from M within a given deadline d ∈ R≥0.
This problem is much harder than the previous two. One of
the main reasons is that memoryless policies are not optimal.
In fact a policy that selects on the basis of the current state and
the total elapsed so far, is optimal. Intuitively speaking, this
is understandable. Consider a state in which there is a choice
between almost surely but slowly reaching G, or reaching G
quickly with the risk of not reaching G at all. If there is just a
little time left until the deadline d is reached, it is optimal to
gamble and choose the fast alternative as it is more likely to
reach G soon than choosing the safe but slow alternative. In
case there is sufficient time left, an optimal policy rather plays
safe and chooses the slow alternative. The point is that the total
elapsed time so far is a real, continuous value. This means
that there are uncountably many possibilities for a policy. A
solution to this problem is to discretize the time into equally
sized intervals, and constrain policies to be constant during
an interval. That is to say, such policies are only allowed to
make a selection at the beginning of an interval, and may not
select another immediate transition during an interval. They
must stick to their decision made at the beginning of the
interval. Such finite piecewise continuous policies approxi-
mate optimal timed policies arbitarily closely by tuning the
granularity of the discretization. A possible way to achieve
is to discretize an IMC (or, equivalently, a MA), and solve
such MDP-like processes using value iteration [22]. Other
recent techniques use uniformisation [5] or more advanced
techniques [18]. Experiments indicate that these procedures
are time consuming. Further research is needed to advance
computing time-bounded reachability objectives.
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Fig. 4. A dependable workstation cluster with 2N workstations [13]

event duration event duration
LeftWSFail 500h LeftWSRepair 0.5h
RightWSFail 500h RightWSRepair 0.5h
LeftSWFail 4000h LeftSWRepair 4h
RightSWFail 4000h RightSWRepair 4h
BackboneFail 5000h BackboneRepair 8h

TABLE I
AVERAGE DURATIONS FOR COMPONENT FAILURES AND REPAIRS

IV. WORKSTATION CLUSTER EXAMPLE: REVISITED

To show the results of some initial experiments that were
conducted, we consider a case study. The dependable worksta-
tion cluster [13] case study is depicted in Fig. 4. We consider
two identical subclusters, each of which consists of N ∈ N

workstations that are interconnected by a switch. Via their
switches and a central backbone, the workstations in the two
subclusters can communicate with each other. Each component
can fail, and there is a single repair unit to turn failed com-
ponents into operational mode. For the dependability analysis,
we adopt the failure rates of the components which are given
in [13], cf. Table I.

A. GSPN model

The workstation cluster is modeled as the GSPN depicted
in Fig. 5. The first two rows represent the N workstations
in the left and right subcluster, respectively. Each single
workstation fails after 500h of operation, on average. Hence,
we associate a failure rate of 1

500 to each workstation. Thus, the
timed transitions LeftWSFail and RightWSFail are marking
dependent: If n tokens are in LeftWSUp, each of them fails
with rate 1

500 . Therefore, the timed transition LeftWSFail has
rate n

500 . The same reasoning applies for RightWSFail . Once
a component has failed, a single repair unit is available that
can repair one failed component at a time. Depending on the
type of component, the repair operation takes different average
times, cf. Table I.

Our model is basically the GSPN as proposed in [13] and
as used in all of its studies so far, except that the inspection
transitions (such as RightSWInspect and RightWSInspect )
are immediate rather than timed transitions with a very high
rate. Accordingly, whenever the repair unit is available and
different components have failed, the choice which component
to repair next is nondeterministic. (In [13] this is probabilistic
such that the resulting marking graph is a CTMC.) As a
result, the GSPN of Fig. 5 is confused. Due to the presence of
confusion, this net is not analyzable using the classical analysis
techniques for GSPNs.

N

LeftWSUp LeftWSDown LeftWSInRepair

N

RightWSUp RightWSDown RightWSInRepair

LeftSWUp LeftSWDown LeftSWInRepair

RightSWUp RightSWDown RightSWInRepair

BackboneUp BackboneDown BackboneInRepair

RepairUnitAvailable

LeftWSFail LeftWSInspect LeftWSRepair

RightWSFail RightWSInspect RightWSRepair

LeftSWFail LeftSWInspect LeftSWRepair

RightSWFail RightSWInspect RightSWRepair

BackboneFail BackboneInspect BackboneRepair

Fig. 5. GSPN model of the fault tolerant workstation cluster [13]

B. Expected time and long-run average analysis

Table II shows the computation times for the maximum
expected reachability times where the set G of goal states
depends on the number N of operational workstations. More
precisely, G is the set of states in which none of the operational
left (or right) workstations connected via an operational switch
and backbone is available. For the sake of comparison, the
next column indicates the computation times for unbounded
reachability probabilities for the same goal set. The compu-
tation of these values is standard for MDPs and amounts to
solving a linear programming problem. The last column of
Table II lists the results for the long-run average analysis; the
model consists of a single end component. The experiments
were conducted on a single core of a 2.8 GHz Intel Core i7
processor with 4GB RAM running Linux.

C. Time-bounded reachability analysis

Let k ∈ {2, 3, . . . , 2N} be the number of workstations that
are operational and mutually connected. Consider the follow-
ing time-bounded reachability property: if the QoS constraint k
is violated, the probability to face the same problem after d
time units is at most p. We are interested in the maximal
probability that the above event happens. It turns out that
the dependability measures for the standard GSPN semantics
(using uniform weights) and our stochastic game analysis
differ considerably: In the worst case, the dependability is
18% worse than predicted by the classical GSPN model!
This substantial difference is explained as follows. Assume
sdown is the marking where both switches, the backbone and
all N workstations in the right subcluster have failed, whereas
in the left subcluster, all workstations are operational. To
compute the maximal probability, we have to consider the
worst possible repair strategy. Therefore, note that if k ≤ N ,
repairing the left switch establishes QoS. Thus, the desired
worst case probability is obtained if all workstations in the
right subcluster are repaired –which does not establish QoS–



TABLE II
EXPECTED TIME AND LONG RUN AVERAGE RESULTS

N k states d
results

new classical
4 3 820 20 0.3797 0.3038
4 5 820 20 0.4219 0.3717
4 8 820 20 0.4278 0.4250
8 3 2772 10 0.9319 0.7457
8 10 2772 10 0.9805 0.9178
8 16 2772 20 0.6147 0.6089

TABLE III
RESULTS OF TIME-BOUNDED REACHABILITY

before repairing the left switch. This gives rise to the relatively
low worst case probabilities. In the classical GSPN model,
however, each immediate transition has weight one. Therefore,
the probability to repair the switch in the otherwise intact
left subcluster is 1

5 . Obviously, this implicit strategy does not
reflect the worst case repair strategy. (A marking-dependent
weight assignment could alleviate this problem, but is non
trivial to determine in advance by a modeller.)

V. EPILOGUE

We proposed to define the semantics of GSPNs using
Markov automata, stochastic real-time games. This allows for
the support of confused GSPNs and GSPNs with immediate
subnets. The resulting semantics is truly simple and (as we
believe) intuitive. The key is to interpret possible nondeter-
minism between immediate transitions as is. To support the
quantitative analysis of such stochastic real-time games, we
presented novel algorithms for expected time and long-run
average objectives. Although initial experiments indicate their
scalability, we think that further algorithmic improvements can
improve their efficiency. Time-bounded reachability objectives
are more time-consuming and deserve more investigations.
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[15] Macià, H., Valero, V., Cuartero, F., Ruiz, M.C.: sPBC: A Markovian
extension of Petri box calculus with immediate multiactions. Fundam.
Inform. 87(3-4), 367–406 (2008)

[16] Marsan, M.A., Balbo, G., Chiola, G., Conte, G.: Generalized stochastic
Petri nets revisited: Random switches and priorities. In: Petri Nets and
Performance Models (PNPM). pp. 44–53. IEEE (1987)

[17] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:
Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons
(1995)

[18] Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reach-
ability in CTMDPs and continuous-time Markov games. Acta Inf. 48(5-
6), 291–315 (2011)

[19] Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal def-
initions and concepts. In: Formal Methods and Performance Analysis
(FMPA). LNCS, vol. 2090, pp. 315–343. Springer (2000)

[20] Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic
processes. Nord. J. Comput. 2(2), 250–273 (1995)

[21] Teruel, E., Franceschinis, G.: Well-defined generalized stochastic Petri
nets: A net-level method to specify priorities. IEEE TSE 29(11), 962–
973 (2003)
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